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On effectively predicting autism 
spectrum disorder therapy using 
an ensemble of classifiers
Bhekisipho Twala 1* & Eamon Molloy 2

An ensemble of classifiers combines several single classifiers to deliver a final prediction or 
classification decision. An increasingly provoking question is whether such an ensemble can 
outperform the single best classifier. If so, what form of ensemble learning system (also known as 
multiple classifier learning systems) yields the most significant benefits in the size or diversity of the 
ensemble? In this paper, the ability of ensemble learning to predict and identify factors that influence 
or contribute to autism spectrum disorder therapy (ASDT) for intervention purposes is investigated. 
Given that most interventions are typically short-term in nature, henceforth, developing a robotic 
system that will provide the best outcome and measurement of ASDT therapy has never been so 
critical. In this paper, the performance of five single classifiers against several multiple classifier 
learning systems in exploring and predicting ASDT is investigated using a dataset of behavioural data 
and robot-enhanced therapy against standard human treatment based on 3000 sessions and 300 h, 
recorded from 61 autistic children. Experimental results show statistically significant differences in 
performance among the single classifiers for ASDT prediction with decision trees as the more accurate 
classifier. The results further show multiple classifier learning systems (MCLS) achieving better 
performance for ASDT prediction (especially those ensembles with three core classifiers). Additionally, 
the results show bagging and boosting ensemble learning as robust when predicting ASDT with multi-
stage design as the most dominant architecture. It also appears that eye contact and social interaction 
are the most critical contributing factors to the ASDT problem among children.

World autism awareness month is celebrated in April worldwide by people and organisations alike. This entire 
month is dedicated to raising awareness, sharing understanding, and shedding light on a global and South African 
health crisis, which parents have been battling for years. Autism Spectrum Disorder (ASD) can be defined as a 
developmental disability that affects social interaction, communication and learning skills (where the spectrum 
reflects a wide range of symptoms that the child can present). Autism therapies are interventions that attempt to 
lessen the deficits and problem behaviours associated with ASD.

About 1 in 160 children worldwide are diagnosed with ASD, with a higher rate of 1 in 68 children in the 
United States (Centers for Disease  Control1). Abnormalities characterise themselves in social interactions and 
patterns of communication and a restricted, stereotyped, repetitive repertoire of interests and activities  (WHO2). 
However, the treatment and intervention services for ASD are tricky since there are time-consuming treatments 
conducted. The ASD symptoms typically appear in the first 2 years of a child’s life, developing in a specific period. 
There are many types of treatments available including behavioural, developmental, educational, social-relational, 
pharmacological and psychological. One South African group, Quest School (Sowetan  LIVE3) has proposed that 
children be diagnosed when they are young, not at 5 years of age as is the norm.

We cannot overemphasise the impact ASD has on adults and children. The common signs in adults include 
finding it hard to understand what others are thinking or feeling and getting very anxious about social situations. 
For young children it includes not responding to their name, avoiding eye contact, and repetitive movements such 
as flapping their hands and flicking their fingers or rocking their bodies. Signs of ASD for older children include 
not seeming to understand what others are thinking or feeling, unusual speech, such as repeating phrases and 
talking “at” others or finding it hard to say how they feel. ASD can sometimes be different in girls (women) and 
boys (mean) with it being harder to spot especially in girls (women). Women may have learnt to hide signs of 
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ASD to “fit in” by coping with people who do not have ASD while girls may hide some signs of ASD by copying 
how other children behave and  play4.

Recently, there has been an explosion in ASD cases worldwide, and they have been increasing at an alarming 
rate (Centres for Disease and  Control1). The World Health Organisation  (WHO5; Wolff and  Piven6,7 have argued 
that 1 out of every 160 children has ASD. A certain percentage of people with this disorder have been shown to 
live independently, whilst others would require life-long care and support. ASD traits are difficult to trace due to 
tests and diagnoses requiring significant time and cost. However, several treatments, therapies and interventions 
can help children with ASD improve their abilities and reduce their symptoms.

The topic of ASD therapy enhancement has been of interest to researchers for decades as the effects of a robot-
enhanced intervention for children with ASD. There has been a lot of research work in the spheres of machine 
learning (ML) and statistical pattern recognition (SPC), where communities were discussing how to combine 
models or model  predictions8. Furthermore, much research work in these communities has shown that an ensem-
ble learning of classifiers is an effective technique for improving predictive accuracy (due to its variance reduction 
benefit). Ensemble learning of classifiers’ development and successful fielding have significantly lagged behind 
bio-medical and health science research activities, yet it has been prominent in other fields. A central concern 
of these applications is the need to increase the predictive accuracy of early ASD diagnosis and test decisions.

The basic idea behind ensemble learning is to train multiple classifier learning systems to achieve the same 
objective and then combine their predictions. There are different ways ensembles can be developed and the 
resulting output combined to classify new instances. The popular approaches to creating ensembles include 
changing the cases used for training through techniques such as  bagging9,  boosting10,  stacking11, changing the 
features used in  training12, and introducing randomness in the classifier  itself13.

Due to the nature of ASD and its impact on societies, an improvement in predictive therapy enhancement 
accuracy or even a fraction of a per cent translates into significant future savings in time, costs, and even 
 deaths14–16. Furthermore, the economic effect of ASD on individuals with the disorder, their families, and society 
as a whole has been poorly understood and has not been updated in light of recent ASD prediction and detection 
findings. This enormous effect on families warrants better therapeutic, prediction and detection methods from 
machine learning and statistical pattern recognition communities.

Supporting the development of a child with ASD is a multi-profile therapeutic work on disturbed areas, 
especially understanding and linguistic expression used in social communication, development of mutual social 
contacts and functional or symbolic play. In recent years, robot  learning17 and robot-assisted ASD therapy (RET) 
have grown in popularity. The key research findings on RET have shown its effectiveness for children with ASD in 
particular: communication (common attention, imitation, undertaking communication behaviours, recognizing 
and understanding emotions and developing sensitivity to physical  contact18–22, Chernyak et al.23).

