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Graph‑based multi‑modality 
integration for prediction of cancer 
subtype and severity
Diane Duroux 1,5*, Christian Wohlfart 2, Kristel Van Steen 1,3, Antoaneta Vladimirova 4 & 
Michael King 2

Personalised cancer screening before therapy paves the way toward improving diagnostic accuracy 
and treatment outcomes. Most approaches are limited to a single data type and do not consider 
interactions between features, leaving aside the complementary insights that multimodality and 
systems biology can provide. In this project, we demonstrate the use of graph theory for data 
integration via individual networks where nodes and edges are individual-specific. We showcase 
the consequences of early, intermediate, and late graph-based fusion of RNA-Seq data and 
histopathology whole-slide images for predicting cancer subtypes and severity. The methodology 
developed is as follows: (1) we create individual networks; (2) we compute the similarity between 
individuals from these graphs; (3) we train our model on the similarity matrices; (4) we evaluate the 
performance using the macro F1 score. Pros and cons of elements of the pipeline are evaluated on 
publicly available real-life datasets. We find that graph-based methods can increase performance over 
methods that do not study interactions. Additionally, merging multiple data sources often improves 
classification compared to models based on single data, especially through intermediate fusion. 
The proposed workflow can easily be adapted to other disease contexts to accelerate and enhance 
personalized healthcare.

Disease subtyping refers to the identification of homogeneous groups of patients. It can be used to detect a 
disease’s severity or target treatments with the highest probability of success. Disease subtyping is essential in 
cancer research9,51 since cancers are highly diverse and severe. Many methods for disease subtyping analyses 
rely on a single data modality only. However, one modality is unlikely to be informative enough to capture the 
whole complexity of complex diseases. In addition, a large panel of data is available, making multi-modality 
integration realistic. More and more studies investigate combining multiple data sources26,36 to overcome the 
oversimplification of approaches based on a unique data type. For instance, multiple studies investigate the 
benefits of combining images, and genomic data1,22,44.

Often, late integration is performed. In such studies, the data sources are investigated independently before 
classification results are merged. Nevertheless, independent analyses may lead to inconsistent outcomes that are 
complex to aggregate. The main disadvantages of this method are that it does not take advantage of the possible 
complementarity of the modalities. Another standard integration procedure is early fusion, which considers the 
concatenation of the data sources before applying a machine-learning model. Whereas this solution is simple to 
implement, concatenation may decrease the signal-to-noise ratio in each data modality if not processed appro-
priately, as it increases the input space’s dimensionality, and potentially introduces irrelevant information that 
can decrease the model’s performance. In the last decade, several developments have been proposed to combine 
data between the start and end steps to solve these issues. For example, iCluster47,48 performs data fusion and 
dimensionality reduction at the same time. This method uses a Gaussian latent variable model with lasso-type 
penalty terms to induce sparsity in the coefficient matrices toward feature selection. One drawback of this 
approach is its high computational complexity. An alternative is Affinity Aggregation for Spectral Clustering23. 
The main idea is to compute a matrix of similarity between samples for each data source (Supplementary Fig-
ure 1). Then, these multiple affinity networks are clustered via Spectral Clustering using linear combination with 
weights optimised using multiple kernel learning. In the same vein, Similarity Network Fusion (SNF) (53) was 
implemented to combine multiple similarity matrices into a single one by iteratively updating the matrices to 
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make them more and more similar until the algorithm converges. This final matrix becomes the new input to the 
classification algorithm. Later, regularised unsupervised multiple kernel learning49 was introduced. It extends 
multiple kernel learning for dimensionality reduction approaches with a regularisation term to avoid overfitting 
during the optimisation procedure and using several kernels per data type.

Most of the graph analyses for complex diseases aggregate information across a whole cohort, failing to detect 
individual characteristics16. Exploiting individual-specific interactions rather than population-level systems will 
help capture the heterogeneity between individuals and enhance the identification of new biomarkers for preci-
sion medicine. This observation paves the way for developing individual networks (INs). INs are networks where 
nodes and/or edges are individual-specific. For each individual, nodes are variables (e.g., genes), and edges show 
the link between these variables for that individual. Since INs represent individual relations between variables, 
we can readily use them for precision medicine. Individual networks can be inferred via multiple approaches. 
For example, individual’s variables values (e.g., gene expression) can be superimposed to a reference network 
obtained from external knowledge (e.g., protein interactions)39, but then only node values will differ between 
individuals and not the graph topology. Another option is Linear Interpolation to Obtain Network Estimates 
for Single Samples (LIONESS)32. LIONESS computes edge weights from the difference in edge weights for a net-
work constructed using all the samples and a network reconstructed using all but the sample of interest. Single 
sample networks based on the Pearson correlation (ssPCC) algorithm37 are also built from the perturbation of 
an individual against a group of given samples. These individual networks are derived from the perturbation 
of the Pearson correlation caused by the addition of this individual from a different population. Alternatively, 
an edge weight can be computed without a reference panel by adding Z-scores of log-transformed values of the 
two associated nodes29 or by using repeated measurements per variable per individual. Recent work11 explores 
individual networks for clustering tasks, which fall under unsupervised learning. In contrast, this work focuses on 
the supervised scenario, where we harness the power of INs for supervised tasks. The performance of supervised 
data integration methods in association with INs remains to be investigated. In this project, we explore three 
main questions. We study to what extent it can predict disease subtypes and severity from the patient data. We 
examine which modality yields the best prediction. We leverage the consequences of using individual networks 
to combine two modalities at various steps, keeping the rest of the pipeline unchanged.

Materials and methods
We developed a multi-step workflow (see Fig. 1) to predict outcomes via individual graphs. First, a network is 
constructed for each individual: nodes and/or edges are specific to an individual. From these individual networks, 
we compute a similarity matrix that we call a Person-to-Person Network (PPN): nodes are individuals and edges 
represent how similar individuals are. Various levels of information from the individual graph are used to build 
the Person-to-Person network: nodes, edges, or nodes and edges. The Person-to-Person network becomes the 
input of the machine learning model. In other words, we considered the similarities to a reference panel as vari-
ables. Then, the outcome is predicted from these similarities to a reference set.

