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A universal framework for accurate 
and efficient geometric deep 
learning of molecular systems
Shuo Zhang 1,2, Yang Liu 1 & Lei Xie 1,2,3*

Molecular sciences address a wide range of problems involving molecules of different types and sizes 
and their complexes. Recently, geometric deep learning, especially Graph Neural Networks, has 
shown promising performance in molecular science applications. However, most existing works often 
impose targeted inductive biases to a specific molecular system, and are inefficient when applied to 
macromolecules or large-scale tasks, thereby limiting their applications to many real-world problems. 
To address these challenges, we present PAMNet, a universal framework for accurately and efficiently 
learning the representations of three-dimensional (3D) molecules of varying sizes and types in any 
molecular system. Inspired by molecular mechanics, PAMNet induces a physics-informed bias to 
explicitly model local and non-local interactions and their combined effects. As a result, PAMNet can 
reduce expensive operations, making it time and memory efficient. In extensive benchmark studies, 
PAMNet outperforms state-of-the-art baselines regarding both accuracy and efficiency in three diverse 
learning tasks: small molecule properties, RNA 3D structures, and protein-ligand binding affinities. 
Our results highlight the potential for PAMNet in a broad range of molecular science applications.

The wide variety of molecular types and sizes poses numerous challenges in the computational modeling of 
molecular systems for drug discovery, structural biology, quantum chemistry, and  others1. To address these chal-
lenges, recent advances in geometric deep learning (GDL) approaches have become increasingly  important2, 3. 
Especially, Graph Neural Networks (GNNs) have demonstrated superior performance among various GDL 
 approaches4–6. GNNs treat each molecule as a graph and perform message passing scheme on  it7. By represent-
ing atoms or groups of atoms like functional groups as nodes, and chemical bonds or any pairwise interactions 
as edges, molecular graphs can naturally encode the structural information in molecules. In addition to this, 
GNNs can incorporate symmetry and achieve invariance or equivariance to transformations such as rotations, 
translations, and  reflections8, which further contributes to their effectiveness in molecular science applications. 
To enhance their ability to capture molecular structures and increase the expressive power of their models, 
previous GNNs have utilized auxiliary information such as chemical  properties9–12, atomic pairwise distances 
in Euclidean  space7, 13, 14, angular  information15–18, etc.

In spite of the success of GNNs, their application in molecular sciences is still in its early stages. One reason 
for this is that current GNNs often use targeted inductive bias for modeling a specific type of molecular system, 
and cannot be directly transferred to other contexts although all molecule structures and their interactions follow 
the same law of physics. For example, GNNs designed for modeling proteins may include operations that are 
specific to the structural characteristics of amino  acids19, 20, which are not relevant for other types of molecules. 
Additionally, GNNs that incorporate comprehensive geometric information can be computationally expensive, 
making them difficult to scale to tasks involving a large number of molecules (e.g., high-throughput compound 
screening) or macromolecules (e.g., proteins and RNAs). For instance, incorporating angular information can 
significantly improve the performance of  GNNs15–18, but also increases the complexity of the model, requiring 
at least O(Nk2) messages to be computed where N and k denote the number of nodes and the average degree in 
a graph.

To tackle the limitations mentioned above, we propose a universal GNN framework, Physics-Aware Multiplex 
Graph Neural Network (PAMNet), for the accurate and efficient representation learning of 3D molecules ranging 
from small molecules to macromolecules in any molecular system. PAMNet induces a physics-informed bias 
inspired by molecular  mechanics21, which separately models local and non-local interactions in molecules based 
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on different geometric information. To achieve this, we represent each molecule as a two-layer multiplex graph, 
where one plex only contains local interactions, and the other plex contains additional non-local interactions. 
PAMNet takes the multiplex graphs as input and uses different operations to incorporate the geometric infor-
mation for each type of interaction. This flexibility allows PAMNet to achieve efficiency by avoiding the use of 
computationally expensive operations on non-local interactions, which consist of the majority of interactions in 
a molecule. Additionally, a fusion module in PAMNet allows the contribution of each type of interaction to be 
learned and fused for the final feature or prediction. To preserve symmetry, PAMNet utilizes E(3)-invariant repre-
sentations and operations when predicting scalar properties, and is extended to predict E(3)-equivariant vectorial 
properties by considering the geometric vectors in molecular structures that arise from quantum mechanics.

To demonstrate the effectiveness of PAMNet, we conduct a comprehensive set of experiments on a variety of 
tasks involving different molecular systems, including small molecules, RNAs, and protein-ligand complexes. 
These tasks include predicting small molecule properties, RNA 3D structures, and protein-ligand binding affini-
ties. We compare PAMNet to state-of-the-art baselines in each task and the results show that PAMNet outper-
forms the baselines in terms of both accuracy and efficiency across all three tasks. Given the diversity of the tasks 
and the types of molecules involved, the superior performance of PAMNet shows its versatility to be applied in 
various real-world scenarios.

Overview of PAMNet
Multiplex graph representation
Given any 3D molecule or molecular system, we define a multiplex graph representation as the input of our 
PAMNet model based on the original 3D structure (Fig. 1a). The construction of multiplex graphs is inspired 
by molecular  mechanics21, in which the molecular energy E is separately modeled based on local and non-local 
interactions (Fig. 1c). In detail, the local terms E bond + E angle + E dihedral model local, covalent interactions 
including E bond that depends on bond lengths, E angle on bond angles, and E dihedral on dihedral angles. The non-
local terms E vdW + E electro model non-local, non-covalent interactions including van der Waals and electrostatic 
interactions which depend on interatomic distances. Motivated by this, we also decouple the modeling of these 
two types of interactions in PAMNet. For local interactions, we can define them either using chemical bonds or 
by finding the neighbors of each node within a relatively small cutoff distance, depending on the given task. For 
global interactions that contain both local and non-local ones, we define them by finding the neighbors of each 
node within a relatively large cutoff distance. For each type of interaction, we use a layer to represent all atoms 
as nodes and the interactions as edges. The resulting layers that share the same group of atoms form a two-layer 
multiplex graph G = {Gglobal ,Glocal} which represents the original 3D molecular structure (Fig. 1a).