Other tools that are being embraced by therapists, counsellors, teachers, parents and their children to help 
those with ASD to better communicate and connect with others are virtual reality (VR) and augmented reality 
(AR). Several research studies examined suggest promising findings about the effectiveness of virtual and aug-
mented reality-based treatments for the promotion, support, and protection of health and well-being in children 
and adolescents with ASD. VR and AR have also been used to help those without ASD understand what living 
with the condition  means24–26.

Using a variety of machine learning techniques, one could analyze the parent’s age, socio-economic status 
and medications to predict a child’s ASD diagnosis. Predictive algorithms could also be useful for identify-
ing factors that may contribute to ASD. For example, machine learning algorithms helped find an association 
between ASD and a parent’s use of substances such as caffeine and certain  antidepressants27. Machine learning 
has also been used to better understand (or classify) why ASD traits vary in their nature and severity from per-
son to  person28. This was after another machine learning study by Stevens et al.29 analyzed behavioural data and 
found two overarching behavioural profiles of ASD, each with its subgroups based on the severity of different 
traits. Other scholars have investigated the clinical applications of robots in the diagnosis and treatment of ASD 
(Diehl et al.30) while others have created machine-learning algorithms that could help robots understand when 
an autistic child needs  help31,32.

Several other studies for predicting ASD traits in an individual have been carried out by the ASD research and 
data (science) analytics community using several machine learning (ML) and statistical modelling techniques. 
These include screening detection, identification, classification and prediction of ASD traits in an individual.

For screening detection, alternating and functional decision  trees33–35, support vector  machines36 and “red 
flags”37 have been used while support vector machines have been used for both detection and  identification38. 
Kosmicki et al.33 investigated logistic model trees and logistic regression for detecting non-ASD against ASD 
among children.

To predict ASD traits, a support vector machine, a naïve Bayes classifier, and the random forest have been 
further applied  by39. Prediction of ASDT response from baselines fMRI using random forests and tree bagging 
was proposed by Dvornek et al.40 with their learning pipeline method achieving higher accuracy compared with 
standard methods. Bala et al.41 investigated the identification of ASD among toddlers, children, adolescents and 
adults using several machine learning algorithms (K-Star, classification and regression trees, k-nearest neighbour, 
support vector machine, bagging and random tree). SVM achieved the best performance for the prediction of 
ASD at different age levels.

Deep learning and neural networks have been used by Heinsfeld et al.38 to predict ASD patients using imag-
ing of the brain with a follow-up research work on classification and hemodynamic fluctuations by Xu et al.42. 
An empirical comparison of Adaboost, flexible discriminant analysis (FDA), decision tree (C5.0), boosted gen-
eralised linear model (GLMboost), linear discriminant analysis (LDA), mixture discriminant analysis (MDA), 
penalised discriminant analysis (PDA), support vector machines (SVM) and classification and regression trees 
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(CART) for early stage detection of ASD for toddlers, children and adults. Good performances were observed 
for SVM (toddlers), Adaboost (children) and GLMboost (adults)43.

Recently, Kanchana et al.44 predicted early phases of ASD in adults using naïve Bayes, logistic regression, 
random forest and random tree with random forest achieving the highest predictive accuracy.

From the review, it is evident that all the researchers have used single classifiers for detecting, predicting or 
classifying ASD in general yet ensemble models have been more stable and, more importantly, shown to predict 
better than single classifiers. They have also been known to reduce model bias and variance. Some studies have 
assessed the ethical and social implications of translating embodied artificial intelligence (AI) applications into 
mental health care across the fields of Psychiatry, Psychology and  Psychotherapy45,46. Furthermore, despite the 
limitations of single classifiers which include them not being able to make predictions on new data that they have 
not seen before because all the historical information must be provided in advance and the overfitting problem 
(i.e. overfitting the data they are looking at).

None of the research studies have looked at predicting ASD therapy (ASDT) and ways to improve ASDT 
predictive accuracy. Yet, proactive corrective actions can be taken well in advance if the prediction of ASDT 
is even more accurate. A slight increase in therapy predictive accuracy will not only have a positive impact on 
foreseeing ASD in toddlers but also improve outcomes for children with ASD thereby reducing symptoms due 
to early behavioural interventions.

This research work proposes modelling using an ensemble of classifiers approach to help show their effective-
ness when predicting ASDT in terms of a robot-assisted intervention group (Robot-Enhanced-Therapy) and a 
control group receiving intervention by humans only (Standard-Human-Treatment) conditions, respectively. The 
investigation aims to find out if the use of artificial intelligence algorithms can help identify a reliable method 
for identifying ASD children most likely to benefit from a specific intervention program in advance and a solid 
foundation for establishing a personalised intervention program recommendation system for ASD children.

Such an ensemble learning approach is used to overcome precariousness in predictions and to enhance the 
accuracy and efficiency of the predictions. The MCL systems architecture and resampling processes are also 
considered. In other words, this research work focuses on predicting the effectiveness of ASD-enhanced therapy 
using a social robot and a human being.

To this end:

1. The first significant contribution of the paper is the investigation of five single-classifier learning systems to 
identify the best performing in terms of predicting therapy enhancement for autistic children using a social 
robot the type of therapy (on the one hand) and standard human treatment (on the other hand).

2. The second contribution is the proposal of a multiple-classifier learning system (or ensemble learning) 
approach to predict ASD therapy enhancement. The idea is to assess if using such a multiple classifier learn-
ing systems (MCLS) approach will be worthwhile to overcome the limitations of a single classifier learning 
system (SCLS) in terms of predictive accuracy due to their inability to handle more complex tracking situ-
ations with high accuracies. To analyse the performance of MCLS over SCLS, the unique models must be 
accurate individually and they need to be sufficiently diverse. For this reason, all possible combinations of 
the number of classifiers per ensemble are explored (i.e. from two classifiers per ensemble to five classifiers).

3. Finally, feature selection through a decision tree-based approach is used to identify which physical charac-
teristics are most significant in ASDT treatment.

To the best of our knowledge, this study is one of the few if not the first study that investigates the application 
of artificial intelligence in ASDT.