Figure 1.   (a) Data-integration workflow. The input is the concatenation of the RNA-Seq data, and the 
histopathology images extracted features (Sect. “Data”). An Individual Network (IN) is constructed for each 
individual of the train set. From these INs, a Person-to-Person Network (PPN) is built, where nodes are 
individuals and edges represent how close two individuals are. Only the edges from the individual graph are 
used to build the PPN. The PPN is used to train an SVM model. Then, the individual networks of the test 
set are computed. The similarities of the individuals from the test set to the individuals from the train set are 
calculated to create the PPN of the test set. The SVM model is applied to these similarities to a reference set, 
and the performance is determined using the macro F1 score. (b) Variations of the workflow. Two additional 
inputs are considered: the RNA-Seq modality only, and the histopathology images only. The edges of the INs are 
constructed from the LIONESS methods. To build the PPN, either the nodes only or the nodes and the edges 
from the INs are used. The variations and the combinations of variations (summarized in supplementary Fig. 2) 
are compared.
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Data
Results on the impact of using individual graphs or not are based upon publicly available real-life data gener-
ated by the TCGA Research Network54 (https://​www.​cancer.​gov/​tcga). We focused on three use cases: prostate 
cancer severity using the Gleason score, Brain low-grade gliomas (lgg) versus Glioblastoma multiforme (gbm) 
differentiation, and lung adenocarcinoma (luad) versus lung squamous cell carcinoma (lusc) differentiation. 
An overview of the data structure is presented in Table 1. For each use case, we analysed two data modalities: 
RNA-Seq data and histopathology Whole Slide Images (WSI). Previous work motivated the choice of images 
and genomic data, showing their high potential to disentangle the complex mechanisms of cancer6,21,40,43,57.

Prostate cancer is the most common cancer in men14, and prostate cancer stages are commonly described 
according to the Gleason Score, which helps evaluate the prognosis3,12,55. This score is derived from the appear-
ance of cancerous cells that can correspond to 5 patterns (normal to tumour cells). Grade 1 cells do not differ 
from normal prostate tissue; grade 5 corresponds to tumour cells. Thus, cancers with a higher Gleason score are 
more severe. Physicians determine the Gleason score by looking at biopsy samples and assigning one grade to 
the predominant pattern (primary Gleason score). Usually, a second Gleason grade is given to the second most 
predominant pattern, and the two grades are added to set the secondary Gleason score. This project focuses 
on the primary Gleason score and specifically on patterns 3 and 4. Indeed, the differentiation between Gleason 
score 3 and Gleason score 4 may play a pivotal role in understanding the inherent prognosis associated with 
these distinct biological behaviour patterns, and aid in guiding the translation of findings from molecular and 
histological levels into more precise treatment selection4,33 (details in supplementary). In this work, we examine 
if our workflow can highlight the differences between these two patterns. The database contains 297 individuals 
in the training set (130 patterns 3, 167 patterns 4) and 71 in the testing set (34 patterns 3, 37 patterns 4).

Brain low-grade gliomas (lgg) are cancerous brain tumours. They arise from the support cells in the brain. 
Glioblastoma multiforme (gbm) is an aggressive cancer in the brain or spinal cord. Studies have already identi-
fied variations between these two tumours, such as gender-specific molecular differences28. Here, we study if INs 
and combining RNA-Seq and histopathology data can help identify these two brain tumours. The training set 
contains 344 individuals (282 lgg, 62 gbm), and the testing set 156 individuals (122 lgg, 34 gbm).

Lung adenocarcinoma (luad) and lung squamous cell carcinoma (lusc) are among the most common lung 
cancer subtypes and are both considered non-small cell lung cancer (NSCLC). They have different biological 
signatures, but these variations in their biological mechanisms remain to be disentangled even though recent 
studies have made progress7. The training data contains 603 patients (232 luad, 371 lusc), and the testing data 
has 140 patients (50 luad, and 90 lusc).

Feature extraction is performed on the histopathology Whole Slide Images (WSI). We considered the full 
TCGA dataset with 30 cancer types (See supplementary Table 1), including the types to classify in the 3 use 
cases described above (i.e., brain, lung, and prostate cancers), but excluding the individuals in the testing sets. 
A pretrained neural network model is applied to differentiate between the cancer types. In particular, we use 
Resnet1819 and attention MIL24, trained for 100 epochs on all TCGA slides, sampling 128 random tiles per slide 
every epoch. The 512 features contained in layer N-1 are selected as new variables. Each feature is a vector of 
length the number of individuals and contains discriminative information for cancer type. We assumed that the 
difference in cancer types would provide relevant information for differentiating the groups in our 3 use cases.

Single data source
Level of individual nodes
We created baselines where only the node weights of the individual networks are used, i.e., only the raw feature 
values. We will refer to them as node level approaches. This approach can be considered not relying on individual 
network structures as the interactions between features are not used in the model. Three ways of obtaining a 
Person-to-Person network PPNn with these individual graphs were tested. PPNn(x, y) indicates how similar 
individuals x and y are.

The first option was to use the euclidean distance between each pair of individuals’ features and to compute 
the affinity matrix that represents the neighbourhood graph of the individuals using the function affinityMatrix 
in package SNFtools52. This function takes three arguments: a distance matrix (obtained with the euclidean dis-
tance), a parameter K, and σ . K is the number of neighbours, where affinities outside of the neighbourhood are 
set to zero, and affinities inside are normalised. σ is a hyperparameter for the scaled exponential similarity kernel 
used to conduct the actual affinity calculation. These parameters were chosen empirically ( K = 20 , σ = 0.05).

A variation was to apply the Gaussian kernel via the function gausskernel from the package KLRS13. 
Given two vectors vx and vy of descriptive variables for individuals x and y, the Gaussian kernel is defined as 
k(x, y) = exp(

−||vx−vy ||2

σ 2 ) where ||vx − vy|| is the Euclidean distance and σ 2 (here, σ = 1000 ) is the bandwidth 
of the kernel.

Table 1.   Data structure.

Prostate cancer Brain cancer Lung cancer

Classes Gleason score 3/4 lgg/gbm luad/lusc

Patients in training set 130/167 282/62 232/371

Patients in testing set 34/37 122/34 50/90

https://www.cancer.gov/tcga
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The third option was to compute the Spearman correlation between each pair of patients using the function 
rcorr from package Hmisc18.

Level of individual edges
A second type of Person-to-Person network PPNe was computed to measure the impact of considering the 
interactions between variables. Specifically, we built a network for each individual where nodes are variables 
and edges represent the link between these variables.

