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Energy transfer through third‐ 
grade fluid flow across an inclined 
stretching sheet subject to thermal 
radiation and Lorentz force
Najiba Hasan Hamad 1, Muhammad Bilal 2, Aatif Ali 3, Sayed M. Eldin 4, Mohamed Sharaf 5 & 
Mati Ur Rahman 3,6*

The heat and mass transfer through the third grade fluid (TGF) flow over an inclined elongating sheet 
with the consequences of magnetic field and chemical reaction is reported. The impact of activation 
energy, heat source/sink, and thermal radiation is considered on the TGF flow. Fluid that demonstrate 
non-Newtonian (NN) properties such as shear thickening, shear thinning, and normal stresses despite 
the fact that the boundary is inflexible is known as TGF. It also has viscous elastic fluid properties. 
In the proposed model, the TGF model is designed in form of nonlinear coupled partial differential 
equations (PDEs). Before employing the numerical package bvp4c, the system of coupled equations 
are reduced into non-dimensional form. The finite-difference code bvp4c, in particular, executes the 
Lobatto three-stage IIIa formula. The impacts of flow constraints on velocity field, energy profile, 
Nusselt number and skin friction are displayed through Tables and Figures. For validity of the results, 
the numerical comparison with the published study is performed through Table. From graphical 
results, it can be perceived that the fluid velocity enriches with the variation of TGF factor and 
Richardson number. The heat source parameter operational as a heating mediator for the flow system, 
its influence enhances the fluid temperature.

List of symbols
Uw   Sheet stretching velocity
qr   Thermal radiation
K0   Surface penetrability
Ea  Activation energy
F  Inertia constant
ν   Kinematic viscosity
αm   Thermal diffusivity
µ   Dynamic viscosity
Dm   Mass diffusivity
N  Buoyancy ratio factor
M  Magnetic factor
g  Gravitational acceleration
Tw  Surface temperature
NN  Non-Newtonian
δ   Electrical conductivity
(α1,β3,α2)  Material moduli
Q0   Heat source
B(x)   Magnetic field
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Cp   Specific heat competence
kr   Chemical reaction
Ri  Richardson number
L  Viscoelastic factor
K*  Permeability factor
β   Third-grade fluid factor
R  Chemical reaction factor
Cw  Surface concentration
MHD  Magnetohydrodynamics
TGF  Third grade fluid

The fluid flow through a stretching sheet holds substantial significance within the domain of fluid dynamics, 
owing to its wide array of uses in various engineering and industrial domains. Abolbashari et al.1 analytically 
examined the behavior of fluid flow. Their study focused on a flow scenario where a stretching sheet was involved 
with velocity slip condition. Zeeshan et al.2 deliberated the heat transmission on the motion of a ferromagnetic 
fluid over an extending surface. This ferromagnetic fluid consisted of a well-blended mixture of magnetic solid 
particles all of this occurs in the presence of an electromagnetic dipole state. Shit et al.3 conducted a study that 
explored the dynamics of unsteady boundary layer magnetohydrodynamic flow and convective heat source. 
Sandeep and  Sulochana4 developed a new mathematical model to investigate energy and heat transmission in 
non-Newtonian fluids on a stretched surface. Results showed that the Jeffrey nanofluid outperformed Maxwell 
and Oldroyd-B nanofluids in terms of heat transfer. Besthapu et al.5 conducted an examination of velocity slip on 
a extending sheet with convectively non-uniform characteristics. Alqahtani et al.6 conducted a 3D simulation on 
MHD behavior of hybrid fluid flow across double stretching surfaces. Chu et al.7 investigated a 2D continuous 
laminar movement of a TGF past a flow over a shrinking surface containing gyrotactic microorganisms. The flow 
was electrically conductive due to an applied electric field and the Buongiorno nanoliquid model was used for 
mathematical modeling. The study also incorporated chemical reactions with activation energy effects. Kumar 
et al.8 and Li et al.9 investigated the energy transmission rate in a hydromagnetic Williamson nanoliquid flow thru 
a absorbent strained sheet. Khan et al.10 conducted a discussion on the hybrid nanoliquid flow consisting of Cu 
and Al2O3 nanoparticles in water. This flow occurred from a centrifugally porous surface that could either shrink 
or stretch. Elattar et al.11 scrutinized the steady flow of hybrid nanoliquid over an impermeable stretchable sheet. 
A mathematical model was developed with the aim of improving the rates of energy transference, enhancing the 
efficiency and effectiveness of thermal energy propagation. Dogonchi et al.12 described the entropy and thermal 
analyses of the nanoliquid flow within a porous cylinder. Some remarkable results recently presented by Ref.13–18.