The rest of the paper is organised as follows: Sect. “Single-classifier learning systems” gives a background on 
single-classifier learning systems used for ASDT prediction. Then multi-classifier learning systems are examined 
from the intelligibility viewpoint to improve the effectiveness of ASDT predictive accuracy (Sect. “Multiple clas-
sifier learning systems”). Section “Experiments” presents the experimental design in set-up and results drawn 
from a DREAM dataset, supporting a data-driven study of ASD and robot-enhanced therapy. Finally, the paper 
is concluded with critical research findings and remarks in Sect. “Remarks and conclusion”.

Single-classifier learning systems
There are several approaches to single-classifier learning. However, only five base methods of classifier construc-
tion are considered in this paper (i.e. a mixture of regression and tree-based, nets, instance-based and Bayesian-
related). These include artificial neural network (ANN), decision tree (DT), k-nearest neighbour (k-NN), logistic 
discrimination (LgD) and the Naïve Bayes classifier (NBC). A brief description of the five classifiers and their 
use for classification or prediction tasks is now given.

Logistic discrimination
Logistic discrimination (LgD) is a supervised learning classification algorithm used to predict the probability 
of the target variable (for example, a class). It was initially developed by  Cox47 and later modified by Day and 
 Kerridge48. LgD is related to logistical regression due to the dependent variable being dichotomous. In other 
words, only two possible values can be taken (for example, either 0 for non-detection of ASD or 1 for detecting 
ASD). For LgD, the probability density functions for the classes are not modelled like most supervised Learning 
Classification Methods but rather the ratios between them (i.e. it is partially parametric).

An unknown instance is a new element classified using a cut-off point score where the error rate is lowest for 
the cut-off point = 0.549. The slope of the cumulative logistic probability function is steepest πi = 0.5 πi ≥ 0.5 
πi < 0.5 at the halfway point [i.e. the logit function transforms continuous values to the range (0, 1)], which is 
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necessary since probabilities must be between 0 and 1. The LgD approach can be generalised to more than two 
classes (also called multinomial logit models). Multinomial Logit Models (MLMs) are derived similarly to the 
LgD models. For more details about MLMs and other modified versins of LgD, the interested reader is referred 
to  Jolliffe50 and, Hosmer and  Lameshow51 referred to the interested reader.

k-nearest neighbour
The k-nearest neighbour (k-NN) or instance-based learning approach is one of the most venerable and easy-
to-implement machine learning algorithms for supervised and sometimes unsupervised  learning52. k-NN can 
solve both classification and regression (prediction) problems by assuming that similar things exist near each 
other. Thus, the k-NN hinges on this assumption being true enough for the algorithm to be valid. Essentially, 
k-NN works by assigning the classification (or regression prediction) of the nearest set of previously classified 
(predicted) occurrences to an unknown instance. The memory is the storage for the entire training set.

To classify a new example, a distance measure (such as Hamming, Cosine similarity, Chebychev, Euclidean, 
Manhattan or Minkowski) is computed between the trained and unknown instances. For this paper, the Cosine 
similarity distance measure is used. Each stored training and the unknown instance are assigned the class of that 
nearest neighbouring instance. These Nearest Neighbours are first computed, and then the new example is given 
the most frequent class among the k neighbours. To select the value of k that is right for your data, the algorithm 
is run several times with different values of k. It reduces the number of errors encountered while maintaining 
the algorithms’ ability to make predictions when given data not seen before accurately. For the paper, the process 
of supervised learning will be focused on.

Artificial neural networks
Like most state-of-the-art classification methods, Neural Networks or artificial neural networks (ANNs) are 
non-parametric (i.e. no assumptions about the data are made, as is the case with models such as linear regres-
sion). Instead, they are computational models inspired by an animal’s nervous system. These are represented by 
connections (layers) between many simple computing processors or elements (“neurons”). They have been used 
for various classification and regression problems in economics, forensics, and pattern  recognition53. The ANN 
is trained by supplying it with many numerical observations or the patterns to be trained (input data pattern) 
whose corresponding classifications (desired output) are known. The final sum-of-squares error (SSE) over the 
validation data for the network is calculated when training the network. This SSE value is then used to select the 
optimum number of hidden nodes resulting in a trained neural network.

A new unknown instance is carried out by sending its attribute values to the network’s input nodes, where 
weights are applied to those values. Finally, the values of the output unit activations are computed. The weights 
and biases can be optimised by running the network multiple times. Its most significant output unit activation 
determines the classification of the new instance.

Decision trees
A Decision Tree (DT) classifier is a supervised machine learning algorithm used for regression and classifica-
tion tasks. It starts with a single node (subsequently, a series of decisions) and branches into possible outcomes, 
giving it a tree-like  diagram54,55. When training a DT, the best attribute is selected (using the information gain 
measure) from the total attributes list of the data for the root node, internal node and leaf or terminal nodes. A 
DT classifier is simple to understand, interpret and visualise.

According to Safavian and  Landgrebe56, a DT classifier has four primary objectives. These are (1) Classifying 
the training sample correctly as much as possible, (2) Generalising beyond the training sample so that unseen 
samples could be classified with high accuracy; (3) quickly updating the DT as more training samples become 
available (which is similar to incremental learning), and (4) Having a simple DT structure as possible. Despite 
the DT classifier strengths, Objective (1) is highly debatable and, to some extent, conflicts with Objective (2). 
Also, not all DT classifiers are concerned with objective (3). DTs are non-parametric and valuable to represent 
the logic embodied in software routines.

A DT takes as input a case or example described by a set of attribute values and outputs a Boolean multi-
valued “decision,” making it easy to build automated predictive models. For this paper, the Boolean case is 
considered. Classifying an unknown instance is easy once the tree has been constructed. Starting from the root 
node of the DT and applying certain test conditions would eventually lead you to a leaf node with a class label 
associated with it. The class label associated with the leaf or terminal node is assigned to the instance.

Naïve Bayes classifier
The Naïve Bayes classifier (NBC) is perhaps the most superficial and widely studied supervised probabilistic 
machine learning (ML) method that uses Bayes’ theorem with strong independence assumptions between the 
features to procure results. The NBC assumes that each input attribute variable is independent of training the 
data. This can be considered a naïve assumption about real-world data. Then, the conditional probability of each 
attribute Ai, given the class label C is learnt from the training  data57,58.

