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Climate change and ecosystem 
shifts in the southwestern United 
States
Grant M. Harris *, Steven E. Sesnie  & David R. Stewart 

Climate change shifts ecosystems, altering their compositions and instigating transitions, making 
climate change the predominant driver of ecosystem instability. Land management agencies 
experience these climatic effects on ecosystems they administer yet lack applied information to 
inform mitigation. We address this gap, explaining ecosystem shifts by building relationships between 
the historical locations of 22 ecosystems (c. 2000) and abiotic data (1970–2000; bioclimate, terrain) 
within the southwestern United States using ‘ensemble’ machine learning models. These relationships 
identify the conditions required for establishing and maintaining southwestern ecosystems (i.e., 
ecosystem suitability). We projected these historical relationships to mid (2041–2060) and end-of-
century (2081–2100) periods using CMIP6 generation BCC-CSM2-MR and GFDL-ESM4 climate models 
with SSP3-7.0 and SSP5-8.5 emission scenarios. This procedure reveals how ecosystems shift, as 
suitability typically increases in area (~ 50% (~ 40% SD)), elevation (12–15%) and northing (4–6%) 
by mid-century. We illustrate where and when ecosystems shift, by mapping suitability predictions 
temporally and within 52,565 properties (e.g., Federal, State, Tribal). All properties had ≥ 50% changes 
in suitability for ≥ 1 ecosystem within them, irrespective of size (≥ 16.7 km2). We integrated 9 climate 
models to quantify predictive uncertainty and exemplify its relevance. Agencies must manage 
ecosystem shifts transcending jurisdictions. Effective mitigation requires collective action heretofore 
rarely instituted. Our procedure supplies the climatic context to inform their decisions.

Climate change shifts ecosystems1–4. Plant assemblages defining ecosystems require specific abiotic conditions, 
so as climate change alters precipitation and temperature patterns beyond historical ranges, ecosystems track 
the bioclimatic transitions3–6. Globally, land management agencies, conservation organizations, and indigenous 
communities recognize these climate-induced shifts on ecosystems within their jurisdictional properties yet 
struggle to develop informed responses. Few options exist, broadly categorized as resisting, accepting, or directing 
(i.e., facilitating) climate induced changes7,8. Given the shortfalls in understanding relationships between climate 
change and ecosystems, and the lack of maps predicting future ecosystem distributions at relevant scales, resisting 
or accepting climate change become default approaches. This information gap throttles the implementation of 
applied, on-the-ground mitigation strategies for addressing the effects of climate change on ecosystems within 
most jurisdictional lands9. Designing and enacting deliberative approaches for managing ecosystems requires 
data describing ecosystem relationships with climate, how ecosystems are likely to respond as climate changes, 
followed by predictions describing where and when ecosystem shifts are likely to occur at the scales land-based 
organizations work.

We demonstrate how to address this information gap by modeling, quantifying and mapping the climatic 
effects on ecosystems in the southwestern United States (Arizona, Colorado, Nevada, New Mexico and Utah; 
Fig. 1). Throughout the southwest, climate projections indicate increasing temperatures and altered precipitation 
regimes likely to engender pronounced ecosystem changes10–12. Climate change is also exacerbating disturbance 
events and weakening the resiliency of southwestern ecosystems, hastening ecosystem transitions6,13–15.

Our approach projects the suitability of a given location for establishing and maintaining ecosystem types 
(hereafter termed “ecosystem suitability”), by building relationships between the locations of 22 southwestern 
ecosystems (c. 2000) and abiotic data (1970–2000) occurring within those ecosystems, using ‘ensemble’ machine 
learning (ML) models (Fig. 1)16. Ecosystem information relied on plot surveys conducted by the USGS National 
Gap Analysis Program, with bioclimate forming the bulk of abiotic data17. Our work focused solely on the abiotic 
contributions to ecosystem suitability and did not address other ecophysiological factors.

We projected these relationships to predict suitability at mid-century (2041–2060) and end-of-century 
(2081–2100) using BCC-CSM2-MR and GFDL-ESM4 climate change models (GCM) from the Coupled Model 
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Intercomparison Projects generation 6 (CMIP6) with two Shared Socioeconomic Pathway (SSP) emission scenar-
ios. We used SSP3-7.0 and SSP5-8.5 for BCC-CSM2-MR and SSP3-7.0 with GFDL-ESM4. The SSP3-7.0 scenario 
omits any future climate policy changes, has high greenhouse gas emissions (doubling of current levels by 2100), 
and a warming of ~ 3.6 °C by 210018. The SSP5-8.5 scenario also excludes further climate policy, includes very 
high greenhouse gas emissions (doubling of current levels by 2050) with global warming of ~ 4.4 °C by 210018. 
We also included SSP2-4.5 when projecting ecosystem suitability and quantifying predictive uncertainty for the 