Figure 1.  Overview of PAMNet. (a), Based on the 3D structure of any molecule or molecular system, a 
two-layer multiplex graph G = {Gglobal ,Glocal} is constructed to separate the modeling of global and local 
interactions. (b), PAMNet takes G as input and learns node-level or graph-level representation for downstream 
tasks. PAMNet contains stacked message passing modules that update the node embeddings z in G, and a fusion 
module that learns to combine the updated embeddings. In each message passing module, two message passing 
schemes are designed to encode the different geometric information in G’s two layers. In the fusion module, a 
two-step pooling process is proposed. (c), Calculation of molecular energy E in molecular mechanics. (d), An 
example of the geometric information in G. By considering the one-hop neighbors {j} and two-hop neighbors 
{k} of atom i, we can define the pairwise distances d and the related angles θ . (e), Detailed architecture of the 
message passing module and the attention pooling in PAMNet.
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Message passing modules
To update the node embeddings in the multiplex graph G, we design two message passing modules that incorpo-
rate geometric information: Global Message Passing and Local Message Passing for updating the node embeddings 
in Gglobal and Glocal , respectively (Fig. 1b). These message passing modules are inspired by physical principles from 
molecular mechanics (Fig. 1c): When modeling the molecular energy E, the terms for local interactions require 
geometric information including interatomic distances (bond lengths) and angles (bond angles and dihedral 
angles), while the terms for non-local interactions only require interatomic distances as geometric information. 
The message passing modules in PAMNet also use geometric information in this way when modeling these 
interactions (Fig. 1b,e). Specifically, we capture the pairwise distances and angles contained within up to two-
hop neighborhoods (Fig. 1d). The Local Message Passing requires the related adjacency matrix Alocal , pairwise 
distances dlocal and angles θlocal , while the Global Message Passing only needs the related adjacency matrix Aglobal 
and pairwise distances dglobal . Each message passing module then learns the node embeddings zg or z l in Gglobal 
and Glocal , respectively.

For the operations in our message passing modules, they can preserve different symmetries: E(3)-invariance 
and E(3)-equivariance, which contain essential inductive bias incorporated by GNNs when dealing with graphs 
with geometric  information8. E(3)-invariance is preserved when predicting E(3)-invariant scalar quantities like 
energies, which remain unchanged when the original molecular structure undergoes any E(3) transformation 
including rotation, translation, and reflection. To preserve E(3)-invariance, the input node embeddings h and 
geometric features are all E(3)-invariant. To update these features, PAMNet utilizes operations that can pre-
serve the invariance. In contrast, E(3)-equivariance is preserved when predicting E(3)-equivariant vectorial 
quantities like dipole moment, which will change according to the same transformation applied to the original 
molecular structure through E(3) transformation. To preserve E(3)-equivariance, an extra associated geometric 
vector v ∈ R

3 is defined for each node. These geometric vectors are updated by operations inspired by quantum 
 mechanics22, allowing for the learning of E(3)-equivariant vectorial representations. More details about the 
explanations of E(3)-invariance, E(3)-equivariance, and our operations can be found in Methods.

Fusion module
After updating the node embeddings zg or z l of the two layers in the multiplex graph G, we design a fusion 
module with a two-step pooling process to combine zg and z l for downstream tasks (Fig. 1b). In the first step, we 
design an attention pooling module based on attention  mechanism23 for each hidden layer t in PAMNet. Since 
Gglobal and Glocal contains the same set of nodes {N} , we apply the attention mechanism to each node n ∈ {N} 
to learn the attention weights ( αt

g and αt
l  ) between the node embeddings of n in Gglobal and Glocal , which are z tg 

and z tl  . Then the attention weights are treated as the importance of z tg and z tl  to compute the combined node 
embedding z t in each hidden layer t based on a weighted summation (Fig. 1e). In the second step, the z t of all 
hidden layers are summed together to compute the node embeddings of the original input. If a graph embedding 
is desired, we compute it using an average or a summation of the node embeddings.

Results and discussion
In this section, we will demonstrate the performance of our proposed PAMNet regarding two aspects: accuracy 
and efficiency. Accuracy denotes how well the model performs measured by the metrics corresponding to a given 
task. Efficiency denotes the memory consumed and the inference time spent by the model.

Performance of PAMNet regarding accuracy
Small molecule property prediction
To evaluate the accuracy of PAMNet in learning representations of small 3D molecules, we choose QM9, which 
is a widely used benchmark for the prediction of 12 molecular properties of around 130k small organic molecules 
with up to 9 non-hydrogen  atoms24. Mean absolute error (MAE) and mean standardized MAE (std. MAE)15 are 
used for quantitative evaluation of the target properties. Besides evaluating the original PAMNet which captures 
geometric information within two-hop neighborhoods of each node, we also develop a “simple” PAMNet, called 
PAMNet-s, that utilizes only the geometric information within one-hop neighborhoods. The PAMNet models are 
compared with several state-of-the-art models including  SchNet13,  PhysNet14,  MGCN25,  PaiNN26, DimeNet++16, 
and  SphereNet27. More details of the experiments can be found in Methods and Supplementary Information.