Because individual networks can be very large when the number of variables per data source increases, we 
performed feature selection at the node and edge levels. This strategy allowed us to focus on relevant signals 
and to decrease the computing time. Since a change in the node and edge selection can produce different final 
results, our pipeline integrates the optimization of the feature selection process, ensuring an efficient network 
sparsification. The feature selection process unfolded as follows. First, we selected data features (i.e., nodes) with 
the highest standard deviation. The aim was to evaluate the inclusion of the first 100, 200, ..., to 1400 genes. Then 
we performed the edge-level feature selection. We created condition-specific networks for each subgroup to 
predict. We calculated the difference between these condition-specific network adjacency matrices and selected 
edges with the largest absolute differences. Namely, we evaluated the edge weights percentile thresholds 0.25, 0.5, 
and 0.75. To select the optimal thresholds, we performed a stratified 5-fold cross-validation within the training 
set and chose the parameters giving rise to the higher macro F1 score on average.

We derived individual edge weights based on two approaches. In the first one, which we called Node Product, 
we applied a minimum-maximum normalisation algorithm across all variable values to scale them between 0 
and 1: i′ = i−min(i)

max(i)−min(i) , with i and i′ two variables. Then, for an individual x, the weight of the edge between 
nodes i and j is exij = i′x × j′x . Since this method is computationally efficient, this is the one used to build INs for 
feature selection. The second approach to create edge weights was the LIONESS algorithm30. The general idea is 
to study the difference between a network constructed from all individuals and a network derived from all but 
one individual. If a difference appears, it must be due to the individual being left out. The LIONESS equation is 
the following: exij = N(eαij − eα−x

ij )+ eα−x
ij  , where eαij is the weight of an edge between nodes i and j in a network 

modeled on all N samples and eα−x
ij  is the weight of that edge in a network modeled on all samples except the 

sample of interest x. For each individual, we derived edge weights using the lionessR function31. Notably, these 
edge weights are specific to the reference panel. We reduced the INs obtained to the previously identified selec-
tion of edges. Finally, we applied the minimum-maximum scaling algorithm on INs so that the edge weights 
range between 0 and 1. In particular, we considered the minimum and maximum weights across all INs in the 
scaling so that the ordering of the weights remained the same between individuals. We used the similarities to 
individuals in the training sets as new variables for prediction.

Using as the predictor variable, how similar individuals are from a reference panel requires defining a measure 
of distance between individuals. Many methods have been developed to compare graphs. The specificities of our 
context limited the choice of distance. Indeed, the measure should be computed in a reasonable amount of time, 
even on large graphs, and should handle undirected and weighted networks. Since the same variables (e.g., same 
genes) are used for all the individuals, there is a node correspondence between the different INs (multiplex). 
Only the edge weights differed from one person to another. That implies that without additional filters, all the 
graph distances based on structural differences will not allow us to identify if some graphs are more similar than 
others. For example, the euclidean, Jaccard, edge difference, or DeltaCon distances suited our context. We used 
the edge difference distance in this project because of its good computational properties. This distance takes two 
adjacency matrices and computes the Frobenius norm of their differences. We applied this distance to each pair 
of individual networks to obtain a matrix of similarity between individuals.

Combination of individual nodes and individual edges
There is no reason to assume that both individual node and edge information could not be complementary. Thus, 
we also investigated the combination of Person-to-Person networks built from individual nodes and individual 
edges. We built the Person-to-Person networks independently for the two approaches, and we averaged their 
corresponding adjacency matrices to merge them.

Data integration
One option to integrate multiple database information was concatenating the original data (early fusion) and 
applying the pipeline as in the single data procedure. When using individual edges, or edges and nodes, we 
included the additional step: for each data source, the top variables are selected as described in Sect. “Level of 
individual edges”. Multiple edge correlation thresholds (0.25, 0.5, and 0.75) are tested to reduce the INs further. 
Here, nodes can be variables from any of the original databases, and edges can therefore represent the associa-
tion between any variables.

Fusion can also be performed at the PPN level (intermediate fusion). PPNs are obtained for each data source 
separately and merged to benefit from their potential complementary. Simple methods can be applied for this 
task, such as computing the average of the different PPNs. More advanced approaches include the Similarity 
Network Fusion (SNF)53. SNF has proven efficient in combining multiple data such as mRNA expression, DNA 
methylation and microRNA expression data for cancer data. In this project, we tested both the average and the 
Similarity Network Fusion algorithms. Then, an SVM model was applied as described in Sect. “Prediction and 
performance assessment”.

The last alternative considered was late fusion, where data are merged after an independent investigation of 
each data source (a and b). With continuous outcomes, it can be computed by summation or averaging. Since 
we are performing classification, we used the majority vote approach. In most of our application settings, we 
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considered two data modalities only, so a majority vote would not provide additional knowledge. Hence, we 
applied late fusion only on results obtained from Person-to-Person Networks derived from the combination of 
individual nodes and edges, where we consider prediction from four outcomes: PPNn,a , PPNn,b , PPNe,a , and 
PPNe,b . When two labels were predicted equally for an individual, the final label was randomly assigned to one 
of them.

Prediction and performance assessment
The Person-to-Person Networks were normalised with the fol lowing transformation: 
PPN(x, y) = PPN(x,y)√

PPN(x,x)PPN(y,y)
 . They were used to train Support Vector Machines (SVM) using the kernlab 

package25. Instead of working with the original sample representation in the original dimensional space, SVM 
classification methods operate directly on similarity matrices. We tested multiple options of C ( 10k for k = 1..5 ), 
the cost of constraints violation25. We selected C giving rise to the best performance. We obtained the perfor-
mance by comparison with the ground-truth labels. As the groups are unbalanced, we used the macro F1 score 
to assess the performance, with Macro F1 score = 1

L

∑L
l=1 F1 scorei , where l is the label index and L the number 

of labels.

LIMMA and gene set enrichment analysis on graphs
We associated the prediction methodology described above with complementary approaches, such as LIMMA30 
and pathway analyses42 to showcase the advantages of using individual graphs.

Originally, LIMMA is an analysis of gene expression data that uses linear models to simultaneously assess 
differential expressions between many targets. We conducted LIMMA analysis on RNA-Seq individual networks, 
because genes are interpretable units of analysis. Our input consisted of the individual networks constructed 
using LIONESS and reduced to selected nodes and edges as previously defined in Sect. “Level of individual edges”. 
Specifically, the individual networks are presented in a matrix M1 where columns correspond to individuals and 
rows to gene pairs. Additionally, the matrix CT summarizes the cancer type to which each patient belongs. Our 
analysis proceeded as follows.