Figure 1.   Historical (1970–2000) and mid-century (2041–2080) predictions of ecosystem suitability for 22 
ecosystems within the southwestern United States (inset; states clockwise from upper left: Nevada, Utah, 
Colorado, New Mexico, Arizona (suitability values ≥ 0.5; coarse depictions)). These predictions originate from 
relationships between 19 downscaled bioclimatic variables (WorldClim v2.1 2.5-min grids), three terrain 
variables, and the historical geographical locations of each ecosystem using the USGS National GAP Analysis 
Program. These relationships identify the combinations of abiotic variables that best predict the presence of each 
ecosystem and therefore, the suitability of each grid cell (16.7 km2) to establish and maintain a given ecosystem 
(historical prediction). We evaluated these models using spatial projections of the bioclimate variables with 
climate models to predict mid-century ecosystem suitability, given each ecosystem’s relationship with the 
abiotic variables (BCC-CSM2-MR SSP-3.70 depicted). The numbers correspond to the following ecosystems: 
1—Apacherian-Chihuahuan Mesquite Upland Scrub, 2—Apacherian-Chihuahuan Semi-Desert Grassland and 
Steppe, 3—Colorado Plateau Pinyon Juniper Shrublands, 4—Colorado Plateau Pinyon Juniper Woodland, 5—
Great Basin Pinyon-Juniper Woodland, 6—Great Basin Xeric Mixed Sagebrush Shrubland, 7—Inter-Mountain 
Basins Active and Stabilized Dune, 8—Inter-Mountain Basins Juniper Savanna, 9—Inter-Mountain Basins 
Big Sagebrush Shrubland, 10—Inter-Mountain Basins Montaine Big Sagebrush Steppe, 11—Inter-Mountain 
Basins Semi-Desert Shrub-Steppe, 12—Madrean Encinal, 13—Madrean Pinyon Juniper Woodland, 14—North 
American Warm Desert Lower Montane Riparian Woodland and Shrubland, 15—Rocky Mountain Lodgepole 
Pine Forest, 16—Rocky Mountain Lower Montane-Foothill Riparian Woodland and Shrubland, 17—Rocky 
Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland, 18—Sonora-Mojave Creosote-White Bursage 
Desert Scrub, 19—Sonoran Paloverde-Mixed Cacti Desert Scrub, 20—Southern Rocky Mountain Dry-Mesic 
Montane Mixed Conifer Forest and Woodland, 21—Southern Rocky Mountain Ponderosa Pine Woodland, 
22—Western Great Plains Shortgrass Prairie (R version 4.2.3 https://​www.r-​proje​ct.​org/; ArcGIS Desktop 10.8.1 
http://​www.​esri.​com).

https://www.r-project.org/
http://www.esri.com
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Colorado Pinyon Juniper Woodland ecosystem using a multiple GCM example. The SSP2-4.5 scenario considers 
CO2 emissions remaining at current levels until mid-century with global warming of ~ 2.7 °C by 210018. SSP5-8.5 
forms a high boundary of climatic possibility, followed by SSP3-7.0 and SSP2-4.5, with the feasibility or likelihood 
of individual scenarios in debate19,20. We did not include the SSP1-1.9 and SSP1-2.6 scenarios that incorporate 
strong mitigation for greenhouse gas emissions, as these scenarios are either unrealistic or soon to be18.

We use these projections to quantify “how” ecosystem suitability changes across the southwest by examin-
ing temporal changes in the amount of suitable area, plus elevation and northing deviations over time. We 
examine the distribution of suitability values within each ecosystem, by comparing the amount of area within 
low (< 0.25) and high suitability (≥ 0.5) to further diagnose an ecosystems’ potential to transition. Locations 
with low ecosystem suitability suggest areas approaching ‘tipping points’, whereby one ecosystem shifts out as 
another transitions in21–23.

Land-management agencies need data describing “when” and “where” ecosystem suitability changes within 
the jurisdictions they administer to inform mitigation strategies. Therefore, we quantified and mapped ecosystem 
suitability across time and geographical space (16.7 km2 resolution), within state, jurisdiction, and individual 
properties, including locations Tribal, private, State or Federally owned (e.g., National Parks, National Wildlife 
Refuges, National Forests [n = 52,565 properties]).

Quantifying temporal and spatial uncertainty in climate model predictions forms an important part of the 
modeling and decision-making process, by further informing where, when and how to conduct mitigation for 
climatic changes occurring on ecosystems. We demonstrated this procedure and exemplified the utility of results 
by incorporating nine GCMs and three emission scenarios to predict ecosystem suitability and accompanying 
uncertainty metrics for the Colorado Plateau Pinyon Juniper Woodland. We summarized results within state 
and jurisdictional boundaries to illustrate how knowledge of the climate context shapes mitigation strategies. 
For instance, geographical locations having low ecosystem suitability and uncertainty reveal places where that 
ecosystem is unlikely to resist severe disturbances and return to its original state14, making these places strong 
candidates for accepting ecosystem shifts. Other areas gaining ecosystem suitability with low uncertainty are more 
apt to resist climate change, especially if the suitability increases trend positively through time. In application, we 
prefer that the selection of GCMs and emission scenarios be partner based, thereby bridging the knowledge of 
managers and modelers, so underlying model assumptions align with project goals and the products produced 
inform those steering mitigation design.

The methods we exemplify provide data to empower agencies in building regional, collaborative mitiga-
tion strategies that transcend their jurisdictional boundaries. Given the scope and scale of climatic changes on 
ecosystem suitability throughout the southwest, such regional, coordinated mitigation actions offer the best 
chances of success.