The strength of the NBC lies in its ability to handle an arbitrary number of independent numerical or categori-
cal attribute features. The solid but often controversial primary assumption (due to its “naivety”) is that all the 
attributes Ai are independent given the value of class C. For classification, the Bayes rule is applied to determine 
the class of the unknown instances by computing the probability of C given A1, . . . ,An and then selecting the 
class with the highest posterior probability. The “naive” assumption of conditional independence of a collection 
of random variables is very important for the above result. Otherwise, it would be impossible to estimate all 
the parameters without such an assumption. This is a relatively strong assumption that is often not applicable. 
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However, any bias in estimating probabilities may not make a difference in practice – it is the order of the prob-
abilities and not the exact values that determine the probabilities.

Nonetheless, NBC has been shown to solve many complex real-world problems and to do so effectively. 
Also, it requires a small amount of training data to estimate the parameter. A frequency table is created for each 
attribute against the target (class) to calculate the posterior probability of classifying an unknown instance. Then, 
the NBC is used to calculate the posterior distribution. Once again, the prediction outcome is the class with the 
highest posterior probability.

Multiple classifier learning systems
A multiple-classifier learning system (MCLS) can be defined as a set of classifiers whose individual predictions 
are combined in some way to classify new examples to produce one optimal predictive model. The most com-
mon type of MCLS includes an ensemble of classifiers that function for a parallel classifier input combination. 
Furthermore, a significant number of methods have been used to create and combine such individual classifiers, 
including ensemble methods, committee, classifier fusion, combination, aggregation, etc.

Once an MCLS is built and an aggregation determined, one has to design the MCLS architecture. There are 
three types of MCLS architectures, namely—static parallel (SP); multi-stage (MS) design; and three dynamic 
classifier selection (DCS)59–61.

One of the most famous MCLS architectures is Static Parallel by Zhu et al.62. For SP, two or more classifiers 
are developed independently and executed in parallel. The outputs generated by all base classifiers are then com-
bined to determine a final classification decision (selected from a set of possible class labels). Many combination 
functions are available for this architecture, including majority voting, weighted majority voting, the product or 
sum of model outputs, the minimum rule, the maximum rule and Bayesian methods. Averaging is mainly used 
for regression problems, while voting is used for classification problems. There are two categories of SP-related 
MCLS: a single ML algorithm is used as base learning (homogenous parallel), and multiple ML algorithms are 
used as base learning (heterogeneous parallel). For the paper, the former category has been used.

The second type of MCLS architecture is MS design, where the classifiers (usually with no overlaps) are organ-
ised into multiple groups and then iteratively constructed in stages. At each iteration, the parameter estimation 
process depends on the classification properties of the classifiers from previous stages. As with SP, this design 
benefits from processing inputs in parallel. It ensures that labels are assigned using only the necessary features. 
In addition, the number and composition of stages used by the model have proven to have a significant impact 
on overall performance. Some MS approaches have been used to generate models applied in parallel using the 
same combination rules used for SP methods. For example, most boosting strategies have been shown to create 
weak classifiers, but they tend to form stronger  ones63.

A dynamic classifier selection (DCS) is an ensemble learning architecture developed and applied to differ-
ent regions within the problem domain. The technique involves training MCLS on the dataset and selecting the 
best prediction models. The k-NN approach is sometimes used to determine instances that are closely related 
to the unknown instance to be predicted (see Sect. “Single-classifier learning systems”). While one classifier 
may be shown to outperform all others based on global performance measures, it may not necessarily dominate 
all other classifiers entirely. Weaker competitors will sometimes beat the best across some regions  (Kittler64). 
Research has shown DCS performs better than single classifiers and even better than combining all the base 
classifiers. Furthermore,  Kuncheva65 approached DCS problems from a global and local accuracy perspective 
with promising results.

Ensemble learning of classifiers can be classified into three stages: (1) generation, (2) selection, and (3) 
integration. The objective of the first stage is to obtain a pool of models, followed by a selection of a single clas-
sifier or a subset of the best classifiers. Finally, the base models are combined to obtain the prediction for new 
or unknown instances. The aspect of multiple classifier systems is determining the number of component clas-
sifiers in the final ensemble (also known as ensemble size or cardinality) is the most important. The impact of 
ensemble size on efficiency in time and memory and predictive performance makes its determination a critical 
 problem65–68, Li et al.69).

Furthermore, one should assume that diversity among component classifiers should be another influential fac-
tor in an accurate ensemble. However, no explanatory theory reveals how and why diversity among components 
contributes to overall ensemble accuracy. Therefore, all possible ensemble sizes and their respective diversities 
are considered for this paper.

Recently, Multi-Classifier-Based Boosting was introduced, where clustering and classifier training are per-
formed  jointly70,71. These methods have been applied to object detection, where the entire training set is avail-
able from the beginning. Other related works include multiple instance  learning72,73 and multiple deep learning 
 architectures74. The former algorithm learns with bags of examples, which only need to contain at least one posi-
tive example in the positive case. Thus, the training data does not have to be aligned. Mellema et al.74 developed 
the system using anatomical and functional features to diagnose a subject as autistic or healthy.

Ensemble methods offer several advantages over single models, such as improved accuracy and performance, 
especially for complex and noisy problems. They can also reduce the risk of overfitting and underfitting by balanc-
ing the trade-off between bias and variance, and by using different subsets and features of the data. Furthermore, 
they can provide more confidence and reliability by measuring the diversity and agreement of the base models, 
and by providing confidence intervals and error estimates for the predictions. Despite their pros, ensemble 
methods have some drawbacks and challenges such as being computationally expensive and time-consuming 
due to the need for training and storing multiple models, and combining their outputs. Additionally, they can 
be difficult to interpret and explain, as they involve multiple layers of abstraction and aggregation, which can 
obscure the logic and reasoning behind the predictions.
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Experiments
Experimental set-up
The main aim of this randomized controlled experiment is to evaluate the effectiveness of five machine learning 
algorithms for predicting ASDT for a robot-assisted intervention group of autistic children and control receiving 
intervention by a human only. We further investigate how ASDT predictive accuracy could be improved using 
ensemble learning.