The flow of a mixture of fluid and solid particles is inherently complex and can be influenced by numerous 
variables. To better understand and study these intricate flows, one common approach is to treat the mixture as 
a NN fluid. Considerable research has been dedicated to the analysis of various transport phenomena occurring 
within non-Newtonian fluids, including substances like coal slurries. Among these processes, heat transfer is 
of particular significance in the context of handling and processing these fluids. It plays a pivotal function in 
the efficient management and treatment of such complex  mixtures19.  Ariel20 conducted a study on the laminar 
flow and steady of a TGF over a permeable flat conduit. Ellahi and  Riaz21 carried out an investigation to exam-
ine the TGF with changing viscosity in a conduit. This study also considered the heat diffusion features of the 
fluid in the context of the analysis. Bilal et al.22 explored the MHD motion of Carreau Yasuda liquid initiated by 
an exponentially extending surface. Adesanya et al.23 performed a study on the intrinsic irreversibility linked 
with the motion of third-grade fluid through a conduit exposed to convective heating. This study recognizes 
that the heat generated leads to continuous entropy generation within the channel. Reddy et al.24 conducted an 
investigation to understand the effect of the Prandtl number on TGF around a vertically oriented cylinder that 
is uniformly heated. Mahanthesh and  Joseph25 examined the steady-state behavior of third-grade liquid flowing 
over a pressure-type die in the existence of nanoparticles. The fluid is dissipative and its properties are considered 
to be constant throughout the analysis. Contemporary and innovative literature concerning Non-Newtonian 
(third-grade fluid) can be found in Refs.26–30.

Magnetohydrodynamics (MHD) is the discipline that analyzes the behavior of electrically conductive sub-
stances including plasmas, ionized gases and liquid metals when subjected to magnetic fields. This area of 
research investigates the interaction between fluid motion and electromagnetic forces and it possesses extensive 
applications in geophysics, engineering, plasma physics and astrophysics. The impact of fluctuating viscous flow 
within a narrowing channel was scrutinized by Al-Habahbeh et al.31. Rashidi et al.32 provided an extensive over-
view of the utilization of MHD and biological systems. The investigation of MHD fluid motion in diverse orienta-
tions linked to human anatomical structures is a significant scientific domain given its relevance and applications 
in the field of medical sciences. Ellahi et al.33 examined the concurrent impacts of MHD, heat transfer and slip 
over a flat plate in motion. Furthermore, this study also assessed the influence of entropy generation within this 
context. Lv et al.34 explored the effects of various physical phenomena, including diffusion-thermo, radiation-
absorption in the context of MHD free convective spinning flow of nanoliquids. Kumam et al.35 studied the MHD 
Radiative unsteady fluid flow with the upshot of heat source across a channel placed in absorbent medium. Tian 
et al.36 studied the energy transfer though fluid flow surrounded by a rectangular enclosure having a heat sink 
filled with hybrid nanofluids and the exploration focused on the joint effects of forced and natural convection. 
Bhatti et al.37 conducted research into the unsteady flow within the confines of parallel spinning spherical disks 
placed in a permeable medium. The influence of magnetization on lubrication had attracted consideration due 
to their important roles in various industrial applications. One notable example was their increased use in high-
temperature bearings with liquid metal lubricants. Alharbi et al.38 carried out a computational examination of the 
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influence of different geometric factors on an extending cylinder. Hamid and  Khan39 investigated the upshot of 
magnetic flux on NN Williamson fluid flow. The flow was induced by an elongating cylinder in the existence of 
nanocomposites. Shamshuddin et al.40 studied the upshot of chemical reactions Couette-Poiseuille nanoliquid 
flow through a gyrating disc. Kumam et al.41 explored the MHD unsteady radiative flow. Khan and  Alzahrani42 
focused on optimizing entropy and understanding heat transport in the flow of a magneto-nanomaterial. This 
investigation took into account the influence of MHD within the fluid. Adnan and  Ashraf43 and Li et al.44 evalu-
ated the nanoliquid flow across a permeable surface.