We compare the performance of PAMNet with those of the baseline models mentioned above on QM9, as 
shown in Table 1. PAMNet achieves 4 best and 6 second-best results among all 12 properties, while PAMNet-s 
achieves 3 second-best results. When evaluating the overall performance using the std. MAE across all properties, 
PAMNet and PAMNet-s rank 1 and 2 among all models with 10% and 5 % better std. MAE than the third-best 
model (SphereNet), respectively. From the results, we can observe that the models incorporating only atomic 
pairwise distance d as geometric information like SchNet, PhysNet, and MGCN generally perform worse than 
those models incorporating more geometric information like PaiNN, DimeNet++, SphereNet, and our PAMNet. 
Besides, PAMNet-s which captures geometric information only within one-hop neighborhoods performs worse 
than PAMNet which considers two-hop neighborhoods. These show the importance of capturing rich geometric 
information when representing 3D small molecules. The superior performance of PAMNet models demonstrates 
the power of our separate modeling of different interactions in molecules and the effectiveness of the message 
passing modules designed.

When predicting dipole moment µ as a scalar value, which is originally an E(3)-equivariant vectorial property 
µ , PAMNet preserves the E(3)-equivariance to directly predict µ first and then takes the magnitude of µ as the 
final prediction. As a result, PAMNet and PAMNet-s all get lower MAE (10.8 mD and 11.3 mD) than the previ-
ous best result (12 mD) achieved by PaiNN, which is a GNN with equivariant operations for predicting vectorial 
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properties. Note that the remaining baselines all directly predict dipole moment as a scalar property by preserving 
invariance. We also examine that by preserving invariance in PAMNet and directly predicting dipole moment 
as a scalar property, the MAE (24.0 mD) is much higher than the equivariant version. These results demonstrate 
that preserving equivariance is more helpful than preserving invariance for predicting dipole moments.

RNA 3D structure prediction
Besides small molecules, we further apply PAMNet to predict RNA 3D structures for evaluating the accuracy 
of PAMNet in learning representations of 3D macromolecules. Following the previous  works28–30, we refer the 
prediction to be the task of identifying accurate structural models of RNA from less accurate ones: Given a group 
of candidate 3D structural models generated based on an RNA sequence, a desired model that serves as a scoring 
function needs to distinguish accurate structural models among all candidates. We use the same datasets as those 
used  in30, which include a dataset for training and a benchmark for evaluation. The training dataset contains 18 
relatively older and smaller RNA molecules experimentally  determined31. Each RNA is used to generate 1000 
structural models via the Rosetta FARFAR2 sampling  method29. The benchmark for evaluation contains relatively 
newer and larger RNAs, which are the first 21 RNAs in the RNA-Puzzles structure prediction  challenge32. Each 
RNA is used to generate at least 1500 structural models using FARFAR2, where 1 % of the models are near-native 
(i.e., within a 2 Å RMSD of the experimentally determined native structure). In practice, each scoring function 
predicts the root mean square deviation (RMSD) from the unknown true structure for each structural model. 
A lower RMSD would suggest a more accurate structural model predicted. We compare PAMNet with four 
state-of-the-art baselines:  ARES30, Rosetta (2020 version)29,  RASP33, and  3dRNAscore28. Among the baselines, 
only ARES is a deep learning-based method, and is a GNN using equivariant operations. More details of the 
experiments are introduced in Methods and Supplementary Information.

On the RNA-Puzzles benchmark for evaluation, PAMNet significantly outperforms all other four scoring 
functions as shown in Fig. 2. When comparing the best-scoring structural model of each RNA (Fig. 2a), the prob-
ability of the model to be near-native ( < 2 Å RMSD from the native structure) is 90% when using PAMNet, com-
pared with 62, 43, 33, and 5 % for ARES, Rosetta, RASP, and 3dRNAscore, respectively. As for the 10 best-scoring 
structural models of each RNA (Fig. 2b), the probability of the models to include at least one near-native model 
is 90% when using PAMNet, compared with 81, 48, 48, and 33% for ARES, Rosetta, RASP, and 3dRNAscore, 
respectively. When comparing the rank of the best-scoring near-native structural model of each RNA (Fig. 2c), 
the geometric mean of the ranks across all RNAs is 1.7 for PAMNet, compared with 3.6, 73.0, 26.4, and 127.7 for 
ARES, Rosetta, RASP, and 3dRNAscore, respectively. The lower mean rank of PAMNet indicates that less effort 
is needed to go down the ranked list of PAMNet to include one near-native structural model. A more detailed 
analysis of the near-native ranking task can be found in Supplementary Figure S1.

Protein‑ligand binding affinity prediction
In this experiment, we evaluate the accuracy of PAMNet in representing the complexes that contain both small 
molecules and macromolecules. We use PDBbind, which is a well-known public database of experimentally 
measured binding affinities for protein-ligand  complexes34. The goal is to predict the binding affinity of each 
complex based on its 3D structure. We use the PDBbind v2016 dataset and preprocess each original complex 
to a structure that contains around 300 nonhydrogen atoms on average with only the ligand and the protein 
residues within 6 Å around it. To comprehensively evaluate the performance, we use Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), Pearson’s correlation coefficient (R) and the standard deviation (SD) in 
regression  following18. PAMNet is compared with various comparative methods including machine learning-
based methods (LR, SVR, and RF-Score35), CNN-based methods  (Pafnucy36 and  OnionNet37), and GNN-based 
methods  (GraphDTA38,  SGCN39, GNN-DTI40, D-MPNN12,  MAT41,  DimeNet15,  CMPNN42, and  SIGN18). More 
details of the experiments are provided in Methods and Supplementary Information.

Table 1.  Performance comparison on QM9. The best results are marked in bold and the second-best results 
with Italics.