The investigations are conducted using a dataset of behavioural data and robot-enhanced therapy recorded 
from 61 children diagnosed with  ASD75. The dataset covers 3000 therapy sessions and more than 300 h of treat-
ment. Half of the children interacted with the social robot supervised by a therapist, while the other half was 
used as a control group (i.e. interacting directly with the therapist). In other words, the class attribute is the type 
of intervention – social robot-enhanced therapy condition (i.e. the interaction of an autistic child with a social 
robot) or social human therapy condition (i.e. the interaction of an autistic child with a human). The attributes 
are as follows:

(1) The ability of the child to wait for his or her turn;
(2) Social interaction and communication outcomes (engagement, eye contact, and verbal utterances);
(3) Behavioural outcomes (stereotype behaviours, maladaptive behaviours, and adaptive behaviours); and
(4) Emotional outcomes (functional and dysfunctional negative emotions, and positive emotions).

Furthermore, both groups followed the applied behaviour analysis (ABA) protocol. ABA uses scientific obser-
vations and principles of behaviour to improve and change behaviours of social  interest76. In both the RET and 
SHT sessions, the children participated in a randomised manner to avoid ordering  effects32. Participants in both 
groups went through a protocol of initial assessment, eight interventions, and a final assessment. The effect of the 
treatment was assessed using the Autism Diagnostic Observation Schedule (ADOS), in terms of the difference 
between the initial and final  assessments77.

All therapy sessions were recorded using the same sensorized therapy (Fang et al.78). Each session was 
recorded with three red–green–blue (RGB) cameras and two Red–Green–Blue-Depth (RGBD) Kinect cameras, 
providing detailed information on children’s behaviour during therapy; the dataset comprises body motion, 
head position and orientation, and eye gaze variables, all specified as 3D data in a joint frame of reference. 
Other metadata attributes include participant age, participant gender numeric ID, target ability or task, therapy 
condition (response elaboration training or substitutive hormonal therapy) and date of therapy. A complete list 
of sensor primitives and associated methods is provided in Table 1.

This public release of the dataset does not include any footage of children. Instead, processed features of 
the recorded data are provided. According to the source of the data, informed consent was obtained from all 
subjects and/or their legal guardian(s) when the data was collected. The experimental protocols were approved 
by the University of Skövde in Sweden which is the main source of the data. For more information, the reader 
can contact Billing et al.75.

In addition, metadata including participant’s ID, age, gender, and ASD diagnosis variables (3D skeleton 
comprising joint positions of the upper body; 3D head position and orientation; 3D eye gaze vectors; therapy 
condition; therapy task including joint attention, imitation and turn-taking; data and time of recording and initial 
ADOS scores) are included. As this was secondary data, no ethics committee had to approve the study within 
our environment. Furthermore, all methods were carried out following relevant guidelines and regulations.

For the simulations, five base classifiers were modelled using default hyper-parameters for each respective 
classifier. Each approach utilises a different form of parametric estimation or learning. For example, they generate 
various forms in linear models, density estimation, trees, and networks. These classifiers are among the top 10 
most influential and popular algorithms in data  mining87. They are all practically applicable to ASD, with known 
examples of their application within the robotics-enhanced therapy industry.

First, each state-of-the-art classification method (base classifier) was constructed using MATrix LABoratory 
or MATLAB  software88,89. These base classifiers were later used and assessed as a benchmark against various MCL 

Table 1.  Sensor primitives extracted by the sensorized intervention table.

Sensor primitive Interpretation method

Relative eye-gaze Two-eye model-based gaze estimation based on  RGBD79

Head pose Pose from orthography and scaling with iterations (POSIT)80

Gaze estimation A 3D gaze vector is achieved by combining the relative eye gaze with the calculated head pose (Fang et al.78)

Face detection Boosted cascade face  detector81

Facial features Supervised descent method proposed  by82

Face expressions Frontalised local binary patterns (LBP) are classified using  SVM83

3D skeleton Microsoft kinect SDK

Action recognition 3D joints moving trend method based on skeleton  data84,85

Object tracking GM-PHD  tracker86

Sound direction Microsoft kinect SDK
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systems. It was evident that the benefits of using ensembles could not be achieved by simply copying an individual 
model and combining the individual predictions. For this reason, all possible combinations of the number of 
classifiers per ensemble were explored (i.e. from two classifiers per ensemble to five classifiers). These ensembles 
are defined as Multiple Classifier Learning Systems 2 (MCL 2) (for two classifiers per ensemble),Multiple Classi-
fier Learning Systems 3 (MCL 3) (for three classifiers per ensemble); Multiple Classifier Learning Systems (MCL 
4) (for four classifiers per ensemble), and Multiple Classifier Learning systems 5 (MCL 5) (for all five classifiers 
in the ensemble).

To assess the performance of the base classifiers, the training set—validation set—test set methodology is 
employed. First, the dataset was split randomly into a 60% training set for each run, a 30% validation set and a 
10% testing set. To test the effectiveness of the classifiers, the dataset was further split randomly into 5-folds. The 
smoothed error rate (i.e. smoothing the normal error count using estimates of posterior probabilities and the 
posterior probabilities using Bayesian estimation with conjugate priors) was used as a performance measure in 
all the experiments. This rate was used primarily for its variance reduction benefit and for dealing effectively with 
a tie between two competing  classes90. The F-measure (score) was also used as a performance measure for the 
single classifier empirical comparison experiments. The benefit of the F-measure is that it considers the models’ 
ability over two class attributes, which makes it a robust gauge of model performance.

Feature (factor) ranking and selection methods have been implemented with two basic steps of a general 
architecture for our experiments: subset generation and subset evaluation for the ranking of each feature in every 
dataset. Then, the filter method is used to evaluate each subset. Overall, a mutual information-based approach 
on the single classifier that exhibits the lowest error rate is utilised for this task. Mutual information calculates 
the reduction in entropy from the transformation of a dataset. The technique is summarised below.