The originality of the proposed model is to examine the heat and mass transfer through the TGF flow over an 
inclined elongating sheet. The impact of magnetic field, activation energy and thermal radiation is considered 
on the TGF flow. Fluid that demonstrate NN properties such as shear thickening, shear thinning, and normal 
stresses despite the fact that the boundary is inflexible is known as TGF. In the proposed model, the TGF model 
is conveyed in form of nonlinear coupled PDEs. Before employing the numerical package bvp4c, the system of 
coupled equations are reduced into non-dimensional form. The significances of flow factors on velocity field, 
energy profile and Nusselt number are presented through Tables and Figures. For validity of the results, the 
numerical comparison with the published existing study is performed through Table. In the upcoming section, 
the problem is designed in form of PDEs and numerically solved.

Formulation of the problem
We have considered the mass and energy transfer through the steady and incompressible flow TGF over an 
inclined elongating sheet. The two-dimensional TGF flow is inspected under the impacts of chemical reaction, 
magnetic field, activation energy and thermal radiation. The surface of the sheet is assumed to be Darcy perme-
able. The x-axis and y-axis is the horizontal and normal axis to an inclined stretching sheet as shown in Fig. 1. 
Here, g, Tw and Cw is the gravitational acceleration, surface temperature and concentration respectively. By keep-
ing in view, the above suppositions, the TGF flow equations are expressed  as45, 46:

Boundary conditions (BCs)  are45:
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Figure 1.  TGF flow across a stretching inclined surface.
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Here, ( α1,β3,α2 ) are the moduli of material. Uw and δ is the sheet stretching velocity and electrical conductivity, 
qr = − 4σ ∗

3k∗
∂T4

∂y ,K0 and Q0 is the thermal radiation, surface penetrability and heat source.  B(x) = B0e
x
L and Ea is 

the magnetic field and activation energy, kr and Cp is the chemical reaction and specific heat competence, F = Cb√
K0

,ν 
and µ is the inertia constant, kinematic and dynamic viscosity, αm and Dm is the mass and thermal diffusivity.

In order to simplify Eqs. (2)–(4) and (5) to nonlinear ODEs, we use the following makeover  as39:

By using Eq. (6), we get:

Transform BCs are:

The constraints derived from Eqs. (7)–(9) are given in Table 1.
The Nusselt number, drag force, Sherwood number are:
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Table 1.  The list of dimensionless parameters.

Parameters Symbols Expression

Richardson number Ri Ri = Gr
Re2

Buoyancy ratio factor N N = BcC0

Re2

Viscoelastic factor L L = α2U0e
x
L

2ρνL

Third-grade fluid factor β β = β2U0e
x
L

ρνL

Cross viscous term K K = α1U0e
x
L

Re2

Permeability factor K* K∗ = 2νL

k1U0e
x
L

Magnetic factor M M = 2δβ2
0

ρU0

local inertial constant Fr Fr = 2CbL√
k0

Prandtl number Pr Pr = ν
α

Activation energy E E = Ea
κT∞

,

Schmidt number Sc Sc = ν
Dm

Chemical reaction factor R R = k2r
c

Heat source term Qe Qe = Q0

ρCpa

Grashof number Gr Gr = gβT (Tw−T∞)L3

2

Reynold number Re Re = U0L
ν
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The dimensionless form of Eq. (11) is:

Numerical solution and validation of the problem
The solutions of [Eqs. (7)–(9)] and its BCs [Eq. (10)] are derived in this section. The outcomes are accom-
plished by engaging the MATLAB code “bvp4c” (built-in package). The bvp4c package is built on the Lobatto 
III  principle47–49. Before, solving the Eqs. (7)–(9) and Eq. (10), it must be transformed into first order system of 
ODEs. The transformation procedure is as follow:

By placing Eq. (14) in Eqs. (7)–(9) and (10) to get:

The BCs are:

Table 2 displays the numerical estimation of the present study with the existing works. It has been observed 
that the present results are precise and consistent.

Results and discussion
We have calculated the mutual effect of magnetic force and chemical reaction on the energy and mass conduction 
through the TGF across a stretching sheet.