Results
We established relationships between 22 abiotic variables (historical period, 1970–2000) and the locations of 
22 ecosystems within the southwestern USA, to identify the combination of abiotic variables, and their rela-
tive importance, in predicting the suitability of a given location (pixel) for the establishment and persistence of 
each ecosystem. We evaluated models, considering those with area under the curve (AUC) < 0.75 and Sørensen 
similarity index < 0.5 having lower performance (Table 1)24,25.

Across all models, maximum temperature during the warmest month (bio5) had the greatest influence on 
predicting an ecosystem’s historical distribution, being the most selected bioclimatic variable with the highest 
importance values (based on Root Mean Square Error (RMSE), Table 2)). Elevation occurred in all models 
(likely indicating unexplained variation associated with site biophysical factors), while transformed aspect had 
the highest variable importance, and therefore greatest predictive influence (Table 2). The amount of precipita-
tion occurring in the driest month (bio14) had the lowest mean variable importance (i.e., least influence) and 
occurred in fewest models (n = 13; Table 2).

Predictions of ecosystem suitability rely on complex interactions among all the abiotic variables, although 
the most influential variables that associated with each ecosystem’s historical presence varied by ecosystem type 
(Fig. 2). Some ecosystems, like the Great Basin Pinyon-Juniper Woodland, displayed clear patterns in variable 
importance, while others such as Apacherian-Chihuahuan Mesquite Upland Scrub relied more on a diverse 
combination of terrain and bioclimatic variables with comparable importance levels (Fig. 2).

Ecosystems can have similar variable importance metrics with different relationships between them (Fig. 3). 
Ecosystem suitability for Colorado Plateau Pinyon Juniper Woodland and Great Basin Xeric Mixed Sagebrush 
Shrubland, for example, increased sharply at 1500 m elevation. Suitability remained relatively constant for the 
woodland with elevations ≥ 2000 m, while suitability continues increasing for the shrubland ecosystem up to 
3000 m (Fig. 3). For maximum temperature during the warmest month (bio5), ecosystem suitability quickly 
declined at temperatures > 26 °C for the Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest 
and Woodland, while suitability for Apacherian-Chihuahuan Mesquite Upland Scrub began increasing at 31 °C 
(Fig. 3).

Future combinations of these abiotic variables drive ecosystem suitability. Consequently, we projected changes 
in the amount and locations of bioclimatic conditions using SSP3-7.0 with CMIP6 BCC-CSM2-MR and GFDL-
ESM4 climate models and SSP5-8.5 with BCC-CSM2-MR, to predict future climatic effects on ecosystem suitabil-
ity within each ecosystems’ historical location (Fig. 4, Supplementary Table 1). For the Colorado Pinyon Juniper 
Woodlands ecosystem, the historical mean of maximum temperature during the warmest month (bio5) is 29.3 °C 
(SD 1.8 °C), which increased to 36.5 °C (mean; SD 1.9 °C) by end-of-century (Fig. 4; Supplementary Table 1). At 
end-of-century, bio5 also rises from a historical mean of 25.0 °C (SD 2.4 °C) to 31.8 °C (SD 2.6 °C) in the South-
ern Rocky Mountain Dry-Mesic Mixed Conifer Forest and Woodland, and from a historical mean of 29.8 °C 
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(SD 1.8 °C) to 38.1 °C (SD 1.8 °C) in the Great Basin Xeric Mixed Sagebrush Shrubland (Fig. 4; Supplementary 
Table 1). Precipitation of the warmest quarter (bio18) influences the Western Great Plains Shortgrass Prairie 
ecosystem (Fig. 2), with the historical mean of 183.4 mm (SD 22.2 mm) projected to 197.2 mm (SD 26.1 mm) 
by mid-century, which drops to 165.5 mm (SD 19.5 mm) by end-of-century (Fig. 4, Supplementary Table 1).

Given all bioclimate temperature variables, ecosystems, climate projections, emission scenarios, and future 
periods, 74% of model combinations have temperature variables increasing (n = 968 combinations). The follow-
ing variables were positive and increasing in ≥ 92% of the models: annual mean temperature (bio1), tempera-
ture seasonality (bio4), maximum temperature of the warmest month (bio5), mean temperature of the wettest 
quarter (bio8), mean temperature of the driest quarter (bio9) and mean temperature of the warmest quarter 
(bio10). Alternatively, minimum temperature during the coldest month (bio6) is typically negative (91% of 
model combinations).

For all 8 precipitation variables, 64% of the ecosystem, climate model, emission and temporal combinations 
are positive, indicating projected increases (n = 704 combinations). The following variables were typically posi-
tive: precipitation seasonality (bio15; 95%), precipitation during the wettest month (bio13; 89%), precipitation 
during the wettest quarter (bio16; 84%) and precipitation of the warmest quarter (bio18, 82%). The amount of 
precipitation during the driest month (bio14) and the amount of precipitation during the driest quarter (bio17) 
were typically negative across ecosystems, indicating seasonal drying conditions (92% and 85% of model com-
binations, respectively).

