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Quantum teleportation 
and dynamics of quantum 
coherence and metrological 
non‑classical correlations for open 
two‑qubit systems
Yassine Dakir 1, Abdallah Slaoui 1,2, Abdel‑Baset A. Mohamed 3,4*, Rachid Ahl Laamara 1,2 & 
Hichem Eleuch 5,6,7

We investigate the dynamics of non‑classical correlations and quantum coherence in open quantum 
systems by employing metrics like local quantum Fisher information, local quantum uncertainty, 
and quantum Jensen‑Shannon divergence. Our focus here is on a system of two qubits in two distinct 
physical situations: the first one when the two qubits are coupled to a cavity field whether the system 
is closed or open, while the second consists of two qubits immersed in dephasing reservoirs. Our study 
places significant emphasis on how the evolution of these quantum criterion is influenced by the initial 
state’s purity (whether pure or mixed) and the nature of the environment (whether Markovian or non‑
Markovian). We observe that a decrease in the initial state’s purity corresponds to a reduction in both 
quantum correlations and quantum coherence, whereas higher purity enhances these quantumness. 
Furthermore, we establish a quantum teleportation strategy based on the two different physical 
scenarios. In this approach, the resulting state of the two qubits functions as a quantum channel 
integrated into a quantum teleportation protocol. We also analyze how the purity of the initial state 
and the Markovian or non‑Markovian regimes impact the quantum teleportation process.

One of the most interesting topics in the microscopic world involving quantum mechanics is quantum entangle-
ment (QE), a particular property of quantum systems with no classical  analogue1–3. The concept of QE shows 
how two or more objects can be bound to each other contrary to what our common sense would predict. If an 
ensemble of entangled particles is individually measured, then while the particles are physically separated by a 
large distance, in some ways they behave as a single object rather than as two separate objects and the resulting 
results may exhibit “non-local”  effects4. Indeed, QE has been seen as a concrete physical resource with many 
important  applications5,6, ranging from  cryptography7 to  teleportation8–10 to quantum  computers11–13. Thus was 
born the quantum information sector which developed surprisingly. Besides, the further growth of the joint 
entanglement of a pair of qubits exposed to local noisy environments has recently attracted a lot of attention. The 
reason is related to the discovery of Yu and  Eberly14 that, quite unexpectedly, the Markovian dynamics of joint 
entanglement of qubits and decoherence of a single qubit for this system can be quite different. In fact, quan-
tum systems can be classified into two types; closed and open. A closed quantum system is completely isolated 
from its environment and does not interact with it, while an open quantum system exchanges energy, matter 
or information with its external environment. Over time, an open quantum system can undergo decoherence, 
which results in a loss of coherence between the system and its environment, and a loss of information about 
the initial state of the system.
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The investigations concerning the decoherence started mainly through the works of  Zeh15 and  Zurek16, with 
the initial aim of proposing a mechanism that could explain the emergence of classical properties from a purely 
quantum context. Furthermore, decoherence theory allows us to understand the evolution of correlations exist-
ing in a quantum system and could therefore help us to develop strategies to combat noise effects. Overcoming 
decoherence is a prerequisite for the very attractive idea of coding information in quantum systems. For this 
purpose, the possibility of QE disappearing completely at limited times has attracted most of the interest. This 
phenomenon of “entanglement sudden death” has been demonstrated in a quantum optics  experiment17. Fur-
ther, we keep discovering new situations in which dissipation play a crucial role in manipulating open quantum 
systems. In many circumstances, it is no longer possible to assume a significant boundary between the time 
scales of the system and the environment, resulting in non-markovian behavior and ultimately feedback from 
the environment to the  system22,26. It is therefore essential to create a description of the system-environment 
interaction that is accurate and efficient. In this present work, we focus specifically on two scenarios of open 
quantum systems; The first one concerns a Jaynes-Cummings model (JCM)20 and the second scenario deals with 
a non-markovian dephasing  model21. Basically, the JCM extensively employed in quantum optics, which serves 
as a fundamental framework for elucidating the interaction between two-level atoms and quantized electromag-
netic fields in the dipole approximation. This model can be precisely solved when applying the rotating wave 
approximation, wherein non-energy-conserving terms are eliminated from the Hamiltonian. Consequently, the 
JCM has been a focal point of considerable theoretical and experimental investigations in recent decades. On 
the other hand, non-markovian dephasing model are designed to capture the effects of memory in the evolution 
of a quantum system. Non-markovian dynamics can capture the implications of memory in the evolution of an 
open quantum systems and can be used to study a wide range of phenomena, including quantum memory and 
entanglement  dynamics22–26. The differentiation between markovian and non-markovian models lies in how they 
depict the temporal evolution of the system. A markovian model assumes that the quantum state of the system at 
a particular moment is solely determined by its immediate preceding state. Consequently, the properties of the 
system at time t + 1 can be completely ascertained by knowing its state at time t. In other words, the Markovian 
model postulates that the future is independent of the past, given the system’s current state. Conversely, a non-
markovian model incorporates longer-term influences and permits non-local dependencies over  time27. This 
implies that the quantum state of the system at a specific moment may depend on its past states over several time 
intervals, rather than solely relying on its immediately preceding state.