First, we applied the lmFit function from the R package limma42 to (M1, CT). This function fits a linear 
model for each gene-pair and returns a MArrayLM object, denoted as fit, containing the results of these fits. 
Subsequently, we applied the contrasts.fit function on fit to compute estimated coefficients and standard errors 
for each linear model. Next, the eBayes function was applied to the output of the contrasts.fit function to compute 
moderated t-statistics, moderated F-statistics, and log-odds of differential expression using empirical Bayes 
moderation to adjust standard errors towards a common value. Finally, we used the toptable function to extract a 
matrix containing the top-ranked gene-pairs based on the linear model fit. We focused on identifying the top 50 
most differentially co-expressed gene pairs and colored the edges in the network based on their values within the 
classes to predict. This approach highlighted edges with significantly distinct weights between different groups, 
thus enhancing our comprehension of the underlying data. In parallel, we also conducted a LIMMA analysis to 
assess significant differences in gene expression levels between groups. Hence, nodes in the network were colored 
based on the t-statistics resulting from the LIMMA analysis.

We investigated networks obtained with LIMMA with a gene set enrichment analysis17. We focused on the 
largest connected components. Since all the genes in that module are connected, they can indicate a broader 
biological mechanism responsible for the group difference. For the pathway analysis, we performed the LIMMA 
analysis on the features selected as described in Sect. “Level of individual edges”, and we used the fgsea package45 
to perform gene set enrichment analysis with a minimum gene size of 10 and 5000 permutations. Two inputs 
were required: a ranked gene list and a list of gene sets to test for enrichment. For the former, we used the gene 
t-values of the genes in the largest component from the LIMMA analysis. It represents the gene statistical dif-
ference between the two groups compared. For the latter, we downloaded all ontology and curated Molecular 
Signature Database (MSigDB version 7) gene sets34,50. We applied FDR cut-off of 0.05 for significant assessment.

Model comparison
We compared our graph-based approach to multiple classification methods applied to the raw features. Namely, 
we used a penalized logistic regression, a classification tree, a random forest, AdaBoost, a naive Bayes method, 
and a neural network approach. The algorithms were applied on each data type separately (RNA-Seq and his-
topathology features) and on the combined dataset (RNA-Seq and histopathology features concatenated). For 
each algorithm, we computed the associated macro F1 score to show how our model and its variants compare to 
standard and state-of-the-art classification methods. Details about the algorithms and the options applied can 
be found in the supplementary material. Note that these five models are only compared to the graph approaches 
based on IN’s edges, and IN’s nodes-and-edges, as the approach based on IN’s nodes is not using any graph 
structure in the process.

Results
Single data‑source: Exploiting edges in the individual graphs enhances classification
We compared the prediction performance obtained using different levels of information in the individual graphs. 
To create INs, feature selection is performed as described in Sect. “Level of individual edges”. It gave rise to a selec-
tion of 700 genes (edge weight percentile threshold tedge = 0.25 ) and 300 histopathology features ( tedge = 0.25 ) 
for the prostate use case. In the brain cancer dataset, 600 genes ( tedge = 0.5 ) and 300 image features ( tedge = 0.75 ) 
were retained. For the classification of the two lung cancers, 600 genes ( tedge = 0.5 ) and 500 histopathology 
features ( tedge = 0.75 ) were considered.
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The first two columns of each heatmap (Fig. 2) show the effects of using the nodes (rows 1 to 3), edges (rows 
4 and 5), or nodes and edges (rows 6 and 7) of the individual network on each data modality. Additional visu-
alisation is presented in the supplementary Figure 6. The Spearman correlation performed best in two-thirds of 
the scenarios among the three methodologies to build similarities at the node level. It motivated the choice of 
the Spearman correlation for the combination of node level and edge level information.

We observed that using more than node information increased the macro F1 score for the prostate (max 
F1=0.71) and brain (max F1=0,99) use cases with RNA-Seq data, and for the lung use case (max F1=0.94) with 
histopathology data. Using individual edges or individual nodes led to an equal performance in the context 
of lung cancer (max F1=0.94) from RNA-Seq data. Pipelines based on node level information achieved higher 
prediction with histopathology data for the prostate (max F1=0.82) and brain classifications (max F1=0.94).

Among the two approaches to build similarity matrices via individual edges, the Node Product performed 
better than the LIONESS algorithm in all situations except the prediction of prostate cancer severity using RNA-
Seq data. However, when combining individual nodes and edges, the LIONESS method yielded higher results in 
half of the situations. In general, on single data, classification based on individual edge weights, with or without 
combination with individual node weights, was better or equal to predictions from individual nodes only (i.e. 
no individual graph structure) in two-thirds of the scenarios.

Moreover, we compared graph-based models to multiple classification algorithms applied to the raw features, 
separately for each data type: a penalized logistic regression, a classification tree, a random forest, AdaBoost, a 
naive Bayes method, and a neural network approach. The data were pre-processed following the same approach 
as in the graph method, specifically selecting the same variables. Results are detailed in Table 2. Then, the models 
were ranked based on their macro F1 scores, with the best model ranked 1 and the worst model ranked 7. The 
ranks are presented in Fig. 3a, where a lower the area in the colored lines indicates better performance. Among 
the six analyses conducted, the graph-based approaches outperformed the other models in three of them. Overall, 
the graph-based approaches achieved the best results, with an average rank of 2.2. Following closely, the penalized 
logistic regression achieved the second-best performance, with an average rank of 2.3. These results demonstrate 
the substantial potential of individual graphs for disease subtyping.

Multi‑modality integration: Intermediate fusion demonstrates superior performance
This analysis’s first goal was to study whether it is possible to predict disease subtypes and severity from the 
patient data using graphs. The results showed that in brain cancer, the workflow achieved perfect predictions. 
We also obtained high performances in the lung cancer use case ( macro F1 score = 0.97 ). The severity of the 
prostate cancer was more cumbersome to detect, with a maximum macro F1 score of 0.82.

The second goal of this study was to examine which modality yields the best prediction. The answer differs 
depending on the use case. The histopathology images were the most informative data in the prostate scenario, 
but the RNA-Seq data achieved better results for the lung and brain scenarios.