Ecosystem suitability is changing within an ecosystems’ historical range in concert with the magnitude and 
direction of bioclimatic shifts occurring within that historical range. Likewise, shifts in bioclimate over time 
and geography raise ecosystem suitability outside an ecosystems traditional range, enabling its establishment in 
novel locations. One measure of these effects is the amount and changes in total area of ecosystem suitability over 
time (Fig. 5). By mid-century, for 16 ecosystems (BCC-CSM2-MR with SSP3-7.0 and SSP5-8.5 scenarios) and 
13 ecosystems (GFDL-ESM4 and SSP3-7.0), the average percent increase in the amount of suitable area for each 
ecosystem rises by ~ 50% (~ 40% SD). By end-of-century, the mean percent increase in area for 13 ecosystems 
is ~ 120% (BCC-CSM2-MR SSP3-7.0, SSP5-8.5; SD ~ 93%) or ~ 90% (GFDL-ESM4 SSP3-7.0; SD ~ 69%). The 6 
ecosystems decreasing in suitable area (BCC-CSM2-MR SSP3-7.0, SSP5-8.5 scenarios) lost an average of ~ 25% 
by mid-century (SD ~ 7%) with 9 ecosystems within the GFDL-ESM4 scenario predicted to lose 12% (SD 10%; 

Table 1.   Ecosystems within the southwestern United States (Arizona, Colorado, Nevada, New Mexico, Utah; 
n = 22) classified at the U.S. National Vegetation Classification (NVC) group level. We used ensemble modeling 
to predict ecosystem suitability at the historic period (1970–2000) based on ecosystem location with bioclimate 
and terrain variables. We projected these models to generate ecosystem suitability predictions at mid-century 
(1941–1960) and end-of-century (2081–2100) periods using CMIP6 BCC-CSM2-MR and GFDL-ESM4 
climate models with SSP3-7.0 and SSP5-8.5 emission scenarios. Columns report the number of field plots 
analyzed to build the historical models (Total), number of plots used for model training (Training), testing 
(Testing), plus area under the curve (AUC) and Sørensen similarity index (SOR) metrics used for measuring 
model performance.

Ecological system Total Training Testing AUC​ SOR

Apacherian-Chihuahuan Mesquite Upland Scrub 665 571 94 0.83 0.55

Apacherian-Chihuahuan Semi-Desert Grassland and Steppe 443 389 54 0.82 0.47

Colorado Plateau Pinyon Juniper Shrublands 312 247 65 0.82 0.5

Colorado Plateau Pinyon Juniper Woodland 2345 2124 221 0.88 0.67

Great Basin Pinyon-Juniper Woodland 1200 986 214 0.85 0.71

Great Basin Xeric Mixed Sagebrush Shrubland 1454 1166 288 0.79 0.76

Inter-Mountain Basins Active and Stabilized Dune 154 115 39 0.82 0.14

Inter-Mountain Basins Big Sagebrush Shrubland 3362 2704 658 0.82 0.85

Inter-Mountain Basins Juniper Savanna 138 110 28 0.8 0.13

Inter-Mountain Basins Montaine Big Sagebrush Steppe 677 530 147 0.9 0.72

Inter-Mountain Basins Semi-Desert Shrub-Steppe 2158 1740 418 0.77 0.73

Madrean Encinal 58 50 8 0.78 0.22

Madrean Pinyon Juniper Woodland 364 301 63 0.89 0.65

North American Warm Desert Lower Montane Riparian Woodland and Shrubland 150 123 27 0.76 0.27

Rocky Mountain Lower Montane-Foothill Riparian Woodland and Shrubland 146 119 27 0.79 0.11

Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and Woodland 329 251 78 0.95 0.65

Rocky Mountain Lodgepole Pine Forest 157 129 28 0.91 0.43

Sonora-Mojave Creosote-White Bursage Desert Scrub 419 331 88 0.89 0.62

Sonoran Paloverde-Mixed Cacti Desert Scrub 483 390 93 0.91 0.61

Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest and Woodland 492 390 102 0.95 0.72

Southern Rocky Mountain Ponderosa Pine Woodland 1113 882 231 0.96 0.83

Western Great Plains Shortgrass Prairie 389 308 81 0.92 0.61
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SSP3-7.0; Fig. 5). By end-of-century, for ecosystems experiencing suitability decline, the amount of suitable area 
lost remains comparable to mid-century values.

The Sonora-Mojave Creosote-White Bursage Desert Scrub ecosystem had considerable increases in suitable 
area, doubling by mid-century and tripling by end-of-century. Ecosystems losing the most suitable area included 
the Inter-Mountain Basins Big Sagebrush Shrubland, Great Basin Xeric Mixed Sagebrush Shrubland, and Rocky 
Mountain Subalpine Dry Mesic Spruce Fir Forest and Woodland. Collectively, their range of decreasing area 
is ~ 20–30% by mid-century and 30–50% at end-of-century (Fig. 5). Across all climate change projections, 5 
ecosystems displayed at least one instance of percentage changes in area increasing by mid-century and then 
decreasing by end-of-century (e.g., Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest and 
Woodland and the Rocky Mountain Ponderosa Pine Woodland; Fig. 5).