The characterization of non-classical correlations poses a significant challenge in this research field, and 
numerous measures have been introduced in the literature to quantify them in quantum  systems28–30. Measures 
such as entanglement of formation and concurrence serve as quantitative indicators of  entanglement31. Another 
measure, known as quantum discord (QD), based on the von Neumann entropy, provides a means to assess 
quantum correlations in bipartite quantum systems, even those that are separable. It was initially introduced by 
Ollivier and  Zurek32 and Henderson and  Vedral33. However, computing QD based on von Neumann entropy is 
generally a complex task. In fact, it has been proven to be NP-complete34, and only partial results are available for 
certain special two-qubit states. In response to these obstacles, scientists have put forth a geometric approach for 
quantifying quantum discord that employs Schatten p-norms. The initial formulation of this geometric quantum 
discord measure was introduced  in35, where the Hilbert-Schmidt norm was employed. Despite being computa-
tionally  tractable36–38, the geometric QD is not an ideal indicator of non-classical correlations. This occurs because 
the geometric QD, measured using the Hilbert-Schmidt distance, can actually increase when local quantum 
operations are performed on the unmeasured  qubit39. This undesirable characteristic stems from the absence of 
contractivity which is a vital property for any quantum correlations quantifier. It is now established that the trace 
norm is the only Schatten p-norm suitable for the geometric measure of  QD40–43. Recently, a new measure called 
local quantum uncertainty (LQU)44 has been introduced to examine pairwise quantum correlations of the QD 
type in multipartite systems. It possesses all the desirable properties expected of a reliable quantum correlations 
quantifier. This measure is based on the concept of Skew information, initially introduced by Wigner to determine 
the uncertainty in measuring an  observable45,46. The advantage of the LQU is its analytical computability for 
any qubit-qudit system. Furthermore, it is worth noting that this new quantum correlation quantifier is closely 
linked to quantum Fisher information, which is commonly employed in the field of quantum  metrology47. In a 
recent  study48, the introduction of local quantum Fisher information (LQFI) provided a means to quantify non-
classical correlations using QFI. This powerful quantifier, akin to quantum discord, involves minimizing QFI 
over a locally informative observable related to a specific subsystem. Moreover, LQFI holds great potential as a 
tool for comprehending the impact of quantum correlations, beyond entanglement, in improving the precision 
and efficiency in quantum estimation protocols.

The purpose of this study is to investigate the behavior of non-classical correlations (LQU and LQFI) and 
quantum coherence in two distinct open quantum systems. The first system consists of two qubits coupled with 
a single-mode cavity field, and it is analyzed under the rotating wave approximation. The second system involves 
two qubits interacting with dephasing reservoirs. A comparative analysis of their time evolution is conducted, 
and particular attention is given to examining the impact of both Markovian and non-Markovian environments 
on their quantumness. Both models share the same dependence on the initial state, enabling a meaningful 
comparison between them. Additionally, we investigate the quantum teleportation of a two-qubit system in an 
arbitrary pure entangled state through the two considered models as a quantum  channel49,50. The output average 
fidelity is examined to validate the effectiveness of the teleportation process. This article is organized as follows: 
Sec.2 provides an overview of LQFI, LQU, and QC, which are used to quantify the degree of quantumness in 
our models of interest. In "Theoretical model" section is dedicated to analyzing the behavior of LQU, LQFI, and 
QC in the Jaynes-Cummings model as well as in a non-Markovian dephasing model. Furthermore, in "Quantum 
teleportation scheme" section, we discuss the success of quantum teleportation in both models by measuring the 
average fidelity. Finally, we sum up our results in "Conclusion" section.
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Quantifiers of non‑classical correlations
Non‑classical correlations measured by local quantum uncertainty
Using local measurements on a part of the given quantum state ρAB , local quantum uncertainty (LQU) is a 
quantifier of non-classical correlations that captures a fully quantum part of the bipartite state ρAB44 and which 
goes beyond entanglement. It can be computed as

with the minimum is optimized over all local observables KA on the subsystem A, and I(ρ,KA ⊗ 1B) is the 
Wigner-Yanase skew  information45,51 that quantifies the information content and the noncommutativity in the 
state ρAB with regard to the local observable KA , it writes as

Therefore, the minimum quantum uncertainty associated with a single measurement on a single subsystem is 
referred to as LQU. Importantly, LQU is one of the most adapted quantifiers of non-classical correlations and has 
been shown to satisfy all the necessary physical requirements for such a discord-like quantifier. For instance, LQU 
is non-increasing under local operations on B, it vanishes if and only if the quantum state is a zero-discord state, 
it is invariant under local unitary operations for bipartite quantum systems, and lastly, it reduced to a monotone 
entanglement for pure states. For bipartite 2⊗ d-quantum states, a closed from of LQU can be derived as

�max is the largest eigenvalue of the 3× 3 symmetric matrix W ≡ [Wij] , whose components are calculated using 
the following formula

with σi,j (where i, j = 1, 2, 3 ) are the standard Pauli matrices acting on the part A.

Non‑classical correlations quantified by local quantum Fisher information
Here we employ local quantum Fisher information (LQFI) as a second quantifier of non-classical correlations 
based on quantum uncertainty. Briefly, QFI F  is the most commonly applied quantity to characterize the ultimate 
accuracy in the parameter estimation protocols via the quantum Cramér-Rao bound, where �θ ≥ 1/

√
F 52,53. 