Figure 2.   Overview of the macro F1 scores (%) for the different multi-modality approaches for the prostate 
cancer severity (a), types of brain cancers (b) and types of lung cancer (c), described in 2.1. The greener, the 
better the prediction, and the redder, the worse the prediction. Untested approaches are grayed out. The three 
first rows refer to approaches based on the nodes of the individual networks. Rows 4 and 5 use the edge weights 
of the individual networks. Rows 6 and 7 combine individual nodes and edges. The two first columns focus on a 
single data modality. Columns 3 to 6 refer to data integration.
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The third aim was to leverage the consequences of using INs and PPNs to combine database information 
at various steps. The impact of multi-modality integration using the edge weights of the individual graphs is 
shown in rows 4 and 5 of each heatmap (Fig. 2). An alternative visualisation is presented in the supplementary 
Figure 7. With the Person-to-Person Networks derived from individual edge weights only (i.e., no node weights), 
the fusion of the two data sources provided better results for the prostate (max F1 = 0.75 ) and the lung (max 
F1 = 0.96 ) cancers. There was no difference between one modality or the fusion of two modalities for brain 
cancer (max F1=0.97). Hence, with Person-to-Person networks derived from individual edge weights only, there 
was a benefit of combining multi-modalities, although there was no clear outperformer between the LIONESS 
and the Node Product methodologies.

When considering Person-to-Person networks computed from the combination of individual edge weights 
and individual node weights (Fig. 2, rows 6 and 7 of each heatmap), the fusion of the RNA-Seq and histopathol-
ogy data produced improved predictions for the prostate (max F1=0.79) and the brain cancers (max F1 = 1 ). 
There was no observed difference for lung cancer since multiple pipelines produced the best macro F1 score of 
0.97. Thus, with the combination of individual node and edge weights, we also observed that performance was 
improved in two-thirds of the situations with the fusion of the two data sources.

In all three cancer use cases, the average intermediate fusion technique consistently achieved the highest 
predictions. For lung cancer, early integration provided comparable results. The primary drawback of late fusion 
lies in the inability to capture interaction effects between RNA-Seq variables and histopathology features, as 
these two modalities are never jointly considered within the same model. Early data integration, if not handled 
appropriately, can exacerbate the issue of high dimensionality in the input space and potentially introduce noise, 

Figure 3.   Comparison of the graph-based models to multiple classification algorithms applied to the raw 
features. Models are ranked according to their prediction performance. The lower the area in the colored lines, 
the better. (a) shows the average rank of each model across datasets (prostate, brain, lung) and data types 
(RNA seq or histopathology). (b) shows the average rank of each model across datasets for the combined (i.e. 
concatenated) data types. For each analysis, the best graph approach is presented. Since the method based on 
IN’s nodes is not using any graph structure information, only the approaches based on IN’s edges, and IN’s 
nodes-and-edges are considered as graph-approaches.

Table 2.   Macro F1 scores (%) for the different inputs (RNA-Seq data only, histopathology images only or 
fusion of the two modalities) and algorithms evaluated.

Prostate Brain Lung

RNA-Seq Histo. Fusion RNA-Seq Histo. Fusion RNA-Seq Histo. Fusion

Penalized log. reg. 76 74 83 97 95 98 90 89 95

Tree classification 63 57 57 92 79 88 96 77 96

Random forest 64 69 72 95 91 99 95 89 96

Naive Bayes 70 74 82 92 80 96 93 83 95

Adaboost 69 74 78 97 93 100 96 87 96

Neural network 53 69 47 75 94 71 77 90 75

Graph approach 71 70 79 99 93 100 97 94 97
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which can detrimentally impact model performance. While dimensionality reduction methods ideally aim to 
select the most informative features, their effectiveness may vary in practice. Our results highlight that, in many 
scenarios, the intermediate fusion approach based on the average of the PPNs emerges as a preferred approach 
due to its ability to consistently deliver superior results.

Finally, we compared results across all analyses: use of nodes and/or edges in the individual graphs, and use on 
one or two data modalities (entire heatmaps - Fig. 2). For prostate cancer, the two best results were obtained from 
the Spearman correlation on histopathology data and the average intermediate fusion of the two data types with 
the combination of node level and edge level information. For the brain cancers, the best results were achieved via 
the average intermediate fusion of the two data modalities with Spearman correlation and via the intermediate 
fusion with the combination of node level and edge level information. Note that the brain classification was already 
perfect ( macro F1 score = 1 ) with node level information only, and there was, therefore, no possible improvement 
with individual edges. An ideal use case would require complementary data, each one bringing partial infor-
mation. For lung cancers, the maximum macro F1 score was obtained from six different settings involving the 
Spearman correlation and the combination of Spearman correlation and approaches based on individual edges. 
Hence, no approach outperformed the others in all contexts, and no general rule could be derived.

In addition, we conducted further analyses to assess the added value of our graph-based models (Table 2). 
Specifically, we compared these models to several classification algorithms applied to the raw features on the 
combined data types, where the features from the different data types were concatenated. Data were pre-processed 
as in the graph approach. The outcomes of these analyses are displayed in Fig. 3b. The graph-based approaches 
performed best in the brain and lung analyses. Hence, when considering the overall performance, the graph-
based approaches exhibited the best results, with an average rank of 2.3. Then, AdaBoost, Random Forest and 
the penalized logistic regression algorithms achieved the next-best performance, with an average rank of 2.7, 3.5 
and 3.5 respectively. These findings further underscore that the graph-based models provide valuable insights 
and demonstrate their effectiveness in handling combined data types.

Contribution of data modalities and their impact on misclassification
We emphasize the contribution of each data modality to the classification performance in the context of late 
fusion in Table 3. We observe a notable agreement between modalities, often resulting in high scores even during 
single-data analysis. In most cases, the relative contribution of each modality to late integration results aligns 
closely with their individual performance. In other words, when the single-modality prediction performs well 
(as seen in columns 1 and 2 of Fig. 2), its contribution to the two-modality prediction is also substantial. We have 
found that histopathology images contribute more significantly to the predictions than RNA-Seq data in prostate 
classification. For brain classification, RNA-Seq data and histopathology images make nearly equal contribu-
tions. For lung cancer, RNA-Seq data contributes more than histopathology images, indicating variability in the 
modality impact across different cancer types.

Determining the precise contribution of each modality to the classification performance in early and inter-
mediate fusion is a complex task due to the multi-step nature of these approaches. In both early and intermediate 
fusion, the input for the Support Vector Machine consists of a Person-to-Person Network already containing 
combined information from the two data modalities. Therefore, our analysis primarily allows us to discern the 
relative improvement gained from using one modality versus both. For instance, in the case of employing both 
nodes and edges of the Individual Specific Networks using the Node Product approach (as depicted in Fig. 2, 
row 6), we observe the following performance metrics: an F1 score of 0.59 with RNA-Seq data only, 0.62 with 
histopathology data only, and a notable increase to 0.73 with intermediate fusion. This comparison highlights 
the relative enhancement achieved through the integration of both modalities, showcasing the benefit of utiliz-
ing combined information.