Suitability for 18–20 of these ecosystems increased in elevation 12–15% by mid-century and 17–25% by end-
of-century (scenario dependent). The Sonora-Mojave Creosote White Bursage Desert Scrub ecosystem had a 
40–65% elevation increase by mid-century and 100–140% by end-of-century (Supplementary Fig. 1). For this 
ecosystem, elevation increases from a historical mean of ~ 550 to 800 m (mean) by mid-century and a 1200 m 
(mean) by end-of-century. Mean elevational changes in suitability for the Chihuahuan Loamy Plains Desert 
Grassland increase from 1500 m historically to 1800 m at mid-century and 1900 m by end-of-century.

Projections indicate most ecosystems migrating northward (n = 15–18 (depending on emission scenario); 
Supplementary Fig. 2). On average, increases in northing are 4–6% at mid-century and 8% at end-of-cen-
tury. The Apacherian-Chihuahuan Mesquite Upland Scrub ecosystem, for instance, has a historical north-
ing of ~ 1,180,000 m (mean) that increased 13% by mid-century (1,328,000 m) and 24% by end-of-century 
(1,470,000 m; BCC-CSM2-MR SSP3-7.0). Latitudinally, the historical northing of Truth or Consequences, New 
Mexico shifts to Santa Fe, New Mexico by end-of-century.

For land stewards, geospatial data identifying where and when shifts in ecosystem suitability are projected 
to occur directly informs their on-the-ground mitigation for future ecosystem change. As examples, suitability 
for the Great Basin Pinyon Juniper Woodland increased at northern latitudes while receding in the southern 
latitudes by end-of-century (Figs. 1 and 6). Ecosystem suitability for the Southern Rocky Mountain Dry-Mesic 
Montane Mixed Conifer Forest and Woodland decreases in Arizona and New Mexico while rising in Colorado 
and Utah (Figs. 1 and 6).

Table 2.   All predictor variables used in ensemble models to predict ecosystem suitability, including 19 
Worldclim bioclimate variables (https://​www.​world​clim.​org/​data/​biocl​im.​html), and 3 terrain variables built 
from the 90 m Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM; “trasp” = transformed 
aspect). The mean and standard deviation (SD) values identify variable importance across all 22 ecosystems 
within the southwestern United States (Arizona, Colorado, Nevada, New Mexico, Utah). Variable importance 
was measured as the increase in Root Mean Square Error (RMSE) with the variable removed from the machine 
learning ensemble model, to estimate the amount that each predictor variable contributed to the ecosystem 
suitability predictions (n = 35 permutations). The column “Freq.” indicates the number of times (frequency) the 
variable was selected with recursive feature elimination (RFE) for predicting an ecosystems suitability.

Variable Description Freq. RMSE SD

bio1 Annual Mean Temperature 20 0.229 0.07

bio2 Mean Diurnal Range (Mean of monthly (max temp—min temp)) 19 0.225 0.059

bio3 Isothermality (BIO2/BIO7) (× 100) 14 0.224 0.054

bio4 Temperature Seasonality (standard deviation × 100) 21 0.227 0.065

bio5 Max Temperature of Warmest Month 21 0.247 0.065

bio6 Min Temperature of Coldest Month 18 0.231 0.06

bio7 Temperature Annual Range (BIO5-BIO6) 21 0.226 0.064

bio8 Mean Temperature of Wettest Quarter 19 0.232 0.067

bio9 Mean Temperature of Driest Quarter 20 0.234 0.073

bio10 Mean Temperature of Warmest Quarter 18 0.242 0.073

bio11 Mean Temperature of Coldest Quarter 17 0.235 0.069

bio12 Annual Precipitation 21 0.238 0.071

bio13 Precipitation of Wettest Month 18 0.230 0.071

bio14 Precipitation of Driest Month 13 0.213 0.064

bio15 Precipitation Seasonality (Coefficient of Variation) 21 0.234 0.072

bio16 Precipitation of Wettest Quarter 20 0.238 0.073

bio17 Precipitation of Driest Quarter 20 0.232 0.072

bio18 Precipitation of Warmest Quarter 21 0.231 0.068

bio19 Precipitation of Coldest Quarter 19 0.233 0.064

elevation SRTM 90 m elevation data 22 0.242 0.072

slope Degrees slope from SRTM DEM 18 0.242 0.065

trasp Transformed aspect = 1−cos((π/180) * (aspect-30))/2 18 0.251 0.071

https://www.worldclim.org/data/bioclim.html
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Examination of ecosystem suitability values provides a greater perspective on these geographical shifts (Fig. 7). 
For instance, the historical distribution for Apacherian-Chihuahuan Mesquite Upland Scrub (157,000 km2) rose 
80% by mid-century (Fig. 5), with 74% of the suitable area increasing (locations having historical suitability < 0.5 
increasing to ≥ 0.5, and areas with suitability values < 0.25 increasing to ≥ 0.25 and < 0.5 by mid-century (Fig. 7)). 
By end-of-century, suitable area rose to 357,000 km2, with 82% of the area having suitability higher than histori-
cal levels (Figs. 5 and 7). Most suitability decreases occurred in the southern latitudes, with suitability shifting 
upslope and northward (Fig. 7; Supplementary Fig. 1, Supplementary Fig. 2). Conversely, the Great Basin Xeric 
Mixed Sagebrush Shrubland is predicted to decline 28% in suitable area by mid-century, with 66% of the area in 
suitability loss (Figs. 5 and 7). At end-of-century, 0.5% of the area has suitability increases ≥ 0.5 that historically 
were < 0.5, with 86% of total area in suitability decline (Figs. 5, 6 and 7).