Recently, numerous efforts have been done to establish the relevance of non-classical correlations in quantum 
metrology, resulting in showing how quantum discord can significantly improve the precision of estimated 
parameter θ in unitary evolution processes, i.e in the case of unitary dynamics ρθ = U

†
θ ρUθ with Uθ = exp[iKθ ] . 

According to estimation theory, we can derive the QFI by optimizing the classical FI over all possible measure-
ments and can be reformulated as

where Lθ is the symmetric logarithmic derivative (SLD) associated to the estimated parameter θ , which was 
determined by solving the equation

Applying this result to the spectrum decomposition ρθ = ∑N
i=1 ηi|ψi��ψi| with ηi ≥ 0 and 

∑N
i=1 ηi = 1 , the SLD 

can be computed explicitly as

and the explicit formula for the QFI is obtained by reporting Eq. (7) into Eq. (5) as

It should be noted that in the case of unitary dynamics, where K is a fixed Hermitian operator on the system 
ρ , QFI becomes independent of the estimated parameter θ as shown  in46. If ρAB is a 2⊗ d-bipartite quantum 
state, and if the dynamics of the first subsystem is controlled by the local phase shift transformation e−iθKA , with 
K = KA ⊗ 1B , The QFI with local Hamiltonians becomes

Similar to LQU (1), the local Fisher quantum information (LQFI) is defined as the worst-case QFI on all local 
Hamiltonians KA acting on the subsystem A48 as

(1)UQ(ρAB) = min
KA

I(ρAB,KA ⊗ 1B),

(2)I(ρAB,KA ⊗ 1B) = −1

2
Tr

(

[√
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]2
)

.
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√
ρAB

(

σj ⊗ 1B
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,
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1

4
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θ

)

,

(6)
∂ρθ
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= 1

2
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(
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)2
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(9)F(ρ,KA) = Tr
(

ρK2
A

)

−
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It is another analytically computable measure of discord-like correlations and has all the desirable features that 
any acceptable non-classical correlation quantifier should fulfill. The local Hamiltonian KA can be taken as 
KA = �σ .�r for minimizing the above Eq. (10) for any qubit-qudit system, with �r = 1 and �σ = (σ1, σ2, σ3) . In this 
case, it is easy to prove that Tr

(

ρK2
A

)

= 1 and the second term in Eq. (9) can be formulated as

with the matrix elements of the symmetric matrix M ≡ [Mkl] are given by

Applying the minimization process over all possible local observables, as we already made by LQU (3), we obtain 
an explicit closed form of LQFI as follows

where ξmax[M] denotes the largest eigenvalue of the symmetric matrix M defined by (12).

Quantum coherence
Quantum coherence (QC) is one of the latest correlations formally  introduced54–56, although its concept has been 
mentioned since the origins of quantum mechanics. Actually, QC is the basis of entanglement, multi-particle 
interference and other types of non-classical correlations, and plays a central role in quantum information 
 processing57–60. Therefore, in order to explore the QC in the context of quantum resource theory, quantum 
information science proposes rigorous notions and techniques, and several quantifiers have been proposed in 
finite dimensional systems. Radhakrishnan and his co-authors61 have proposed a new quantifier of quantum 
coherence, combining both entropic and metric properties and satisfying all known criteria for a QC quantifier. 
It is defined as the square root of the quantum Jensen-Shannon divergence J (ρ, ρd) as

where the quantum Jensen-Shannon divergence, as a distance measure between the state ρ and the closest inco-
herent state ρd , is given by

with ρd is the diagonal part of quantum state ρ in the computational basis and S(ρ) = −Tr
(

ρ log2 ρ
)

 is the von 
Neumann entropy.

Theoretical model
Quantumness in a two‑qubits system coupled to a cavity field
The extensive discussion on entanglement dynamics within closed and open quantum systems has been thor-
oughly explored; however, the evolution of the metrological non-classical correlations remains largely uncharted. 
This section aims to provide an interpretive understanding of the evolution of quantum resources by examining 
two examples. The first example involves two non-interacting qubits coupled with the same quantized field under 
the rotating-wave approximation. The second example delves into the dephasing model, wherein two qubits are 
embedded into a multimode quantized field, taking into account the interaction between the two qubits.

The field interacts with two non‑interacting qubits
Many physical phenomena can be modeled by two-level systems interacting with a harmonic oscillator, includ-
ing atoms with electromagnetic  fields20,62, nuclear spin interactions with magnetic  fields63,64, electrons with 
crystal lattice phonon  modes65, superconducting LC  circuits66,67, superconducting qubits with nanomechanical 
 resonators68,69, among others. The Rabi Hamiltonian controls the behavior of all these systems. Analytical solu-
tions for its eigenvalues and eigenvectors are still lacking despite the fact that it has been the subject of much 
investigation since it was originally presented within the framework of nuclear magnetic spin resonance. When 
the qubits are nearly resonant with the oscillator and the coupling forces are much smaller than the frequencies 
of the oscillator (i.e., in the rotating wave approximation), it is possible to neglect the counter-rotation terms to 
get the Jaynes-Cummings model having the  Hamiltonian20,