Misclassified patients can arise due to several factors such as a class imbalance in the training set. The poten-
tial bias towards specific cancer subtypes was evaluated by comparing the class-wise F1 scores (Supplementary 
Table 2). Our analysis with the graph-based approach revealed an average difference of 3.3% between the F1 
scores of the different cancer subtypes (e.g. lgg/gbm), with two analyses showing equal F1 scores for both classes. 
The largest discrepancy (11%) was observed in prostate cancer classification based on RNA-Seq data. These results 
indicate that there is no substantial disparity between the F1 scores achieved in the two groups, and suggests 
that the approach adeptly handles data imbalance. Furthermore, we observed no discernible patterns associated 
with genes or histopathology features among the misclassified samples. In some cases, the characteristics of 

Table 3.   Contribution (%) of the RNA-Seq data and the histopathology images to the classification 
performance in the context of late fusion. The frequency with which the modality-specific prediction aligns 
with the final prediction is indicated. Indeed, if the class-wise prediction is not in the majority, it does not 
impact the final prediction outcome. Instances where there are equal votes for disease subtypes 1 and 2 were 
omitted from this calculation since the class assignment is random in such cases. N (resp. E) indicates the score 
derived from the PPN based on node (resp. edge) information only.

Prostate Brain Lung

RNA-Seq Histo. RNA-Seq Histo. RNA-Seq Histo.

LIONESS (N/E) 84 (76/93) 90 (96/84) 99 (98/99) 98 (99/97) 99 (100/99) 93 (98/88)

Node Product (N/E) 79 (69/87) 92 (92/92) 97 (99/95) 96 (97/96) 99 (100/98) 85 (90/74)
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different cancer subtypes might overlap, making it challenging to differentiate between them. In our study, this 
phenomenon becomes particularly relevant in the context of prostate cancer, where Gleason scores are derived 
manually by doctors. This can result in ambiguous cases that are prone to misclassification.

The dataset’s size may also play a role in misclassifications. We are training our model on relatively small 
datasets (maximum 603 patients), so the model may struggle to capture the full spectrum of variation, leading to 
errors. Data noise in RNA-Seq or histopathology data can also misguide the algorithm, potentially arising from 
data collection, preprocessing, or annotation errors. Incomplete information in the dataset, missing important 
features influencing cancer subtype, can contribute to misclassifications as well. Therefore, including additional 
data modalities could reduce the number of misclassified patients. Finally, the algorithm’s complexity might not 
be perfectly-suited to the dataset. Overly complex models can overfit the data and lead to misclassifications. 
For instance, in the case of prostate cancer, while node information from histopathology data provides valuable 
insights for disease subtyping (macro F1 score of 0.82), the edge information lacks meaningful contributions 
and even hinders predictions (maximum macro F1 score of 0.70).

Advantages and limitations of workflow variations
The predictive capabilities of data modalities in cancer classification is influenced by their inherent informa-
tiveness, and their capacity to complement each other. In the case of prostate cancer, the high performance of 
histopathology images was expected since primary Gleason scores are typically assessed through biopsy sam-
ples. This data modality inherently captures valuable information essential for subtype classification. Still, when 
the Person-to-Person networks generated from both the individual edge weights and individual node weights 
(Fig. 2a, rows 6 and 7) were considered, the fusion of RNA-Seq and histopathology data yielded improved predic-
tions for prostate cancer (F1=0.79) compared to single-modality predictions (0.65 and 0.63). This suggests that 
the two modality types contain complementary information that, when combined, can enhance predictive power. 
For brain cancers, the two modalities already exhibited strong predictive capabilities individually, indicating that 
both the gene expression and the histopathology data can help differentiate the brain low-grade gliomas and 
glioblastoma multiforme. However, the highest performance was achieved by integrating both modalities. Table 3 
underscores that both data types contribute to late fusion prediction, further supporting the value of integration 
in this context. In the context of lung cancer, RNA-Seq data proved slightly more predictive than histopathol-
ogy, although both data types made substantial contributions to the performance. The macro F1 score was not 
improved by combining the two data types. Therefore, our results suggest that either histopathological data did 
not provide additional information compared to gene expressions, or the graphical model did not effectively 
exploit this second type of data to improve prediction accuracy.

We evaluated the benefits of using nodes, edges, or nodes and edges in the workflow. In the context of brain 
and lung cancers, the highest macro F1 scores were achieved when considering nodes, either alone or in combi-
nation with edges. This suggests that the superior performance of the latter configuration primarily arises from 
the contribution of individual nodes. However, we observed more heterogeneous performance outcomes when 
exclusively focusing on nodes or edges, compared to the results when incorporating both nodes and edges. For 
instance, with lung cancers, the utilization of node-based information (Spearman) yielded an average macro 
F1 score of 87.5 across all possible data type combinations, including RNA-Seq only, histopathology only, early, 
intermediate, or late integration. When both nodes and edges were incorporated, the average macro F1 score 
increased to 95.1. We observed similar results with brain cancers. These findings underscore the significance of 
including both nodes and edges information, as it reduces the risk of achieving very low performance results 
and enhances the overall predictive stability.

We compared the two types of intermediate fusion: SNF versus the average approach. The Similarity Network 
Fusion approach offers the advantage of capturing complex relationships between data sources, which can be 
especially valuable when dealing with multiple modalities. It can model dependencies that might be overlooked 
by simple averaging. However, in our specific analysis, we only considered two data modalities, which might 
explain why the average method outperformed SNF in most cases. The average approach, while simpler, can still 
deliver strong results when dealing with a limited number of modalities. It might be less suitable when complex 
interactions exist between numerous data sources. One drawback of averaging is that it assumes equal impor-
tance for all data sources, which may not always hold true. This could account for the reduced performance of 
the average approach in the context of prostate cancer, given that the predominant predictive strength originates 
from histopathology images. On the other hand, SNF can be computationally demanding, particularly with large 
datasets or when dealing with numerous data sources. It also requires defining parameter values, such as deter-
mining the number of nearest neighbors. This parameter selection process can introduce complexity and affect 
the results. Hence, we recommend considering SNF in the presence of intricate relationships between multiple 
data sources. However, for scenarios with a limited number of modalities, average fusion remains a simpler, 
computationally efficient option that can still yield higher performance.

Interpretability: graphs identify biological processes underlying the differentiation of cancer 
subtypes
We applied a LIMMA analysis and a gene set enrichment analysis to the RNA-Seq data to illustrate the potential 
of individual networks to understand biological mechanisms.