Changes in ecosystem suitability showed strong geographic variation by state (i.e., latitude) and land jurisdic-
tion (Fig. 8). In Arizona and New Mexico, the Colorado Plateau Pinon Juniper Woodland ecosystem loses suit-
ability (> 0.5) with a ~ 75% decline predicted by mid-century and nearly 100% loss at end-of-century, with gains in 
Colorado and Nevada (mean of 9 climate models with SSP3-7.0 and SSP5-8.5; Fig. 8). Suitable area declined > 50% 
across jurisdictions, with Tribal land losing the greatest proportion (Fig. 8). Within Federal jurisdictions, the total 
area remains unchanged within USDA Forest Service property at mid-century, but declines ~ 50% by end-of-
century (Fig. 8). The Bureau of Land Management (BLM) loses ~ 25% of highly suitable area by mid-century and 
50–75% by end-of-century (depending on emission scenario; Fig. 8). When predictions of ecosystem suitability 
in state and land ownerships have less uncertainty, it indicates greater confidence in the amount of ecosystem 
suitability within them (Fig. 8; Supplementary Fig. 3). Indeed, variability tends to be lower in New Mexico and 
Arizona, adding further support to future declines in ecosystem suitability for Colorado Plateau Pinon Juniper 
Woodlands in these states (Fig. 8; Supplementary Fig. 3).

Results from all properties (n = 52,565) reveal changes in ecosystem suitability of different magnitudes and 
types. As examples, we present spatial depictions of ecosystem suitability values describing the conditions 
required for establishing and maintaining ecosystems during the historical (1970–2000) and mid-century peri-
ods (2041–2060) with the BCC-CSM2-MR SSP5-8.5 climate model and emission scenario (Fig. 9). San Andres 
National Wildlife Refuge within southern New Mexico (232 km2), for example, contained 26 km2 of historical, 
suitable area for Apacherian-Chihuahuan Mesquite Upland Scrub (Fig. 9). By mid-century, suitable area expands 
to 92 km2 (SSP5-8.5; Fig. 9). The amount of annual precipitation (bio12) influences this ecosystems’ suitability 

Figure 2.   Top set of 12 bioclimatic and terrain variables best predicting the suitability of a location (16.7 km2 
pixel) to establish and maintain six example ecosystems in the southwestern United States (Arizona, Colorado, 
Nevada, New Mexico, Utah). The variable “trasp” indicates transformed aspect. These results are generated from 
an ensemble model using the historical climate data (1970–2000). The horizontal axis displays the increase 
in root mean square error (RMSE) after removing each variable from the ensemble model for 35 random 
data permutations. The purple box plots indicate the range and quartile values of the RMSE for each model 
permutation. The mean values are indicated by the end of the blue horizontal bars intersecting with the purple 
box plots. Colorado Plateau Pinyon Juniper Woodland had 11 total predictor variables based on the results from 
the random forest optimization run performed prior to the ensemble modelling step.
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(Figs. 2, 9). Historically, the amount of annual precipitation on San Andres NWR spanned 250–495 mm (loca-
tion dependent, Fig. 9). At mid-century, projections indicate most of the Refuge experiencing annual precipita-
tion between 290 and 370 mm, generating conditions more favorable to this ecosystem type (BCC-CSM2-MR 
SSP5-8.5; Fig. 9). Tonto National Forest (11,600 km2) occurs in southcentral Arizona and historically contained 
1705 km2 of area suitable for Rocky Mountain Ponderosa Pine Woodland (Fig. 9). By mid-century, suitable area 
halves under all emission scenarios and declines 60% at end-of-century (Fig. 9). The maximum temperature of 
the warmest month (bio5) is a dominant predictor of this ecosystem (Fig. 9). Forest-wide, conditions become 
unfavorable for sustaining Ponderosa pine woodlands as the average historical temperature maximum of 34.7 °C 
(SD 3.1), increases to 38.7 °C by mid-century (SD 3.2) and 41.5 °C (SD 3.2; BCC-CSM2-MR SSP5-8.5) by end-
of-century (Fig. 9). Rocky Mountain National Park (~ 1000 km2), situated in northern Colorado, historically 
contained 46 km2 of area suitable for the Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest 
and Woodland (Fig. 9). This amount rises to ~ 450 km2 by mid-century and ~ 500–600 km2 by end-of-century 
(Fig. 9). The amount of annual precipitation (bio12) is a strong predictor of suitability (Figs. 2, 9). While the 
average amount of annual precipitation within the park remains similar between periods (historical 677.6 mm 
(108.8 SD); mid-century 650.2 (68.8 SD); Fig. 9), the eastern and southwestern borders of the park are predicted 
to have increased precipitation, favoring this ecosystems’ suitability.

Discussion
Land-management agencies experience ecosystem shifts and compositional transformations occurring through-
out their jurisdictions, and recognize the range of response options available, like resisting (i.e., forest thinning 
to reduce soil moisture demand and tree canopy fuels), accepting, or directing climate induced changes (e.g., 
species relocations outside historical ranges; seeding burned areas with a mixture of historical and transitional 
species)7,8. These agencies want deliberative mitigation strategies, but lack foundational data describing the 
relationships between climate change and ecosystems, along with maps predicting ecosystem suitability in future 
periods, at scales relevant for informing them.