Figures 2, 3, 4, 5 and 6 revealed the effect of Richardson number Ri , TGF factor β , magnetic factor M , per-
meability factor K∗ and local inertial constant Fr versus f ′(η) . Figures 2 and 3 reports that the velocity curves 
develop for the rising values of Richardson number Ri and third-grade fluid factor. Richardson number is the 
ration between Grashof and Reynold number. The Reynold number has an transposed relation with Ri, therefore 
the fluid velocity f ′(η) improves with the variation of Ri. Similarly, the action of third-grade fluid factor β also 
enhances the velocity as presented in Fig. 3. Physically, the kinetic viscosity drops, while the stretching velocity 
of fluid develops with the effect of β , which results in such scenario. The influence of magnetic factor M , perme-
ability factor K∗ and local inertial constant Fr, all diminish the fluid velocity as publicized in Figs. 4, 5 and 6. 
Physically, the resistive force opposes the fluid velocity f ′(η) , which is produced due to magnetic effect (Fig. 4). 
On the other hand, the rising permeability of the sheet resists to the flow field, which causes in the reducing of 
velocity field (Fig. 5). The consequences of inertial forces also decline the velocity curve f ′(η) as exposed in Fig. 6.

Figures 7, 8 and 9 highlight the significances of Prandtl number, Rd and Qe on the energy θ(η) field. Figure 7 
exposes that the temperature curve drops with the effect of Prandtl number. Physically, the thermal diffusiv-
ity of higher Prandtl fluid is less, that’s why, the effect of Pr drops the energy field (Fig. 7). The radiation effect 
transfers thermal energy form heat source to the system, which results in the elevation of temperature field 
θ(η) (Fig. 8). Similarly, the heat source working as heating agent for the flow system, there effect rises the fluid 
temperature θ(η), as displayed in Fig. 9. Figures 10 and 11 highlights the significances of activation energy E, R 
and Schmidth number Sc on the mass profile φ(η) . Figures 10 and 11 explained that activation energy factor and 
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}

Table 2.  Numerical evaluation of the present study with the existing works, while taking 
M = 0, Ri = 0, L = 0, Sc = 0, Fr = 0, K∗ = 0.

Pr Magyari and  Keller50 Abbas et al.45 Present study

1.0 0.9446 0.9452 0.945267

3.0 1.8590 1.8522 1.852283

5.0 2.5100 2.5175 2.517585

10 3.6503 3.6567 3.656832
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chemical reaction effect augments the concentration field. Correspondingly, the significance of Sc controls the 
mass transfer, because the kinetic viscosity improves, which lessens the mass φ(η) outline as discovered in Fig. 12. 
The amount of the chemical reaction has a direct impact on the intensity of mass transfer, because it makes fluid 
atoms move more quickly, which causes the mass gradient φ(η) to rise as publicized in Fig. 11.

Table 3 disclosed the numerical outputs for skin friction f ′′(0) , Sherwood number −φ′(0) and Nusselt number 
−θ ′(0) . It has been noticed that the Nusselt number and Skin friction rises for the mounting values of Schmidth 
number.

Figure 2.  Velocity f ′(η) versus Richardson number Ri.

Figure 3.  Velocity f ′(η) versus the third-grade fluid element β .

Figure 4.  Fluid velocity f ′(η) versus magnetic term M.
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Conclusions
We have numerically calculated the energy and mass transmission through the third‐grade fluid and relation of 
the Darcy–Forchheimer across a stretching sheet. Additionally, the consequences of heat source, thermal radia-
tion and magnetic effect are also studied with the fluid flow. The simplified set of ODEs is numerically resolved 
through the bvp4c technique, by using Mathematica software. The main findings are:

• Velocity curve enhances for the rising values of Richardson number Ri and third-grade fluid factor.

Figure 5.  Fluid velocity f ′(η) versus permeability factor K∗.

Figure 6.  Fluid velocity f ′(η) versus inertial term Fr.

Figure 7.  Fluid energy sketch θ(η) versus Prandtl number Pr.
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• The influence of magnetic factor M , permeability factor K∗ and local inertial constant Fr, all diminish the 
fluid velocity.

• The temperature curve drops with the effect of Prandtl number.
• The radiation effect transfers thermal energy form heat source to the system, which results in the elevation 

of energy field θ(η).
• The heat source working as heating agent for the flow system, there effect rises the fluid temperature θ(η).
• The consequence of chemical reaction boosts the concentration field, while declines with the Schmidth 

number.

Figure 8.  Fluid energy sketch θ(η) versus thermal radiation Rd.

Figure 9.  Fluid energy sketch θ(η) versus Heat source Qe.

Figure 10.  Fluid concentration sketch φ(η) versus Activation energy E.
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