To detect which edge weights were significantly different between the classes (e.g., Gleason score 3 versus 
4), the top 50 most differentially co-expressed edges were selected and coloured (See Fig. 4a-b-c). Nodes with 
significant gene expression differences between groups were also identified based on the t-statistic from the 
LIMMA analysis (See Sect. “LIMMA and gene set enrichment analysis on graphs”). This visualisation gave 
a general overview of the organization of the most relevant gene pairs differentiating between groups while 
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highlighting specific nodes and interesting modules. We can, for instance, investigate the most connected genes 
(more than 5 connected neighbours). The Gleason score classification pointed MAP7, which is prognostic for 
survival in patients with stage II colon cancer2. In brain cancer prediction, GTP2 and HIPK2 were identified. 
GTP2 is linked to neurological disease, encephalopathy, and microcephaly20,27,41, and HIPK2 is associated with 
tumor progression, and malignant neoplasm15,56. In lung cancer differentiation, we detected TGM2 and DUSP4. 
A loss of DUSP4 is observed in EGFR-mutant tumours8. Hence, the graph approach helped target gene and gene 
pairs differentiating between the two investigated groups.

We performed the gene set enrichment analysis described in Sect. “LIMMA and gene set enrichment analysis 
on graphs” to investigate the biological mechanisms associated with the difference between subtypes. It was based 
on the LIMMA analyses that include all the features identified in Sect. “Single data-source: Exploiting edges in 
the individual graphs enhances classification”. Namely, 700 genes (edge weight percentile threshold tedge = 0.25 ) 
are investigated for prostate cancer, 600 genes ( tedge = 0.5 ) for brain cancer, and 600 genes ( tedge = 0.5 ) for the 
lung cancer. 36 gene sets are enriched in the prostate cancer use case (See supplementary Figure 8) and 10 gene 
sets in the lung cancer use case. No enriched pathway was detected for the two types of brain cancers. The most 
significant gene sets for the prostate analysis was the Chandran metastasis. In prostate cancer, metastasis rep-
resents the most adverse outcome, and it is assumed that genes associated with this pathway have a role in the 
biology of metastatic disease5. We also identified the Liu prostate cancer set35 that is linked to a study showing 
that sex-determining region Y Box 4 is a transforming Oncogene in human prostate cancer cells. In the lung 
cancer scenario, the most significantly enriched gene set was Shedden lung cancer good survival a446, coming 
from the investigation of gene expression-based survival prediction in lung adenocarcinoma. Thus, these results 
highlighted the relevance of graphs in identifying biological processes involved in differentiating cancer subtypes.

Discussion
Despite the increasing volume of human data, methods for data-modality integration are understudied. Com-
monly, late integration is performed manually and relies on prior knowledge of the disease studied. Moreover, 
biological mechanisms are often organized as complex systems. Allocating a network to each individual could 
model such interactions while accounting for individual specificities. Starting from these observations, we inves-
tigated the added value of individual graphs for cancer subtyping. We integrated data in the space of individuals 
rather than measurements (e.g., gene expressions) using networks of similarities between patients. First, we 
evaluated the benefits of transforming the input data into individual graphs on single data. We showed that con-
sidering the features as a connected system could improve the prediction performance. Second, we demonstrated 
that combining individual networks and multi-modality integration can yield better performance. Finally, as we 
illustrated with cancer data, one strength of graph-based approaches is the ability to visualise and provide insights 
into the causal factors accounting for the differences between the disease subtypes. Although we focus here on 
RNA-Seq and histopathology data, our framework applies to any multiplex data. In clinical studies, it offers 
opportunities to integrate various measurements such as demographic, microbiome, and metabolomics data.

Suggested guidelines for the proposed workflow
As any machine learning algorithm, the performance of the graph-based models on other datasets that might lack 
uniform processing can be influenced by several factors, such as sequencing depth, batch variation, and unknown 
combinations of technical and biological noise. To mitigate the impact of these challenges, our approach incor-
porates various strategies.

We employ a dataset-specific feature selection step at both the node and edge levels of the individual networks 
within our workflow. This process optimizes feature selection, promoting an efficient individual network spar-
sification. By focusing on the most informative features, which are less susceptible to noise, we aim to enhance 
model performance. Also, our pipeline incorporates cross-validation techniques, particularly when applying the 

Figure 4.   LIMMA analysis on the top 50 most differentially co-expressed edges between groups. Genes with 
absolute t-statistic < 1.5 are shown in white. In the prostate use case (a), edges/nodes are red if they have higher 
coefficients in the Gleason pattern 3 group (blue for pattern 4). In the Brain use case (b), edges/nodes are red 
if they have higher coefficients in Brain lower grade glioma (blue in glioblastoma multiforme). In the Lung use 
case (c), edges/nodes are red if they have higher coefficients in Lung adenocarcinoma (blue in lung squamous 
cell carcinoma). Thicker edges represent higher log-fold changes.
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Support Vector Machine on the Person-to-Person network. Cross-validation assesses the model’s performance 
across multiple data subsets, thereby helping identify potential overfitting to a single dataset.

In SVM, the regularization parameter C is the cost of constraints violation25. It essentially determines the 
balance between two objectives: the minimization of training error and the minimization of model complexity10. 
Specifically, opting for a higher value of C results in a more flexible model, characterized by a narrower margin, 
and fewer misclassification. Conversely, a lower C value allows for a wider margin, potentially leading to more 
misclassifications within the training dataset. We selected C giving rise to the best performance. Feature selec-
tion and hyperparameter tuning are performed on the training set, presenting a potential risk of overfitting in 
the intermediate results. Also, selecting an algorithm based solely on its performance evaluation on a test set, 
after training on a training set, could introduce potential overfitting concerns. We acknowledge that opting for 
a separate validation set, instead of the training set, during hyperparameter tuning would enhance the model’s 
capacity to generalize to new data. Nonetheless, we assess the model’s performance using a distinct test set (Sect. 
“Data”). Hence, we emphasize that the final results are not overly optimistic, given that the evaluation takes place 
on an entirely independent dataset.

Based on our findings, it appears that no single variation of the workflow consistently outperforms the others 
across all scenarios. Therefore, we recommend that users, explore multiple variations of the pipeline to determine 
which one aligns best with their specific dataset. This way, they can make a more informed decision based on 
their dataset’s unique characteristics. Also, combining predictions from these variants, each trained on differ-
ent data subsets or with distinct algorithms (e.g. different metrics or data fusion), can enhance overall model 
performance and limit the impact of unknown combinations of technical and biological noise. Alternatively, 
users may consider adopting the construction of Person-to-Person networks, leveraging both individual network 
nodes and edges in conjunction with an intermediate fusion (average) approach. This strategy demonstrated 
high performance in multiple scenarios.