Figure 3.   Partial dependence plots illustrating the relationships between elevation, transformed aspect (trasp), 
maximum temperature of the warmest month (bio5), and annual precipitation (bio12) with predictions of 
ecosystem suitability for four ecosystems in the southwestern United States (Arizona, Colorado, Nevada, 
New Mexico, Utah). The ecosystems include: Apacherian-Chihuahuan Mesquite Upland Scrub (AP_MESQ), 
Colorado Plateau Pinyon Juniper Woodland (CO_PJWO), Great Basin Xeric Mixed Sagebrush Shrubland (GB_
XSAGE), Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest and Woodland (SR_MXCO). 
The vertical axis shows the average prediction of ecosystem suitability based on 100 sample locations. While 
each of these variables affects the suitability of a given location for the establishment and maintenance of these 
ecosystems, the relationships between these variables and ecosystems differ.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19964  | https://doi.org/10.1038/s41598-023-46371-x

www.nature.com/scientificreports/

Figure 4.   Density plots for the three most supported bioclimatic variables predicting climate suitability for six 
out of 22 ecosystems within the southwestern United States (Arizona, Colorado, Nevada, New Mexico, Utah). 
For each ecosystem, these data were sampled from points within their historical range (pink, 1970–2000) and 
resampled with the projected bioclimatic predictions for the mid-century (blue; 2041–2060) and end-of-century 
periods (green; 2081–2100), depicted here with the BCC-CSM2-MR climate model and SSP3-7.0 emissions 
scenario. The vertical axes have different scales for each ecosystem and bioclimate variable. For each of these 
ecosystems, bioclimates shift within their historical locations, causing changes in ecosystem suitability that affect 
an ecosystems future establishment, resilience and resistance.
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Our project offers a procedure that supplies these data for addressing the effects of climate change at the scales 
land managers work. We built relationships between abiotic variables and the historical, geographical locations 
for southwestern ecosystems to identify the most influential abiotic variables for predicting the suitability of an 
area to establish and maintain these ecosystems. Model predictions were tested with independent validation data, 
with most (17) displaying robust performance (Table 1). Ecosystems limited by sample size had lower scores 
for the Sørensen similarity index, and although these models have lower performances and higher predictive 
uncertainty, they do provide insight into how ecosystem suitability may change by time and location (Table 1).

Over time, climate change alters the bioclimatic variables important for maintaining ecosystem suitability 
within each ecosystems’ historical boundary. This outcome weakens the sustainability of that historical location to 
continue supporting the establishment and maintenance of a given ecosystem. Bioclimatic variables are changing 
outside an ecosystems’ historical range too, generating novel locations suitable for ecosystem establishment or 
community reassembly, thereby enabling ecosystem shifts outside traditional ranges (Figs. 1, 6 and 7). We found 
that most predictions of ecosystem suitability associated with temperature increases, while precipitation variables 
had greater inconsistency (Supplementary Table 1, Supplementary Fig. 4). In general, arid lands are vulnerable 
to swings in annual and seasonal precipitation cycles and our results resemble this pattern26.

We quantified suitability shifts by area, elevation, latitude, and distribution to reveal “how” ecosystems 
respond to climate change. Most ecosystems increased in suitable area by end-of-century, with suitability for 
eight ecosystems doubling (Fig. 5). Of the 6 ecosystems decreasing in distribution, they are not projected to 
lose ≥ 50% of total, historically suitable area (BCC-CSM2-MR SSP3-7.0 and SSP5-8.5; Fig. 5). Even small propor-
tions of suitability loss equate to considerable area for large ecosystems like the Inter-Mountain Basins Montane 
Big Sagebrush Steppe (111,533 km2), predicted to lose 9% (10,168 km2) at end-of-century (BCC-CSM2-MR 
SSP3-7.0, Fig. 5).

Most southwestern ecosystems increased in elevation and latitudinal gradients (Supplementary Fig. 2). These 
results, combined with the distribution of suitability values within an ecosystem, diagnoses the effects of climate 
change upon it (Fig. 7). As examples, within the Rocky Mountain Subalpine Dry-Mesic Spruce-Fir Forest and 
Woodland, the area in high suitability (≥ 0.5) declined 30% by midcentury (BCC-CSM2-MR SSP3-7.0). Pre-
dictions for this high-altitude ecosystem include shifts to even higher elevations, which mostly occur at lower 
latitudes (i.e., southern Colorado, hence the decrease in northing), while abiotic conditions decline elsewhere, 
thereby reducing the total amount of suitable area (Figs. 1, 5; Supplementary Fig. 1, Supplementary Fig. 2). The 