A DT classifier has implicit feature selection during the model-building process. It identifies and ranks the 
features (factors) that significantly impact or contribute to ASD. The set of features available forms the input to 
the algorithm with a DT as output. The purpose of this technique was to discard irrelevant or redundant fea-
tures (factors) from a given vector. For the paper, feature (factor) selection was used by evaluating the mutual 
information gain of each variable in the context of the target variable (robot-child against human-child therapy).

The fixed-effect model  (Kirk91) is used to test for statistical significance of the main effects (i.e. the five single 
classifiers; twenty-three multiple classifier systems, three multiple classifier architectures and five resampling 
procedures) versus their respective interactions. Each experiment is randomly replicated five times (5-fold) 
making it a total of 5 × 23 × 3 × 5 × 5 = 8625 experiments.

Experimental results
Experimental results on the ASDT predictive performance of single classifiers (on the one hand) and MCLS (on 
the other hand) are described. The behaviour of multiple classifiers is explored for different MCLS architectures 
and resampling procedures.

The results are presented in three parts.
The first part compares the performance and robustness of five single-classifier learning systems in predicting 

ASDT in autistic children. The second part investigates the performance of MCLS (i.e. ensembles, resampling 
procedures, and architectures) to determine if there is an improvement in ASD therapy predictive accuracy. 
These overall results are for each MCL system. They are averaged for all ensemble learning combinations about 
resampling procedures and architectures. Then, the experimental comparison of MCL systems (for all possible 
ensemble combinations) is presented. Finally, the behavioural factors (in ranking order) that contribute to and 
are critical when addressing the ASD problem have been identified.

Figures 1, 2, 3, 4, 5, 6, 7, 8 and 9 plot the smoothed error of the instances learned on the target domain, aver-
aged over five-fold cross-validation runs by each one of the methods. The same folds were used to evaluate each 
method. All the main effects (i.e. base or single classifier systems, MCL systems, resampling procedures, and MCL 
systems’ architectures) were significant at the 5% level, with F-ratios of 131.7, 71.4, 513.6 1132.6, respectively.

Figure 1.  Single classifier systems.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19957  | https://doi.org/10.1038/s41598-023-46379-3

www.nature.com/scientificreports/

From Fig. 1, it follows that DT is the best base classifier, exhibiting a smoothed error rate of 35.7% ± 1.7% 
(or 0.643 accuracies; F-measure of 0.631). The second-best base classifier is ANN, followed by k-NN and LgD 
with smoothed error rates of 36.2% ± 2.2% (0.625 accuracies; F-measure 0.6035), 38.5% ± 1.6% (0.618 accura-
cies; F-measure 0.603), and 41.7% ± 1.9% (0.583 accuracies; F-measure 0.575). Finally, the worst performance 
is by the NBC with a smooth error rate increase of 43.3% ± 1.4% (0.567 accuracies; F-measure 0.531). The most 

Figure 2.  Multiple classifier systems.

Figure 3.  Resampling procedures.

Figure 4.  Multiple classifier systems architectures.
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relevant attributes to predicting ASD therapy are communication (non-verbal), eye contact and social interac-
tion for the single classifiers.

From Fig. 2, the performance of the single baseline model is taken as the reference point. It appears that 
the performance of all the MCL systems is statistically significant at the 95% confidence level compared to 
single-classifier learning systems. The MCL systems when the ensemble size is composed of only three classi-
fiers achieve the least smoothed error rate of 21.4% ± 1.9%. All ensembles with only two classifiers exhibit the 
second-best performance (a smoothed error rate of 30.7% ± 1.8%), while those with only four classifiers take 
the third spot. The worst performance is when the ensemble comprises all five classifiers (with a smoothed error 
rate of 36.5% ± 2.2%). The difference in performances between the four ensembles is statistically significant at 
the 5% significance level. Eye contact and social interaction were the most relevant features when predicting 
ASD (using multiple classifier systems).

All ensemble classifiers with bagging achieve the lowest error rate (23.3% ± 1.9%), followed by boosting 
(25.9% ± 1.5%), feature selection (31.4% ± 1.7%) and randomization (34.7% ± 1.5%), respectively. Stacking ensem-
ble classifiers achieve the lowest accuracy rate (37.2% ± 2.1%). From the accuracy point of view, the performance 
differences of the ensemble classifiers were statistically significant with a 0.95 degree of confidence (Fig. 3).

From Fig. 4, it appears that all the multiple classifier systems have a more significant robust effect when the 
multi-stage design is used as an architecture (accuracy rate of 73.5% ± 1.8%), followed by static-parallel and 

Figure 5.  Multiple classifier learning systems (overall results).
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dynamic classifier selection with accuracy rates of 71.8% ± 1.3% and 67.5% ± 1.7%, respectively. The difference 
in performance between the architectures was significant at the 5% level.

The results presented in Fig. 5 show all the MCLS performing worse under the dynamic classifier selection 
(an error rate of 32.5% ± 1.7%) compared with single parallel and multi-stage. On the other hand, the MCLS 
performs slightly better when the multi-stage architecture design is used (26.5% ± 1.5%) than a single parallel 
(28.2% ± 2.3%). Thus, the difference in performance between the three architectures was significant at the 5% 
significance level (following a similar pattern to Fig. 4 results).

Figure 6.  Multiple classifier learning systems 2.
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The three-way interaction effect between multiple classifier learning systems, architectures and resampling 
procedures was found to be statistically significant at the 5% level. This means that the interaction between two 
attributes is different across the levels of the third attribute. In other words, there was a two-way interaction 
between resampling methods and multiple classifier learning systems varying across architectures; a two-way 
interaction between architectures and resampling methods varying across multiple classifier learning systems; 
and a two-way interaction between architectures and multiple classifier learning systems varying across resam-
pling methods. The results are summarised in Fig. 5.

It follows that all MCLS perform differently from each other when predicting ASD therapy, with significant 
error rate increases observed for ensembles with five or four classifiers compared to those with three or two 

Figure 7.  Multiple classifier learning systems 3.
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classifiers per ensemble. Ensembles of three single classifiers achieve the highest accuracy rates with ensembles 
of five single classifiers achieving the lowest accuracies. Ensembling with boosting outperforms the other resa-
mpling methods with ensembling with stacking achieving the lowest accuracy rate. This is the case across all 
three architectures.