In this context, ω0 denotes the transition frequency that characterizes the two levels of the atoms. The parameter 
γ represents the constant of coupling between the atoms and the fields. Additionally, ω corresponds to the angular 
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(11)
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2ηiηj
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frequency of the single-mode field, while â† and â symbolize the creation and annihilation operators for the cavity 
mode. The atomic transition operators σ±

j  and inversion operator σ z
j  are defined as

with |0�j and |1�j representing respectively the ground and excited states of the j-th qubit. In fact, the interaction 
between the system and field influences how the whole system evolves. However, the energy transfer between 
the system and the field occurs from the perspective of the qubits, and this is defined by the backaction term 
âσ+

j  and the relaxation term â†σ−
j  . we assume that the particles A and B are resonantly coupled to the single-

mode cavity field and that they are initially prepared in Werner-like  states72 as ρAB = ς |φ��φ| + (1− ς)/41 
with |φ� = sin α|00� + cosα|11� , described in terms of the purity ς and mixing α . However, the initial state of 
the cavity field is adjusted to the vacuum state, i.e. ρF = |0��0| . The density matrix operator of the system evolves 
to ̺AB(t) = TrF

[

U(t)ρABFU
†(t)

]

 , where the time evolution operator U(t) = exp (−iHt) . In the standard basis 
{|00�, |01�, |10�, |11�} , the density matrix ̺ AB(t) is given by

with the elements

where δ =
√
6γ . We need to determine the components provided by Eq. (4) to determine the analytical formula 

of LQU. Following some simplifications, we arrive at

Thus, it is simple to check that W11 ≥ W22 , then LQU is given in term of

To derive the explicit expression for LQFI, we first compute the eigenvalues and eigenstates of the density matrix 
(16). The eigenvalues are explicitly given by

and the corresponding eigenstates are given by

σ+
j = |0�j�1|, σ−

j = |1�j�0|, σ z
j = |0�j�0| − |1�j�1|,

(16)
̺AB(t) =u|00��00| + y[|01��01| + |10��10|]

+ z[|01��10| + |10��01|]+ v|11��11|
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4
+ ς sin2 α

9
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4
+ ς cos2 α + 2ς
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(cos (δt)− 1)2 sin2 α,
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6
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6
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4
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2
(

y +
√
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√
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4
(
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3
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where the quantities χ∓ are

Using (12), the non-zero components of the symmetric matrix M are the diagonal elements given by

Similar to LQU, it is simple to see that M11 ≥ M22 and then the LQFI writes

Subsequently, we determined the amount of quantum coherence existing in the system using the quantum Jensen-
Shannon divergence. For the density matrix (16), the analytical expression of the quantum Jensen-Shannon 
divergence takes the form

and therefore the quantum coherence is QC(̺AB) =
√
J (̺AB, ̺d) , where xi are eigenvalues of the matrix 

(̺AB + ̺d)/2.
We can observe that the parameters of the initial state, purity ς and mixing α control the evolution of local 

quantum Fisher information, local quantum uncertainty and quantum coherence in the Jaynes-Cumming model. 
At ς = 1 , the behavior of the LQFI is observed to be periodic, where it initially takes its maximum value and 
then decreases over time to its minimum value before rising again. This behavior repeats itself while maintain-
ing the same amplitude and expansion. The control of the α value contributes to the minimization of quantum 
correlation collapses, whereby a smaller parameter value leads to fewer collapses, and vice versa, as depicted in 
Fig. 1a. Similarly, LQU exhibits the same periodic behavior in terms of both behavior and quantity, as illustrated 
in Fig. 1b. On the other hand, QC behaves differently than LQFI and LQU, starting from the lowest value and 
gradually increasing to its maximum value. Raising the value of α also contributes to an increase in the amount of 
quantum coherence, opposite to LQU, and LQFI (see Fig. 1). If we reduce the purity value to 0.5, the same behav-
ior is maintained, but the quantity is different QC |ς=1 > QC |ς=0.5 the same for LQFI and LQU (see Fig. 1d–f).

Dephasing two interaction qubits by a multi‑mode quantized field
Now, we examine a dephasing model wherein two qubits are integrated into a multi-mode quantized field, and 
the interaction between the qubits is taken into account. The dephasing scenario is crucial in open systems, 
where there is no exchange of energy between the system and its environment. The whole system is described 
by the following  Hamiltonian70

(23)
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1√
2
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1

√
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where ω0 represents the transition frequency of the qubit, while ωk denotes the frequency with the k-th field. The 
operators σ±

j ( j = A,B ) correspond to the raising and lowering operators for the qubits and satisfy the commuta-
tion relation 

[

σ+
j , σ−

j

]

= σ z
j  . The coupling strength between the two qubits is denoted by g, while Ŵk represents 

the dephasing parameter. We choose the same initial state, but |φ� is different |φ� = sin α|01� + cosα|10� . The 
density matrix at time t is given by

where

Fd is the decoherence factor which leads to damping of the off-diagonal terms

The eigenvalues of the density matrix (30) are given by

Calculating the explicit expression of LQFI involves initially calculating the elements of the matrix M . Using 
expression (12), we get
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Figure 1.  Time evolutions of local quantum Fisher information in (a,d), local quantum uncertainty in (b,e), 
and quantum coherence in (c,f) versus the coupling γ t for different value of α . The top row corresponds to ς = 1 
and the bottom row corresponds to ς = 0.5.
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Therefore, the analytical expression of LQFI is