Property Unit SchNet PhysNet MGCN PaiNN DimeNet++ SphereNet PAMNet-s PAMNet

µ mD 21 52.9 56 12 29.7 24.5 11.3 10.8

α a3
0

0.124 0.0615 0.030 0.045 0.0435 0.0449 0.0466 0.0447

ǫHOMO meV 47 32.9 42.1 27.6 24.6 22.8 23.9 22.8

ǫLUMO meV 39 24.7 57.4 20.4 19.5 18.9 20.0 19.2

�ǫ meV 74 42.5 64.2 45.7 32.6 31.1 32.4 31.0
〈

R2
〉

a2
0

0.158 0.765 0.11 0.066 0.331 0.268 0.094 0.093

ZPVE meV 1.616 1.39 1.12 1.28 1.21 1.12 1.24 1.17

U0 meV 12 8.15 12.9 5.85 6.32 6.26 6.05 5.90

U meV 12 8.34 14.4 5.83 6.28 6.36 6.08 5.92

H meV 12 8.42 16.2 5.98 6.53 6.33 6.19 6.04

G meV 13 9.40 14.6 7.35 7.56 7.78 7.34 7.14

cv cal

molK
0.034 0.0280 0.038 0.024 0.0230 0.0215 0.0234 0.0231

std. MAE % 1.78 1.37 1.89 1.01 0.98 0.91 0.87 0.83
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We list the results of all models and compare their performance in Table 2 and Supplementary Table S1. 
PAMNet achieves the best performance regarding all 4 evaluation metrics in our experiment. When compared 
with the second-best model, SIGN, our PAMNet performs significantly better with p-value < 0.05. These results 
clearly demonstrate the accuracy of our model when learning representations of 3D macromolecule complexes.

In general, we find that the models with explicitly encoded 3D geometric information like DimeNet, SIGN, 
and our PAMNet outperform the other models without the information directly encoded. An exception is that 
DimeNet cannot beat CMPNN. This might be because DimeNet is domain-specific and is originally designed 
for small molecules rather than macromolecule complexes. In contrast, our proposed PAMNet is more flexible 
to learn representations for various types of molecular systems. The superior performance of PAMNet for pre-
dicting binding affinity relies on the separate modeling of local and non-local interactions. For protein-ligand 
complexes, the local interactions mainly capture the interactions inside the protein and the ligand, while the 
non-local interactions can capture the interactions between protein and ligand. Thus PAMNet is able to effectively 
handle diverse interactions and achieve accurate results.

Performance of PAMNet regarding efficiency
To evaluate the efficiency of PAMNet, we compare it to the best-performed baselines in each task regarding mem-
ory consumption and inference time and summarize the results in Table 3. Theoretically, DimeNet++, SphereNet, 

Figure 2.  Performance comparison on RNA-Puzzles. Given a group of candidate structural models for each 
RNA, we rank the models using PAMNet and the other four leading scoring functions for comparison. Each 
cross in the figures corresponds to one RNA. (a) The best-scoring structural model of each RNA predicted by 
the scoring functions is compared. PAMNet in general identifies more accurate models (with lower RMSDs 
from the native structure) than those decided by the other scoring functions. (b) Comparison of the 10 best-
scoring structural models. The identifications of PAMNet contain accurate models more frequently than those 
from other scoring functions. (c) The rank of the best-scoring near-native structural model for each RNA is used 
for comparison. PAMNet usually performs better than the other scoring functions by having a lower rank.
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and SIGN all require O(Nk2) messages in message passing, while our PAMNet requires O(N(kg + kl
2)) messages 

instead, where N is the number of nodes, k is the average degree in a graph, kg and kl denotes the average degree 
in Gg and Gl in the corresponding multiplex graph G. When kg ∼ k and kl ≪ kg , PAMNet is much more efficient 
regarding the number of messages involved. A more detailed analysis of computational complexity is included 
in Methods. Based on the results in Table 3 empirically, we find PAMNet models all require less memory con-
sumption and inference time than the best-performed baselines in all three tasks, which matches our theoretical 
analysis. We also compare the memory consumption when using a different largest cutoff distance d of the related 
models in Fig. 3. From the results, we observe that the memory consumed by DimeNet and SIGN increases much 
faster than PAMNet when d increases. When fixing d = 5 Å as an example, PAMNet requires 80% and 71% less 
memory than DimeNet and SIGN, respectively. Thus PAMNet is much more memory-efficient and is able to 
capture longer-range interactions than these baselines with restricted resources. The efficiency of PAMNet models 
comes from the separate modeling of local and non-local interactions in 3D molecular structures. By doing so, 
when modeling the non-local interactions, which make up the majority of all interactions, we utilize a relatively 
efficient message passing scheme that only encodes pairwise distances d as the geometric information. Thus 
when compared with the models that require more comprehensive geometric information when modeling all 
interactions, PAMNet significantly reduces the computationally expensive operations. More information about 
the details of experimental settings is included in Methods.

All components in PAMNet contribute to the performance
To figure out whether all of the components in PAMNet, including the fusion module and the message passing 
modules, contribute to the performance of PAMNet, we conduct an ablation study by designing PAMNet variants. 
Without the attention pooling, we use the averaged results from the message passing modules in each hidden 
layer to build a variant. We also remove either the Local Message Passing or the Global Message Passing for 
investigation. The performances of all PAMNet variants are evaluated on the three benchmarks. Specifically, the 
std. MAE across all properties on QM9, the geometric mean of the ranks across all RNAs on RNA-Puzzles, and 
the four metrics used in the experiment on PDBbind are computed for comparison. The results in Fig. 4 show 

Table 2.  Performance comparison on PDBbind. We report the averaged results together with standard 
deviations. For the evaluation metrics, ↓ denotes the lower the better, while ↑ denotes the higher the better. The 
best results are marked in bold and the second-best results with italics.