Static parallel multiple classifier learning for ASD therapy prediction achieves the highest accuracy, followed 
by multi-stage and dynamic classifier stability multiple classifier systems, respectively. Once again ensembling 
with bagging achieves the highest accuracy rates with poor performance for ensembling with stacking. This is 
the case across all multiple classifier learning systems.

The performance of all multiple classifier systems in terms of predicting ASDT is significantly different across 
all three architectures. Major differences are noticeable for multi-stage design against single parallel, with minor 
differences observed for multi-stage design against dynamic classifier selection. Once again, the results show that 
MCLS built through bagging is the best technique for predicting ASDT, followed by boosting, feature selection, 
randomisation and stacking, respectively.

Figure 8.  Multiple classifier learning system 4.
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From Fig. 6A, the effect of the resampling procedures multiple classifier learning system 2 (MCLS 2) is trans-
parent. MCLS 2 exhibits the worst performance for stacking, closely followed by feature selection and randomisa-
tion. The best overall performance for a static parallel architecture comes about when bagging is used. In contrast, 
the best performance is observed when decision trees and logistic discrimination are the two components of the 
ensemble. The ensembles of artificial neural networks and decision trees and logistic discrimination and naïve 
Bayes classifiers exhibit the worst performances.

From Fig. 6B, bagging exhibits minor error rate increases (with tight competition from boosting) for MCLS 2 
and when the multi-stage architecture is used. One striking outcome is the artificial neural networks and logistic 
discrimination ensemble performance, which compares favourably with a Decision tree and logistic discrimina-
tion ensemble. However, the ensembles with artificial neural networks decision trees and logistic discrimination 
and naïve Bayes classifiers exhibit one of the worst performances for MCLS 2. Another poor performance is 
when the k-nearest neighbour and naïve Bayes classifiers are used as ensemble components, primarily when 
randomisation is used.

The dynamic classifier selection system is observed. At the same time, stacking continues to struggle and 
achieves the worst performance, especially when the artificial neural network and a decision tree (on the one 
hand) and logistic discrimination and naïve Bayes classifier (on the other hand) are components of the ensemble 

Figure 9.  Multiple classifier learning systems 5.
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(Fig. 6C). The best-performing ensembles are artificial neural network and logistic discrimination, and the deci-
sion tree and logistic discrimination are components.

The performance of methods for multiple classifier learning (MCL3) follows a similar pattern to the one 
observed for MCL2 (Fig. 7).

Figure 7A also shows smaller increases in error rates for all the resampling procedures for static parallel than 
the same architecture for MCL2. The best-performing ensemble is when Decision Trees, k-nearest neighbour and 
logistic discrimination are components. On the other hand, poor performances are observed when the Artificial 
Neural Network, Decision Trees k-nearest neighbour and Artificial Neural Network, and k-nearest neighbour 
and naïve Byes classifiers are components of the ensemble. This is the case for the feature selection and stacking 
resampling procedures.

The methods for multi-stage design (Fig. 7B) are nearly identical to those observed for MCLS2, with all 
ensembles achieving higher accuracy rates when bagging and boosting are used. Otherwise, on average, the 
performance of all the methods worsens when stacking is used. The best-performing ensemble is the decision 
tree, k-nearest neighbour, and logistic discrimination (primarily feature selection, randomisation and stacking). 
For stacking, the ensemble method composed of an Artificial Neural Network, k-nearest neighbour, and naïve 
Bayes classifiers proves to be the worst-performing.

The impact of MCLS 3 on predictive accuracy is shown in Fig. 7C. Once again, bagging yields the best 
performance, closely followed by boosting with severe competition from randomisation. Once again, the best-
performing ensemble is when the artificial neural network, decision trees and naïve Bayes classifiers are com-
ponents. The ensemble with the k-nearest neighbour, logistic discrimination and naïve Bayes classifier drops 
from being the third-best performing (when stacking and multi-stage design is used) to being one of the worst 
(when stacking and dynamic classifier election are used).

Overall, all the MCLS 3 systems perform better when static parallel is used, followed by multi-stage and 
dynamic classifier selection.

Figure 8A follows that when using static parallel to build an MCLS 4, boosting is the best technique for deal-
ing with the ASD spectrum disorder problem, with an Artificial Neural Network, k-nearest neighbour, logistic 
discrimination, and naïve Bayes classifiers as components for the ensemble. On the other hand, the ensemble 
with an artificial neural network, decision trees, k-nearest neighbour and logistic discrimination as components 
achieves the worst performance. This is the case at all resampling procedure levels (i.e. bagging, boosting, feature 
selection, randomisation and stacking).

It follows from Fig. 8B that the best technique for handling ASD Spectrum Disorder for a multi-stage design 
and across various resampling procedures is boosting, closely followed by bagging. However, poor performances 
are observed for feature selection, randomisation, and stacking methods. Also, the ensemble with an artificial 
neural network, decision trees, k-nearest neighbour and logistic 0 discrimination as components exhibit the 
worst performance.

For MCLS 4, bagging using dynamic classifier selection shows superior performances to the other resampling 
procedures (Fig. 8C). The best-performing ensemble (across bagging, boosting, and feature selection) is where 
components of artificial neural network, decision trees, k-nearest neighbour and naïve Bayes. On the other hand, 
randomisation and stacking of an ensemble with an Artificial Neural Network, k-nearest neighbour, logistic 
discrimination, and naïve Bayes perform best.

For this kind of problem, it seems that building an MCLS 5 using a static parallel architecture performs better 
compared with other architecture such as dynamic classifier selection and multi-stage design (Fig. 9A–C). Addi-
tionally, ensembling learning with boosting appears to be more effective especially when dynamic classifier selec-
tion and multi-stage design are used while bagging appears to be more effective when static parallel is used, out-
performing resampling methods like feature selection, randomisation and stacking in some situations. Another 
good performance is when static parallel and multi-stage design ensemble learning is used with randomisation. 
Overall, ensemble learning with stacking is the worst-performing method across all three architectures.