Whereas, the local quantum uncertainty is described by UQ(̺AB) = 1−max {W11,W33} , with

and

 Based on the above formalism (14), the analytical expression to determine the quantum coherence, measured 
using a quantum Jensen-Shannon divergence, is given by

with

Figure 2 depicts the dynamics behavior of quantum correlations characterized by local quantum uncertainty, 
quantum coherence and local quantum Fisher information for two interaction qubits dephasing by a multimode 
quantized field, for different values of the coupling Ŵ/w0 . The qualitative dynamical behaviors of the LQU meas-
ure seems similar to that of the LQFI measure, however, with few slight changes in quantity, where LQFI is larger 
and LQU (see Fig. 2a, b). These results are in agreement with the results obtained previously  in47, where LQU is 
majorized by LQFI in any multi-component quantum system. Moreover, when comparing LQU with QC (Fig. 2b, 
c), the amount of QC is greater and exceeds that of LQU. Importantly, these observations hold true for both pure 
and mixed initial states. The investigation carried out in Ref.71 aligns with our current findings, where QC is more 
fundamental than other forms of quantum discord due to its ability to manifest in single-partite systems as well.

Indeed, we observe that when the coupling Ŵ/w0 approaches zero-indicating no interaction between the two 
qubits-QC, LQU, and LQFI exhibit no decrease over time. They also display consistent oscillations irrespective 
of whether the initial state is pure ( ς = 1 ) or mixed ( ς = 0.5 ). Upon increasing Ŵ/w0 , we can observe that the 
curves of QC, LQU, and LQFI exhibit oscillations between their extremes, but with a decreasing amplitude. 
Furthermore, the quantum resources (LQU, QC and LQFI) share the same temporal behavior, demonstrating a 
consistent trend and performing harmonic oscillations, as illustrated in. The degradation of quantum correla-
tions can be attributed to the decoherence of qubits resulting from their interaction with the environment. As 
time progresses, the two qubits exchange energy with the environment, which leads to a loss of coherence and 
an increase in the number of classical correlations. Moreover, the eigenstate of the system also contributes to 
the degradation of quantum correlations. This interplay of factors highlights the intricate dynamics at play in 
the evolution of quantum systems, where environmental interaction and the system’s inherent properties col-
lectively impact the preservation or deterioration of quantum correlations. Further, the same observation we 
deduced earlier is confirmed here: the quantity of X (̺AB) (with X ≡ QF ,UQ,QC ) in the pure state (Fig. 2a–c) 
is superior to that found in the mixed state (Fig. 2d–f), and this is a fact that cannot be altered in any quantum 
system; X (̺AB)|ς=1 ≤ X (̺AB)|ς=0.5

Non‑Markovian dephasing model for a double two‑qubit system
In this part, we explore the dynamics of the aforementioned quantum criteria in the case of the system-environ-
ment interactions with memory, but without taking into account the Born-Markov approximation which assumes 
that the system-environment correlation time is infinitely short in order to neglect the memory  effects21,73. 
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Firstly, we focus on a colored noise dephasing model where its dissipative dynamics is described by the follow-
ing master equation

K stands for a time-dependent integral operator whose action on the system is given by Kϕ =
∫ t
0 k(t − t ,)ϕ(t ,)dt , , 

L is a Lindblad superoperator, ρ is the density operator of the principal system and k(t − t ,) represents the kernel 
function allowing to determine the type of memory in a specific environment. Indeed, even in the absence of 
the integral operator K in Eq. (41), we typically obtain the master equation with Markovian approximation. If a 
two-level quantum system interacts with a reservoir that exhibits random telegraph signal noise characteristics, 
then this type of master equation could arise. The time-dependent Hamiltonian

Ŵi(t) are independent random variables complying with the characteristics of a random telegraph signal and σi 
are the standard Pauli matrices. The random variables can be specifically stated as Ŵi(t) = aini(t) , with ni(t) has 
a Poisson distribution with a mean of t/2τi and ai is an independent random variable having values ±ai . The 
random telegraph signal is described by a broadly defined stationary stochastic process with zero mean. This 
concept can be used for any two-level quantum system that interacts with a random telegraph signal noise. This 
can be applied to a two-level atom exposed to a fluctuating laser field with random jump-like phase  noise74,75. 
The parameters ai determine the degree of coupling of the system with the external impact. The inverse of τi is 
the flipping or fluctuation rate. Applying the von Neumann equation of motion ρ̇(t) = −i

∑

i Ŵ(t)[σi , ρ] , the 
matrix density of a two-level system can be written as

Substituting Eq. (43) into the von Neumann equation and carrying out the stochastic averages, we find ourselves 
with

The memory kernel derived from the correlation functions of the random telegraph signal takes the form

(41)ρ̇(t) = KLρ,

(42)H(t) = �

3
∑
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Ŵi(t)σi ,

(43)ρ(t) = ρ(0)− i

∫ t

0
dk

∑

i

Ŵ(k)[σi , ρ(k)].

(44)ρ̇(t) = −
∫ t

0

∑

k

exp

(

−| t − t , |
τk

)

a2k[σk , [σk , ρ(t
,)]]dt ,.

(45)< Ŵj(t)Ŵk(t
,) >= a2k exp

(

−|t − t ,|
τk

)

δjk .