Model RMSE ↓ MAE ↓ SD ↓ R ↑

ML-based

LR 1.675 (0.000) 1.358 (0.000) 1.612 (0.000) 0.671 (0.000)

SVR 1.555 (0.000) 1.264 (0.000) 1.493 (0.000) 0.727 (0.000)

RF-Score 1.446 (0.008) 1.161 (0.007) 1.335 (0.010) 0.789 (0.003)

CNN-based
Pafnucy 1.585 (0.013) 1.284 (0.021) 1.563 (0.022) 0.695 (0.011)

OnionNet 1.407 (0.034) 1.078 (0.028) 1.391 (0.038) 0.768 (0.014)

GNN-based

GraphDTA 1.562 (0.022) 1.191 (0.016) 1.558 (0.018) 0.697 (0.008)

SGCN 1.583 (0.033) 1.250 (0.036) 1.582 (0.320) 0.686 (0.015)

GNN-DTI 1.492 (0.025) 1.192 (0.032) 1.471 (0.051) 0.736 (0.021)

D-MPNN 1.493 (0.016) 1.188 (0.009) 1.489 (0.014) 0.729 (0.006)

MAT 1.457 (0.037) 1.154 (0.037) 1.445 (0.033) 0.747 (0.013)

DimeNet 1.453 (0.027) 1.138 (0.026) 1.434 (0.023) 0.752 (0.010)

CMPNN 1.408 (0.028) 1.117 (0.031) 1.399 (0.025) 0.765 (0.009)

SIGN 1.316 (0.031) 1.027 (0.025) 1.312 (0.035) 0.797 (0.012)

Ours PAMNet 1.263 (0.017) 0.987 (0.013) 1.261 (0.015) 0.815 (0.005)

Table 3.  Results of efficiency evaluation. We compare PAMNet with the best-performed baselines in each of 
the three tasks regarding memory consumption and inference time. The most efficient results are marked in 
bold.

Dataset Model Memory (GB) Inference time (s)

QM9

DimeNet++ 21.1 11.3

SphereNet 22.7 11.1

PAMNet-s 6.0 7.3

PAMNet 6.2 11.0

RNA-Puzzles
ARES 13.5 2.1

PAMNet 7.8 0.6

PDBbind
SIGN 19.7 12.0

PAMNet 13.1 1.8



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19171  | https://doi.org/10.1038/s41598-023-46382-8

www.nature.com/scientificreports/

that all variants decrease the performance of PAMNet in the evaluations, which clearly validates the contributions 
of all those components. Detailed results of the properties on QM9 can be found in Supplementary Table S2.

Analysis of the contribution of local and global interactions
A salient property of PAMNet is the incorporation of the attention mechanism in the fusion module, which 
takes the importance of node embeddings in Glocal and Gglobal of G into consideration in learning combined 
node embeddings. Recall that for each node n in the set of nodes {N} in G, the attention pooling in the fusion 

Table 4.  Comparison of the average attention weights αl  and αg  for local and global interactions in attention 
pooling. The higher attention weight for each target is marked in bold.

Attention
weight

QM9
RNA-
puzzles PDBbindµ α ǫHOMO ǫLUMO

〈

R
2
〉

ZPVE U0 U H G cv

αl 0.64 0.53 0.50 0.50 0.29 0.54 0.60 0.60 0.60 0.57 0.58 0.22 0.34

αg 0.36 0.47 0.50 0.50 0.71 0.46 0.40 0.40 0.40 0.43 0.42 0.78 0.66

Figure 3.  Memory consumption vs. the largest cutoff distance d on PDBbind. We compare PAMNet with the 
GNN baselines that also explicitly incorporate the 3D molecular geometric information like pairwise distances 
and angles.

Figure 4.  Ablation study of PAMNet. We compare the variants with the original PAMNet and report the 
differences.
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module learns the attention weights αl and αg between n’s node embedding z l in Glocal and n’s node embedding 
zg in Gglobal . αl and αg serve as the importance of z l and zg when computing the combined node embedding z . To 
better understand the contribution of z l and zg , we conduct a detailed analysis of the learned attention weights αl 
and αg in the three tasks we experimented with. Since the node embeddings are directly related to the involved 
interactions, such analysis can also reveal the contribution of local and global interactions on the predictions in 
different tasks. In each task, we take an average of all αl or αg to be the overall importance of the corresponding 
group of interactions. Then we compare the computed average attention weights αl  and αg  and list the results in 
Table 4. A higher attention weight in each task indicates a stronger contribution of the corresponding interac-
tions on solving the task.

For the targets being predicted in QM9, we find that all of them have αl ≥ αg  except the electronic spatial 
extent 

〈

R2
〉

 , indicating a stronger contribution of the local interactions, which are defined by chemical bonds 
in this task. This may be because QM9 contains small molecules with only up to 9 non-hydrogen atoms, local 
interactions can capture a considerable portion of all atomic interactions. However, when predicting electronic 
spatial extent 

〈

R2
〉

 , we notice that αl < αg  , which suggests that 
〈

R2
〉

 is mainly affected by the global interactions 
that are the pairwise interactions within 10 Å in this case. This is not surprising since 

〈

R2
〉

 is the electric field area 
affected by the ions in the molecule, and is directly related to the diameter or radius of the molecule. Besides, 
previous  study43 has demonstrated that graph properties like diameter and radius cannot be computed by mes-
sage passing-based GNNs that rely entirely on local information, and additional global information is needed. 
Thus it is expected that global interactions have a stronger contribution than local interactions on predicting 
electronic spatial extent.

For the RNA 3D structure prediction on RNA-Puzzles and the protein-ligand binding affinity prediction on 
PDBbind, we find αl < αg  in both cases, which indicates that global interactions play a more important role than 
local interactions. It is because the goals of these two tasks highly rely on global interactions, which are necessary 
for representing the global structure of RNA when predicting RNA 3D structure, and are crucial for capturing 
the relationships between protein and ligand when predicting binding affinity.