Social difficulties are a core of ASD with one of the many psychological factors being the lack or low levels 
of joint attention with the interaction partners. Given the attention the use of social robots has received in ASD 
interventions, it was important to investigate the most significant attributes that contribute to ASD therapy (i.e. 
RAAT vs. SHT) and rank them accordingly. Such ranking will help investigate if RET produces similar patterns 
in comparison with SHT.

Feature selection is one of several ranking approaches that have been used for dealing with the high dimen-
sionality of data and improving classification  accuracy92. One of the goals of feature selection in machine learn-
ing is to find the best features to build applicable models of a studied phenomenon (for example, removing 
non-informative or redundant ASD predictors from the model). There are many feature selection algorithms 
including filtering, encapsulation and embedded ones (Tang and  Pen93–95. Many feature selection techniques are 
classified into supervised (wrapper filter, intrinsic, embedded) and unsupervised learning (for unlabelled data).

The goal of feature selection techniques in artificial intelligence is to find the best set of features that allows one 
to build optimised models of a studied phenomenon (ASDT in this case). There are many feature selection algo-
rithms but for this paper, we use the classic methods for constructing a decision tree which is the same process of 
feature selection. The decision tree algorithm (a supervised learning and embedded approach) was used to select 
the features in ranking order and according to the mutual information criterion whereby node impurities in the 
decision tree are utilised. The strengths of the decision tree algorithm are high classification accuracy and strong 
robustness. The feature selection process algorithm results modelled to obtain features considered most relevant 
to ASD therapy enhancement and their merit value ranks each feature are analysed and summarised in Fig. 10.

In terms of ranking, the results show eye contact yielding the slightest cross-validation error ( 7.51%± 0.14% ) 
followed by social interaction ( 13.23%± 0.34% ) and non-verbal speech ( 16.07%± 0.28% ), respectively. Otherwise, 
social touch and stereotype are the two features exhibiting error rates of more than 20%, i.e. ( 22.86%± 0.19% ) 
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and ( 24.52%± 1.45% ), respectively. In addition, all the features were significantly different at the 5% level of 
significance. In other words, eye contact for autistic children appears to have more impact on ASD-enhanced 
therapy compared to, say, stereotypes or social touch.

Remarks and conclusion
In this paper, novel research is performed regarding the exploration and prediction intervention use in autistic 
children using ASD-specific characteristics. Open questions related to predicting with confidence addressed 
include: How can ASDT data be utilised effectively to achieve more efficient confidence-based predictions using 
ensemble classifiers? To this end, the significant contributions of the paper include showing the robustness of 
single classifiers for predicting ASDT enhancement using a social robot against a human (therapist). Addition-
ally, it shows how MCLS provides therapy enhancement performance improvements over the single base clas-
sifier (including the best-performing one). Further, a tree-based approach is used to quantitatively determine 
the importance of each physical attribute (according to mutual information-based ranking). Additionally, the 
conclusions are that single training classifiers can obtain influential ensembles in several different ways. Still, that 
high average individual accuracy or much diversity would generate influential ensembles.

There are several notable takeaways from this work.
First, ensembles are built with a combination of three classifiers and using bagging to achieve the perfect fit. 

The good performance of these ensembles could be attributed to the stable nature of nearest neighbour and linear 
threshold algorithms when they were core components of the ensemble. Ensembles built with dynamic classifier 
selection by segmenting the population into several sub-regions consistently perform poorly. However, the per-
formance of most static parallel and multi-stage combination ensemble strategies provides statistically significant 
improvements over the single best classifier. We understand that in very large datasets, randomisation is expected 
to do better than, say, bagging or boosting but given the size of the ASDT data, bagging achieved the best results.

Eye contact and interactive communication appear to be the critical behavioural factors to be considered when 
dealing with ASD therapy. However, this can be argued because of the inability of children with this disorder to 
communicate and use language, which depends heavily on their intellectual and social development. In other 
words, some children with ASD may not be able to communicate using speech or language, and some may have 
minimal speaking skills. Therefore, joint attention in children could be another factor that needs consideration 
when dealing with ASDT.

Previous studies did not provide a clear conclusion about the predictive accuracy of multiple classifier systems 
for intervention use in autistic children. This study was the first of its kind focusing on predictive intervention 
use of ASDT using single classifiers and multiple classifier systems. When creating confidence-based predictors 
using conformal prediction, several open questions regarding how knowledge can be extracted from data using 
ensemble learning. The study has utility for researchers, clinicians and parents alike. It affords the potential to 
learn and become socially fluent no matter how strong the autism impairments may be. Although a cure for ASD 
has not been found yet, accurate prediction of ASDT could lead to improved outcomes or even a complete cure. 
Additionally, the study paves the way for investigating if an Artificial Intelligence device could be programmed 

Figure 10.  ASD therapy features sorted by relevance.
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to notice and react to verbal and non-verbal responses. These could include facial expressions, body movements, 
and vocal and physiologic reactions from an autistic child (i.e. could artificial intelligence replace a therapist?). 
This assertion is based on our study where the application of AI for ASDT prediction shows promising results.

The study is based on children over the age of 3 years. In a subsequent study, the datasets of children of all ages 
will be critically analysed to train the therapeutic prediction model. The focus will be to collect more data from 
various sources and age groups and further improve the proposed ML classifier to enhance its accuracy. Fur-
thermore, a more state-of-the-art classification method (including single classifiers like support vector machines 
that were not considered in these experiments) will also be considered. The focus of the study was on children 
with ASD, our next research will be on both autistic children against autistic adults. Additionally, our study was 
purely focused on behaviours. Future work will investigate specific cognitive mechanisms that might be targeted 
or affected by robot vs. human interactions.

In sum, this research provides an effective and efficient approach to predicting and detecting ASD traits for 
children above three years. This is because tests and diagnoses of ASD traits are costly and lengthy. The difficulty 
of detecting ASD in children and adolescents does not help another cause for the delay in diagnosis. Thus, with 
the help of accurate ASD spectrum disorder predictive accuracy, an individual can be guided early to prevent 
the situation from getting any worse and reduce costs associated with such delay.
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