Figure 2.  Local quantum Fisher information in (a,d), local quantum uncertainty in (b,e), and quantum 
coherence in (c,f) are shown for dephasing model versus the rescaled time ωt for different values of the coupling 
Ŵ/ω0 . The top row corresponds to ς = 1 and the bottom row corresponds to ς = 0.5 . With α = π/20 and 
g/ω0 = 3.
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The model proposed above generates a non-Markovian time evolution when one takes into account some recently 
developed measures of non-markovianity76,77. The dynamic evolution produced by Eq. (44) appears to be entirely 
positive if two of the ak are zero. This would be analogous to a physical scenario in which noise only comes from 
one direction. Notably, the system dynamics is those of a dephasing with colored noise if a1 = a2 = 0 and a3 = a , 
and in such case, the Kraus operators which is related to the dynamics of two-level system  are21

where

and the Kraus operators Fi(t) satisfying the normalization condition 
∑

i F
†
i (t)Fi(t) = 1 . For bipartite systems, 

the time evolution of an initial density operator is described as follows

where the operators FAi  and FBi  respectively act on the first and second qubits, while ρAB(0) denotes the initial 
state of the two-qubit system. In this part, we select the same initial state as in the first model, and after damping, 
the density operator takes the form

with the entries notations are adopted as

The eigenvalues of the density operator (48) are

and the corresponding eigenstates are given by

with

Based on the above formalism, the elements of the 3×3 symmetric matrix M are calculated analytically from 
Eq. (12) and found to be as follows

and to obtain the analytical form of the local quantum Fisher information (13), it is necessary to treat separately 
two cases, i.e. M11 ≥ M33 or M33 ≥ M22 with which

Likewise, the explicit expressions of the matrix elements Wij (4) can be found as
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where

Then the local quantum uncertainty is derived by

On the other side, we determined the analytic evolution of the quantum coherence after the damping by means 
of Eq. (14). Following a straightforward calculation, the analytical expression of the quantum coherence for the 
non-Markovian dephasing model described by the density matrix (48) is

where

To investigate the dynamic behavior of local quantum uncertainty and quantum coherence, as well as local 
quantum Fisher information, and explore how both markovian and non-markovian environments influence their 
evolution, we depicted their dynamics in Fig. 3 for a two-qubit system interacting with independent colored 
dephasing reservoirs. The parameter t/2τ was employed as the variable. It is worth noting that in Fig. 3, where 
ς = 1 (i.e. pure initial state) is fixed for panels (a-b-c) and ς = 0.5 (i.e. mixed initial state) is fixed for panels 
(d-e-f), the values τ = 0.5 and τ = 1 represent the Markovian case, while τ = 3 and τ = 5 correspond to the 
non-Markovian regime.

For the non-markovian regime (i.e., τ ≥ 2 ), the dynamics of non-classical correlations (LQU and LQFI) 
and quantum coherence exhibit a phenomenon of death and revival, where their amplitudes undergo continu-
ous damping. This behavior arises from the effects of environmental memory, which facilitate the back-flow of 
information. In contrast, for the markovian regime (i.e., τ < 2 ), the QC, LQU and LQFI asymptotically approach 
zero as time increases, with a little revival. This trend can be attributed to the rapid outflow of quantum informa-
tion from the system to the environment, facilitated by weak system-environment coupling and the transfer of 
information without memory. Furthermore, a decrease in the degree of non-markovianity τ leads to a reduction 
in the frequency and delay of oscillations in the correlation function, as well as a decrease in its amplitude. Addi-
tionally, decreasing the purity results in a decrease in the amount of quantum criteria. Moreover, as depicted in 
Fig. 3, all aspects of quantumness (LQU, LQFI, and QC) evolve simultaneously and at the same rate. Also, in the 
non-Markovian dephasing model, the quantumness is higher when the initial state is pure compared to when it 
is mixed. This observation aligns with previous findings in the Jaynes-Cummings model.

As time progresses in the non-Markovian dephasing model, the correlation amplitudes of LQFI and LQU 
decrease due to the strong influence of the environment. However, it is noteworthy that the qualitative agreement 
between the LQFI and LQU functions remains intact. Notably, the LQFI exhibits higher correlation than the 
LQU, implying that the dynamics of LQFI and LQU align with the principles of quantum-Fisher and Wigner-
Yanase skew information  theories47. Specifically, the amplitudes of LQFI are consistently much larger than those 
of the LQU. Besides, QC exhibits greater robustness compared to LQFI and LQU. In fact, while the non-classical 
correlations vanished, the QC remained non-zero. This clear distinction indicates that under a colored noise 
dephasing model, quantum coherence is more resilient and robust in comparison to LQFI and LQU.
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Quantum teleportation scheme
Quantum teleportation is a captivating phenomenon in the realm of quantum physics, challenging our classical 
 understanding8,78,79. In contrast to the instantaneous matter transfer of science fiction, quantum teleportation 
revolves around exchanging quantum information between distant particles. This extraordinary feat is achievable 
through quantum entanglement. Its significance lies in its vital role in quantum computing, secure quantum 
communication, and the profound exploration of quantum reality’s essence. Despite its current limitation in 
transporting physical objects or individuals across long distances, quantum teleportation paves the way for 
thrilling prospects in the realms of quantum physics and advanced quantum technologies. To achieve quan-
tum teleportation, scientists exploit the fascinating phenomenon of entanglement between two particles, called 
entangled particles. The idea is to have a third particle, which we want to teleport, and a fourth particle entangled 
with the third and located where we want to “teleport” the  information80–82. By performing complex quantum 
measurements on the two entangled particles and the particle to be teleported, we can transfer the quantum 
state of the original particle to the destination particle. This happens without any physical transport of matter, 
as only the quantum state is transferred.