Conclusion
In this work, we tackle the limitations of previous GNNs regarding their limited applicability and inefficiency for 
representation learning of molecular systems with 3D structures and propose a universal framework, PAMNet, 
to accurately and efficiently learn the representations of 3D molecules in any molecular system. PAMNet explic-
itly models local and non-local interaction as well as their combined effects inspired by molecular mechanics. 
The resulting framework incorporates rich geometric information like distances and angles when modeling 
local interactions, and avoids using expensive operations on modeling non-local interactions. Besides, PAMNet 
learns the contribution of different interactions to combine the updated node embeddings for the final output. 
When designing the aforementioned operations in PAMNet, we preserve E(3)-invariance for scalar output and 
preserve E(3)-equivariance for vectorial output to enable more applicable cases. In our experiments, we evalu-
ate the performance of PAMNet with state-of-the-art baselines on various tasks involving different molecular 
systems, including small molecules, RNAs, and protein-ligand complexes. In each task, PAMNet outperforms 
the corresponding baselines in terms of both accuracy and efficiency. These results clearly demonstrate the gen-
eralization power of PAMNet even though non-local interactions in molecules are modeled with only pairwise 
distances as geometric information.

An under-investigated aspect of our proposed PAMNet is that PAMNet preserves E(3)-invariance in opera-
tions when predicting scalar properties while requiring additional representations and operations to preserve 
E(3)-equivariance for vectorial properties. Considering that various equivariant GNNs have been proposed for 
predicting either scalar or vectorial properties solely by preserving equivariance, it would be worth extending the 
idea in PAMNet to equivariant GNNs with a potential to further improve both accuracy and efficiency. Another 
interesting direction is that although we only experiment PAMNet on single-task learning, PAMNet is promising 
to be used in multi-task learning across diverse tasks that involve molecules of varying sizes and types to gain 
better generalization. Besides using PAMNet for predicting physiochemical properties of molecules, PAMNet can 
be used as a universal building block for the representation learning of molecular systems in various molecular 
science problems. Another promising application of PAMNet is self-supervised learning for molecular systems 
with few labeled data (e.g., RNA structures). For example, we can use the features in one graph layer to learn 
properties in another graph layer by utilizing the multiplex nature of PAMNet.

Methods
Details of PAMNet
In this section, we will describe PAMNet in detail, including the involved features, embeddings, and operations.

Input features
The input features of PAMNet include atomic features and geometric information as shown in Fig. 1b. For atomic 
features, we use only atomic numbers Z for the tasks on QM9 and RNA-Puzzles  following13–16, 30, and use 18 
chemical features like atomic numbers, hybridization, aromaticity, partial charge, etc., for the task on PDBbind 
 following18, 36. The atomic numbers Z are represented by randomly initialized, trainable embeddings accord-
ing  to13–16. For geometric information, we capture the needed pairwise distances and angles in the multiplex 
molecular graph G as shown in Fig. 1d. The features (d, θ ) for the distances and angles are computed with the 
basis functions  in15 to reduce correlations. For the prediction of vectorial properties, we use the atomic position 
r to be the initial associated geometric vector v of each atom.
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Message embeddings
In the message passing  scheme7, the update of node embeddings h relies on the passing of the related messages 
m between nodes. In PAMNet, we define the input message embeddings m of message passing schemes with 
the following way:

where i, j ∈ Gglobal or Glocal are connected nodes that can define a message embedding, MLP denotes the multi-
layer perceptron, | denotes the concatenation operation. The edge embedding eji encodes the corresponding 
pairwise distance d between node i, j.

Global message passing
As depicted in Fig. 1e, the Global Message Passing in each hidden layer of PAMNet, which consists of a message 
block and an update block, updates the node embeddings h in Gglobal by using the related adjacency matrix Aglobal 
and pairwise distances dglobal . The message block is defined as below to perform the message passing operation:

where i, j ∈ Gglobal , φd is a learnable function, eji is the embedding of pairwise distance d between node i, j, and 
⊙ denotes the element-wise production. After the message block, an update block is used to compute the node 
embeddings h for the next layer as well as the output z for this layer. We define the update block using a stack of 
three residual blocks, where each residual block consists of a two-layer MLP and a skip connection across the 
MLP. There is also a skip connection between the input of the message block and the output of the first residual 
block. After the residual blocks, the updated node embeddings h are passed to the next layer. For the output z of 
this layer to be combined in the fusion module, we further use a three-layer MLP to get z with desired dimen-
sion size.

Local message passing
For the updates of node embeddings h in Glocal , we incorporate both pairwise distances dlocal and angles θlocal as 
shown in Fig. 1e. To capture θlocal , we consider up to the two-hop neighbors of each node. In Fig. 1d, we show an 
example of the angles we considered: Some angles are between one-hop edges and two-hop edges (e.g. ∠ij1k1 ), 
while the other angles are between one-hop edges (e.g. ∠j1ij2 ). Compared to previous  GNNs15–17 that incorporate 
only part of these angles, our PAMNet is able to encode the geometric information more comprehensively. In 
the Local Message Passing, we also use a message block and an update block following the design of the Global 
Message Passing as shown in Fig. 1e. However, the message block is defined differently as the one in the Global 
Message Passing to encode additional angular information:

where i, j, k ∈ Glocal , eji is the embedding of pairwise distance d between node i, j, akj,ji is the embedding of angle 
θkj,ji = ∠kji defined by node i, j, k, and φd ,φθ are learnable functions. In Eq. (3), we use two summation terms to 
separately encode the angles in different hops with the associated pairwise distances to update mji . Then in Eq. 
(4), the updated message embeddings m′

ji are used to perform message passing. After the message block, we use 
the same update block as the one used in the Global Message Passing for updating the learned node embeddings.