Furthermore, by creating UMAP38 visualizations for different sets of options or parameter configurations, 
users can compare the effects of these options on data transformation. We employed UMAP to visualize PPNs 
and color-coded data points according to their prediction labels. Specifically, we applied the umap function from 
the R package umap with default settings. This approach enabled us to assess how well the algorithm’s predic-
tions align with the patterns in UMAP representations, shedding light on when the network approach added 
value. The association between a discernible group pattern in UMAP visualizations and enhanced prediction 
performance using SVM is noteworthy. In UMAP plots generated for the prostate use case, most visualizations 
lack a clear separation between groups, which reflects the challenges in distinguishing cancer severity (supple-
mentary figure 3). Conversely, in the brain cancer plot, options that yield the best prediction performance, such 
as the combination of nodes and edges information of the IN (the two last rows), exhibit a more distinct division 
between groups (supplementary figure 4). The same trend can be observed in the lung analysis. For example, 
the utilization of nodes and edges information from the INs, particularly when based on RNAseq only, early 
integration, and average intermediate integration, produces discernible patterns (supplementary figure 5). These 
options, in turn, are associated with more favorable prediction outcomes. UMAP, therefore, can serve as a visual 
guide for users, facilitating their comprehension of how the algorithm transforms raw data into input for SVM. 
They can experiment with different options and observe the impact of these alterations on UMAP visualizations 
for their specific dataset and problem. In particular, when UMAP visualizations unveil well-defined clusters 
or meaningful patterns within the labels, we recommend considering the utilization of the associated options.

Furthermore, we encourage users to implement appropriate preprocessing steps, such as batch effect correc-
tion and noise reduction techniques. These steps can substantially enhance the model’s adaptability to diverse 
datasets and improve overall performance.

Feature extraction from histopathology data: increased generalizability with multiple cancer 
types
In this study, one data type in the cancer use cases was histopathology Whole Slide Images. This data was trans-
formed beforehand to convert images to image features with continuous values. To achieve this transformation, 
we considered a dataset that included but was not restricted to the individuals of our use cases, and we applied a 
neural network model to predict the cancer type. From this model, we derived features that discriminate between 
cancer types. Even though it may seem more straightforward to apply a neural network for each use case and 
train on the label of interest (e.g., Gleason score), we observed that differentiating among cancer types yielded 
better results (data not shown). One possible explanation is that the image model trained purely on the groups 
to identify resulted in a not general enough embedding. Indeed, a more general model on cancer types contains 
more individuals, which may lead to a better embedding that recognizes essential features.

Considerations on the inference of individual networks with LIONESS
Computing how similar a new individual is to each individual in the training set is straightforward with the 
Node Product approach. However, with the LIONESS algorithm, the INs of the reference panel change when we 
consider a new individual. Also, the derivation of the IN for a new individual depends on this panel. Hence, to 
create INs for new individuals, we used all individuals from the training set and one new individual at a time. If 
we directly add all the new individuals to the ones from the train set, we could considerably modify the relations 
between the INs of the training set. Adding only one individual at a time to the training set minimises the impact 
on the similarities between individuals from the train. To summarise, with the LIONESS algorithm, for each 
individual x from the test set, we created a new database containing the reference panel and x, and we constructed 
the INs for all the patients in this temporary database. From these new INs, we computed the similarity between 
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x and each individual in the training set. Hence, the complexity of creating individual networks for individuals 
in the test set with the LIONESS algorithm motivates starting investigations using the Node Product approach.

In theory, LIONESS offers a significant advantage over the Node Product method by leveraging interaction 
information rather than simply combining node values. However, the LIONESS method does come with a higher 
computational demand compared to the Node Product approach. As a result, for the feature selection, we opted 
for the Node Product approach. Therefore, the improved results observed with the Node Product method could, 
at least in part, be attributed to this choice. Nevertheless, the LIONESS approach can still yield superior results 
in certain scenarios. For instance, in the Prostate use case, the intermediate fusion (average) outperformed using 
LIONESS. Additionally, in the Lung use case, when considering histopathology data exclusively, the combination 
of nodes and edges with LIONESS proved more effective than the Node Product method. Hence, both approaches 
have their distinct advantages and disadvantages, and their suitability depends on the specific context and 
requirements of the analysis.

Enhancing multi‑modality integration through graph properties
Future enhancements include a data integration strategy that takes advantage of graph specificities. In this work, 
we studied the impact of combining individual graphs and data integration, but we did not use the network 
characteristics in the integration itself. Data were integrated before the computation of individual graphs (early 
integration) or after the derivation of similarity matrices (intermediate and late integration). An alternative 
would be to combine the data within the process of creating individual networks. In Fig. 1, it would correspond 
to an intermediate integration occurring at the level of the second box (“Individual networks”). For instance, 
one could develop a method to select predictive features in individual networks obtained with a first database 
(e.g., RNA-Seq) from a second dataset (e.g., histopathology data). This approach could allow focusing on inter-
pretable variables while including knowledge of an additional database. Second, it would sparse the individual 
networks, enabling more advanced graph distances to be used to compare individuals. The development of such 
methodologies was beyond the scope of this paper.

Conclusion
Whereas research on disease subtyping has received significant attention recently, individual treatment decisions 
remain a cumbersome issue. Taking advantage of the complementarity of multiple data sources could help pro-
vide more precise subtypes. Ongoing research on multi-modality integration mainly considers one variable at a 
time, ignoring their interactions. Fusion based on individual graphs accounting for these interactions can bring 
additional information. In this study, we showcased the potential of graph theory. In particular, we underlined 
the advantages and limits of this approach in the context of prostate, brain, and lung cancers subtyping and 
severity assessment.

We observed that individual graphs could be beneficial even on single data sources, and we highlighted that 
intermediate integration was often among the best performers. Graph-based methods achieved competitive 
performance while bringing additional explainability properties. We identified biologically relevant genes, gene 
interactions, and pathways for different use cases. The presented workflow is flexible and can readily be applied 
to other data modalities. The results motivate more research on methodological developments of individual 
networks for precision medicine.

Data availibility
The code necessary to reproduce this article’s results and analyses is available on GitHub at https://​github.​com/​
Diane​Duroux/​graph_​multi​modal_​integ​ration. Analyses are based upon publicly available real-life data generated 
by the TCGA Research Network (https://​www.​cancer.​gov/​tcga).
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