In this scenario, we employ a teleportation protocol proposed by Cola and  Paris83 to transfer a two-qubit sys-
tem using only a single quantum channel. The protocol utilizes a single entangled two-qubit pair, the transmission 
of three classical bits, and an additional qubit introduced by the receiver (see Fig. 4). Standard teleportation can 
be regarded as a general depolarizing  channel84. In the two models discussed earlier (J-C and non-Markovian 
dephasing model), we are examining how the initial state impacts the efficiency of teleportation. In this context, 
Alice and Bob share a partially entangled state described by Eq. (16) (for the JC model) and Eq. (48) (for the 
non-Markovian dephasing model). Alice’s unknown state is given in the form ρin = |ψin��ψin| , where

with 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π . Here, θ describes an arbitrary state and ϕ is the corresponding phase of this 
state. At the concluding step of the teleportation protocol, Bob will receive the state

where pkl = Tr
[

Kkρch
]

Tr
[

Klρch
]

 , σn ( n = k, l ) are the Pauli operators, 
∑

kl pkl = 1 and ρch and A stands for the 
resource state linking Alice and Bob. Here, the different projection operators Kl are defined as
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Figure 3.  Dynamics of LQFI, LQU and QC as a function of t/2τ for different values of the degree of non-
Markovianity τ . Panels (a)–(c) corresponds to the pure initial state with ς = 1 , while panels (d)–(f) correspond 
to the mixed initial state with ς = 0.5 . Parameters a and α are fixed as a = 1 and α = π/4.
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The Bell states mentioned above (61) exhibit maximum entanglement, implying an inseparable connection 
between their component qubits. Such states have been utilized as quantum channels to experimentally transmit 
an arbitrary state from one distant location to another. Nonetheless, in the two models under consideration, it 
is evident that the states may not be maximally entangled due to the presence of decoherence arising from the 
interaction between the system and its environment. However, our findings demonstrate that by manipulating 
the parameters within the reduced density operator, it becomes possible to attain a significant level of quantum 
correlations. To evaluate the effectiveness of the teleportation process, it is valuable to examine the fidelity 
between ρin and ρout , which measures how close the final state is to the initial state. When the input state is a 
pure state, fidelity serves as a beneficial metric for assessing the teleportation performance of a quantum channel 
 quantifier85. It is defined as

As the specific state to be teleported is generally unknown, it proves more beneficial to compute the average fidel-
ity, which represents the mean value of fidelity for the four outcomes resulting from Bell state  measurements86. 
This average fidelity is expressed as

where 4π is the solid angle. If Alice and Bob share the quantum state ̺ AB(t) that describes the Jaynes-Cummings 
model, i.e. ρch = ̺AB(t) , the resulting output state can be expressed as follows:
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Figure 4.  Quantum teleportation protocol for the transmission of quantum information from Alice to Bob 
through the entanglement of qubits: Alice possesses a qubit (A) in an initial state ρin that she wishes to teleport 
to Bob. To facilitate the process, Alice and Bob share an ancillary entangled pair of qubits (B and C), generated 
by an Entangled partial source. Alice performs a joint Bell state measurement on qubit (A) and qubit (B), 
projecting them onto one of the four orthogonal entangled states known as the Bell states ( |ψ∓� , |φ∓� ). The 
measurement result is then sent to Bob through classical communication. Depending on the outcome, Bob 
either keeps qubit (C) (case |φ−� ) unchanged (case |ψ−� ) or applies a unitary transformation (U) to qubit (C) 
(cases |ψ+� and |φ+� ). This transformation ensures that the output state ̺ out (or ρout ) of qubit C is identical to 
the input state ρin of the original qubit A, achieving successful quantum teleportation.
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which are written according to the entries of the entangled resource state ̺ AB(t) (Eq. 16). After some calculations, 
the fidelity of Bob’s state takes the form

By inserting Eq. (66) into Eq. (63), the result yields the average fidelity

If Alice and Bob share the state ρAB(t) (Eq. 48) with ρch = ρAB(t) , which characterizes the non-Markovian 
dephasing model, then the resulting output state is given by

where the elements ̟  , � and ϒ are given by

According to Eq. (62), the teleportation fidelity turns out to be

and subsequently, the average fidelity is provided as

Prior to commencing our analysis of the results displayed in Fig. 5, it is crucial to bear in mind some previ-
ous investigations. These studies evaluated the effectiveness of quantum teleportation by measuring the average 
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Figure 5.  The average fidelity Fav as a function of the temps t/2τ for different values of the purity ς with 
α = π/4 ; panel (a) corresponds to the Jaynes–Cumming model, panel (b) reflects the Markovian regime for a 
non-Markovian dephasing model with a = 1 and τ = 0.5 , while panel (c) for non-Markovian regime with τ = 5

.



15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20526  | https://doi.org/10.1038/s41598-023-46396-2

www.nature.com/scientificreports/

fidelity. A value of Fav < 2/3 indicates a failure in quantum teleportation, Fav > 2/3 signifies an improvement 
in quantum teleportation, approaching the upper limit achievable through classical protocols. Furthermore, a 
value of Fav = 1 represents the highest level of teleportation achievement. Figure 5 depicts the behavior of the 
average fidelity when the resource state that connects Alice and Bob corresponds to the Jaynes–Cumming model 
represented by state (16) (i.e., panel (a)), as well as when it is a non-Markovian dephasing model described by 
state (48) (i.e., panels (b), (c). In both cases, the teleported state is initially prepared in state (59), and various 
values of purity ς are taken into consideration.