Fusion module
The fusion module consists of two steps of pooling as shown in Fig. 1b. In the first step, attention pooing is uti-
lized to learn the combined embedding z t based on the output node embeddings z tg and z tl  in each hidden layer 
t. The detailed architecture of attention pooling is illustrated in Fig. 1e. We first compute the attention weight αp,i 
on node i that measures the contribution of the results from plex or graph layer p ∈ {g , l} in multiplex graph G:

where Wt
p ∈ R

1×F is a learnable weight matrix different for each hidden layer t and graph layer p, and F is the 
dimension size of z tp,i . With αt

p,i , we can compute the combined node embedding z ti of node i using a weighted 
summation:

where W′t
p ∈ R

D×F is a learnable weight matrix different for each hidden layer t and graph layer p, D is the 
dimension size of z ti , and F is the dimension size of z tp,i.

(1)mji = MLPm([hj|hi|eji]),

(2)hti = ht−1
i +

∑

j∈N (i)
mt−1

ji ⊙ φd(eji),

(3)m
′t−1
ji = mt−1

ji +
∑

j′∈N (i)\{j}
mt−1

j′i ⊙ φd(ej′i)⊙ φθ (aj′i,ji)+
∑

k∈N (j)\{i}
mt−1

kj ⊙ φd(ekj)⊙ φθ (akj,ji),

(4)hti = ht−1
i +

∑

j∈N (i)

m
′t−1
ji ⊙ φd(eji),

(5)αt
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(
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(
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))
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In the second step of the fusion module, we sum the combined node embedding z of all hidden layers to 
compute the final node embeddings y . If a graph-level embedding y is desired, we compute as follows:

Preservation of E(3)‑invariance & E(3)‑equivariance
For the operations described above, they preserve the E(3)-invariance of the input atomic features and geometric 
information and can predict E(3)-invariant scalar properties. To predict E(3)-equivariant vectorial property u , we 
introduce an associated geometric vector vi for each node i and extend PAMNet to preserve the E(3)-equivariance 
for learning u . In detail, the associated geometric vector vti of node i in hidden layer t is defined as:

where {ht} denotes the set of learned node embeddings of all nodes in hidden layer t, {r} denotes the set of posi-
tion vectors of all nodes in 3d coordinate space, and fv is a function that preserves the E(3)-equivariance of vti 
with respect to {r} . Equation (8) is computed after each message passing module in PAMNet.

To predict a final vectorial property u , we modify Eqs. (6) and (7) in the fusion module as the following 
operations:

where vtp,i is the associated geometric vector of node i on graph layer p in hidden layer t, uti is the learned vector of 
node i in hidden layer t, and W′t

p ∈ R
1×F is a learnable weight matrix different for each hidden layer t and graph 

layer p. In Eq. (9), we multiply vtp,i with the learned scalar node contributions. In Eq. (10), we sum all node-level 
vectors in all hidden layers to compute the final prediction u.

For predicting dipole moment µ , which is an E(3)-equivariant vectorial property that describes the net 
molecular polarity in electric field, we design fv in Eq. (8) as motivated by quantum  mechanics44. The conven-
tional method to compute molecular dipole moment involves approximating electronic charge densities as 
concentrated at each atomic position, resulting in µ =

∑

i rc,iqi , where qi is the partial charge of node i, and 
rc,i = ri −

(
∑

i ri
)

/N  is the relative atomic position of node i. However, this approximation is not accurate 
enough. Instead, we use a more accurate approximation by adding dipoles onto atomic positions in the distrib-
uted multipole analysis (DMA)  approach22. This results in the dipole moment equation: µ =

∑

i(rc,iqi + µi) , 
where µi is the associated partial dipole of node i. The equation can be rewritten as µ =

∑

i fv(ri)qi , where qi is 
the scalar atomic contribution that can be modeled by an invariant fashion. By treating fv(ri) as vti , the equation 
has a similar format as a combination of Eqs. (9) and (10). We update vti in the following way:

where � · � denotes the L2 norm. Since vti as well as µ are computed by a linear combination of {r} , our PAMNet 
can preserve E(3)-equivariance with respect to {r} when performing the prediction.

Computational complexity
We analyze the computational complexity of PAMNet by addressing the number of messages. We denote the 
cutoff distance when creating the edges as dg and dl in Gg and Gl . The average degree is kg in Gg and is kl in Gl . In 
each hidden layer of PAMNet, Global Message Passing needs O(Nkg ) messages because it requires one message 
for each pairwise distance between the central node and its one-hop neighbor. While Local Message Passing 
requires one message for each one-hop or two-hop angle around the central node. The number of angles can 
be estimated as follows: For k edges connected to a node, they can define (k(k − 1))/2 angles which result in a 
complexity of O

(

Nk2
)

 . The number of one-hop angles and two-hop angles all has such complexity. So that Local 
Message Passing needs O

(

2Nkl
2
)

 messages. In total, PAMNet requires the computation of O
(

Nkg + 2Nkl
2
)

 
messages in each hidden layer, while previous  approaches15–18, 27 require O

(

Nkg
2
)

 messages. For 3D molecules, 
we have kg ∝ dg

3 and kl ∝ dl
3 . With proper choices of dl and dg , we have kl ≪ kg . In such cases, our model is 

more efficient than the related GNNs. We here list the comparison of the number of messages needed in our 
experiments as an example: On QM9 with dg = 5 Å, our model needs 0.5k messages/molecule on average, while 
DimeNet++ needs 4.3k messages. On PDBBind with dl = 2 Å and dg = 6 Å, our model needs only 12k messages/
molecule on average, while DimeNet++ needs 264k messages.

Data collection and processing
QM9
For QM9, we use the source provided  by24. Following the previous  works15–17, we process QM9 by removing 
about 3k molecules that fail a geometric consistency check or are difficult to  converge45. For properties U0 , U, 
H, and G, only the atomization energies are used by subtracting the atomic reference energies as  in15–17. For 
property �ǫ , we follow the same way as the DFT calculation and predict it by calculating ǫLUMO − ǫHOMO . For 
property µ , the final result is the magnitude of the predicted vectorial µ when using our geometric vector-based 

(7)y =
∑N

i=1

∑T

t=1
z ti .