When Alice and Bob share the Jaynes-Cummings model state, as depicted in Fig. 5a, we observe a distinct 
periodic pattern in the average fidelity of the teleported state. This behavior is influenced by the purity of the 
shared state, denoted by ς . As the purity increases, the efficiency of teleportation improves, leading to higher 
fidelity in the teleported state. Conversely, as the purity decreases, the efficiency of teleportation diminishes, 
resulting in lower fidelity. To explain further, the average fidelity serves as a measure of how well the quantum 
information is preserved during teleportation. A value of less than 2/3 indicates that teleportation fails, and the 
state is not effectively teleported. On the other hand, when the average fidelity reaches Fav = 1 , it signifies a per-
fect teleportation process, where the teleported state matches the original state with utmost accuracy. By analyz-
ing our results, we can confidently assert that teleportation significantly improves with higher values of purity, 
as evidenced by the increase in average fidelity. In essence, the higher the purity of the shared state, the better 
the teleportation outcome. Additionally, referring back to our previous findings, as shown in Fig. 1, we notice a 
similar trend. The average fidelity of the teleported state achieves its maximum when the degree of quantumness 
(LQFI, LQU, and QC) of the quantum resource state is maximized. In essence, the more quantum properties 
the resource state possesses, the better the fidelity of the teleported state during the teleportation process. This 
further supports the significance of quantumness in achieving efficient and accurate quantum teleportation.

The results displayed in panels (b), (c) of Fig. 5 depict the evolution of the average fidelity of the teleported 
state when Alice and Bob share the non-Markovian dephasing model state. We investigate two specific scenarios: 
the Markovian regime (Fig. 5b) and the non-Markovian regime (Fig. 5c). The study highlights the critical role of 
state purity in determining the success of quantum teleportation, with pure states demonstrating higher average 
fidelity compared to mixed states. In the Markovian regime, as seen in Fig. 5b, the average fidelity shows a gradual 
decrease in its maximum value over time, eventually stabilizing at a particular level. This behavior suggests that 
the system exhibits long-term memory. However, the Markovian regime allows for a relatively straightforward 
transfer of quantum information through teleportation since it does not retain any memory of its previous states. 
On the other hand, Fig. 5c displays the average fidelity of the non-Markovian regime with a specific parameter 
τ = 5 , revealing more pronounced short-term fluctuations. The average fidelity exhibits a gradual decrease in 
its maximum value, followed by an increase after a brief period, reaching a peak lower than the previous one. 
These fluctuations arise due to transient transitions between different states of the system, leading to temporary 
variations in average fidelity.

These findings underscore the challenges of transferring quantum information in the non-Markovian regime 
due to memory effects. The system retains information about its previous states, which can impact the quan-
tumness between particles involved in the teleportation process. Consequently, the memory effects in the non-
Markovian regime introduce additional complexity and fluctuations, resulting in a less stable and predictable 
average fidelity during quantum teleportation. In contrast, the lack of memory in the Markovian regime ensures 
a smoother and more efficient transfer of quantum information. Accordingly, our analysis shows that state purity, 
as well as the presence or absence of memory effects, play pivotal roles in influencing the success and efficiency 
of quantum teleportation. Pure states and Markovian regimes offer more favorable conditions for achieving high 
average fidelity in the teleported state.

Conclusion
To conclude, we have explored the significance of the quantifiers of non-classical correlations, specifically exam-
ining LQU and LQFI, along with quantum coherence. These factors play a crucial role in enhancing our com-
prehension of quantum information processing and the intricate dynamics within open quantum systems. Our 
focus was on a comparative analysis of their dynamic characteristics using two distinct physical situations. The 
first situation involves the coupling of these two qubits to a cavity field, irrespective of whether the system is 
closed or open. In contrast, the second situation involves the interaction of two qubits with dephasing reservoirs. 
Our research uncovers that the dynamics of these quantum characteristics are strongly influenced by the initial 
conditions ( ς , α ) in the first model (3.1). In the case of the second model (3.1), these characteristics are subject 
to alteration through adjustments in both the value of Ŵ/ω0 and the nature of the initial state, whether it is pure 
or mixed. then, the extent of non-Markovian behavior denoted by τ within the system (3.2). Specifically, our 
observations highlight that the first system (Jaynes-Cumming and dephasing models) showcases periodic oscilla-
tions and distinct sudden-death and revival phenomena, which can be regulated by manipulating the initial state 
parameters and control of Ŵ/ω0 . In contrast, the second system (non-Markovian dephasing model) manifests 
a fundamentally divergent behavior compared to the Markovian system. Within the Markovian context, quan-
tum correlations and coherence prove to be more fragile. Subsequently, we introduced a quantum teleportation 
scheme founded upon the two models under consideration, in which the resulting two-qubit state from these 
models is employed as a quantum channel within the framework of a quantum teleportation protocol. The results 
substantiate that the proposed scheme can be regarded as a reliable protocol for quantum teleportation, utilizing 
both models as quantum channels.
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