(8)vti = fv({ht}, {r}),

(9)uti =
∑

p
αt
p,i
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W
′t
p z

t
p,i
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approaches with PAMNet. The 3D molecular structures are processed using the RDKit  library46.  Following15, 
we randomly use 110000 molecules for training, 10000 for validation and 10831 for testing. In our multiplex 
molecular graphs, we use chemical bonds as the edges in the local layer, and a cutoff distance (5 or 10 Å) to cre-
ate the edges in the global layer.

RNA‑puzzles
RNA-Puzzles consists of the first 21 RNAs in the RNA-Puzzles structure prediction  challenge32. Each RNA is 
used to generate at least 1500 structural models using FARFAR2, where 1 % of the models are near native (i.e., 
within a 2 Å RMSD of the experimentally determined native structure).  Following30, we only use the carbon, 
nitrogen, and oxygen atoms in RNA structures. When building multiplex graphs for RNA structures, we use 
cutoff distance dl = 2.6 Å for the local interactions in Glocal and dg = 20 Å for the global interactions in Gglobal.

PDBBind
For PDBBind, we use PDBbind v2016  following18, 36. Besides, we use the same data splitting method according 
 to18 for a fair comparison. In detail, we use the core subset which contains 290 complexes in PDBbind v2016 for 
testing. The difference between the refined and core subsets, which includes 3767 complexes, is split with a ratio 
of 9:1 for training and validation. We use logKi as the target property being predicted, which is proportional 
to the binding free energy. In each complex, we exclude the protein residues that are more than 6 Å from the 
ligand and remove all hydrogen atoms. The resulting complexes contain around 300 atoms on average. In our 
multiplex molecular graphs, we use cutoff distance dl = 2 Å in the local layer and dg = 6 Å in the global layer.

Experimental settings
In our message passing operations, we define φd(e) = Wee and φθ (α) = MLPα(α) , where We is a weight matrix, 
MLPα is a multi-layer perceptron (MLP). All MLPs used in our model have two layers by taking advantage 
of the approximation capability of  MLP47. For all activation functions, we use the self-gated Swish activation 
 function48. For the basis functions, we use the same parameters as  in15. To initialize all learnable parameters, 
we use the default settings used in PyTorch without assigning specific initializations except the initialization for 
the input node embeddings on QM9: h are initialized with random values uniformly distributed between −

√
3 

and 
√
3 . In all experiments, we use the Adam  optimizer49 to minimize the loss. In Supplementary Table S3, we 

list the typical hyperparameters used in our experiments. All of the experiments are done on an NVIDIA Tesla 
V100 GPU (32 GB).

Small molecule property prediction
In our experiment on QM9, we use the single-target training  following15 by using a separate model for each 
target instead of training a single shared model for all targets. The models are optimized by minimizing the mean 
absolute error (MAE) loss. We use a linear learning rate warm-up over 1 epoch and an exponential decay with a 
ratio 0.1 every 600 epochs. The model parameter values for validation and testing are kept using an exponential 
moving average with a decay rate of 0.999. To prevent overfitting, we use early stopping on the validation loss. 
For properties ZPVE, U0 , U, H, and G, we use the cutoff distance in the global layer dg = 5 Å. For the other 
properties, we use dg = 10 Å. We repeat our runs 3 times for each PAMNet variant  following50.

RNA 3D structure prediction
PAMNet is optimized by minimizing the smooth L1  loss51 between the predicted value and the ground truth. 
An early-stopping strategy is adopted to decide the best epoch based on the validation loss.

Protein‑ligand binding affinity prediction
We create three weight-sharing, replica networks, one each for predicting the target G of complex, protein pocket, 
and ligand  following52. The final target is computed by �Gcomplex = Gcomplex − Gpocket − Gligand . The full model 
is trained by minimizing the mean absolute error (MAE) loss between �Gcomplex and the true values. The learn-
ing rate is dropped by a factor of 0.2 every 50 epochs. Moreover, we perform 5 independent runs according  to18.

Efficiency comparison
In the experiment on investigating the efficiency of PAMNet, we use NVIDIA Tesla V100 GPU (32 GB) for a 
fair comparison. For small molecule property prediction, we use the related models for predicting property U0 
of QM9 as an example. We use batch size=128 for all models and use the configurations reported in the corre-
sponding papers. For RNA 3D structure prediction, we use PAMNet and ARES to predict the structural models 
of RNA in puzzle 5 of RNA-Puzzles challenge. The RNA being predicted has 6034 non-hydrogen atoms. The 
model settings of PAMNet and ARES are the same as those used for reproducing the best results. We use batch 
size=8 when performing the predictions. For protein-ligand binding affinity prediction, we use the configura-
tions that can reproduce the best results for the related models.

Data availability
The QM9 dataset is available at https:// figsh are. com/ colle ctions/ Quant um_ chemi stry_ struc tures_ and_ prope 
rties_ of_ 134_ kilo_ molec ules/ 978904. The datasets for RNA 3D structure prediction can be found at https:// purl. 
stanf ord. edu/ bn398 fc4306. The PDBbind v2016 dataset is available at http:// www. pdbbi nd. org. cn/ or https:// 
github. com/ Paddl ePadd le/ Paddl eHelix/ tree/ dev/ apps/ drug_ target_ inter action/ sign.

https://figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904
https://figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904
https://purl.stanford.edu/bn398fc4306
https://purl.stanford.edu/bn398fc4306
http://www.pdbbind.org.cn/
https://github.com/PaddlePaddle/PaddleHelix/tree/dev/apps/drug_target_interaction/sign
https://github.com/PaddlePaddle/PaddleHelix/tree/dev/apps/drug_target_interaction/sign
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Code availability
The source code of our model is publicly available on GitHub at the following repository: https:// github. com/ 
XieRe searc hGroup/ Physi cs- aware- Multi plex- GNN.
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