Figure 5.   Percent difference in total area of ecosystem suitability for 22 ecosystems within the southwestern 
United States (Arizona, Colorado, Nevada, New Mexico, Utah). Percent difference calculations are based 
on the differences in the area between the historic baseline and the area predicted from climate models 
(BCC-CSM2-MR SSP3-7.0 (SSP370, black), BCC-CSM2-MR SSP5-8.5 (SSP585, green), GFDL-ESM4 SSP3-
7.0 (GFDL370, blue)) occurring at mid-century (2041–2060; represented by squares) and end-of-century 
(2081–2100; represented with a “ + ”). Area is calculated as the proportion of ecosystem suitability within a pixel 
multiplied by pixel area (16.7 km2). These calculations consider pixels with suitability values ≥ 0.33 (except for 
the Inter-Mountain Basins Juniper Savanna ecosystem which included values ≥ 0.16).
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Figure 6.   Historical (1970–2000), mid-century (2041–2060) and end-of-century (2081–2100) predictions 
of climate suitability for 6 of 22 ecosystems located in the southwestern United States (inset; states clockwise 
from upper left: Nevada, Utah, Colorado, New Mexico, Arizona). The suitability predictions are based on 
relationships between 19 downscaled bioclimatic variables and three terrain variables occurring within the 
historical locations for each ecosystem. These relationships identify the combinations of bioclimatic and terrain 
variables that best predict an ecosystem’s suitability (16.7 km2 pixel resolution) for establishing and maintaining 
an ecosystem. Mid-century and end-of-century spatial predictions of ecosystem suitability are based on climatic 
models and emission scenarios (BCC-CSM2-MR SSP3-7.0 exemplified here) that project future states of 
bioclimate variables. Colors indicate the predicted ecosystem suitability, ranging from pale yellow to dark green, 
based on each ecosystem’s relationship with abiotic variables within the historic and future locations (continuous 
pixel values spanning 0.0 – 1.0; R version 4.2.3 https://​www.r-​proje​ct.​org/).

https://www.r-project.org/
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Colorado Plateau Pinyon Juniper Woodland ecosystem is predicted to change 0.2% between its historical and 
end-of-century total area (BCC-CSM2-MR SSP3-7.0; Fig. 5), but the most suitable area (≥ 0.6) decreases 51% 
(Fig. 7), an amount offset quantitatively but not qualitatively by increases in areas having low suitability, typically 
at higher elevations and latitudes (Fig. 7, Supplementary Fig. 1, Supplementary Fig. 2).

Since managing ecosystems requires understanding “where” and “when” shifts occur, we predicted, mapped 
and summarized ecosystem suitability values within 52,565 properties (Figs. 1, 6, 7, 8 and 9, Supplementary 
Table 2). By mid-century, every property experienced changes in ecosystem suitability. Federal, State, Tribal, 
and Private land jurisdictions of all sizes (≥ 16.7 km2 minimum area), emission pathways, and periods were 
predicted to experience changes in suitable area ≥ 50% for at least one ecosystem within it (Supplementary 
Table 2). At San Andres NWR, suitable area of Apacherian-Chihuahuan Mesquite Upland Scrub quadruples by 

Figure 7.   Spatially-explicit changes in ecosystem suitability for 6 ecosystems within the southwestern United 
States, from historical (1970—2000) to mid-century (2041–2060) and end-of-century (2081–2100) periods, 
based on projected bioclimate from the BCC-CSM2-MR SSP3-7.0 climate model and emission scenario 
(Arizona, Colorado, New Mexico, Nevada, Utah). Red indicates locations with mid-century suitability ≥ 0.5 
and historic suitability < 0.5 (high increase in ecosystem suitability). Pink shows locations with mid-century 
suitability ≥ 0.25 and < 0.5 with historic suitability < 0.25 (moderate increase in ecosystem suitability). Blue 
identifies locations with mid-century suitability < 0.5 and historic suitability ≥ 0.5 (large loss in ecosystem 
suitability). Light blue identifies locations with mid-century suitability < 0.25 and historic suitability ≥ 0.25 
and < 0.5 (moderate loss in ecosystem suitability). Black colors locations with suitability unchanged.
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Figure 8.   Box plots describing the percent difference in the amount of suitable area for the Colorado Plateau 
Pinon Juniper Woodland ecosystem between the historical, mid-century (2014–2060; blue) and end-of-century 
(2081–2100; red) periods, based on ensemble model results from 9 GCMs (suitability ≥ 0.5, Supplementary 
Table 3). These GCMs span three shared socioeconomic pathways varying from low to high greenhouse gas 
emissions scenarios and levels of warming (SSP2-4.5, SSP3-7.0, SSP5-8.5). The top panel parses percent changes 
in area by state (Arizona (AZ), Colorado (CO), New Mexico (NM), Nevada (NV), Utah (UT)) the middle panel 
by ownership (Federal (FED), Private (PVT), State (STAT) and Tribal (TRIB)), and the bottom panel by Federal 
ownership (Bureau of Land Management (BLM), United States Fish and Wildlife Service (FWS), National Park 
Service (NPS), and United States Forest Service (USFWS); R version 4.2.3 https://​www.r-​proje​ct.​org/).

https://www.r-project.org/
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Spatial depictions of ecosystem suitability values (panel A), describing the conditions required for establishing 
and maintaining ecosystems (16.7 km2 pixel) during the historical (1970–2000) and mid-century periods 
(2041–2060) with the BCC-CSM2-MR SSP5-8.5 climate model and emission scenario. Red indicates pixels with 
high suitability (values = 1.0) and dark blue colors pixels having low suitability (values = 0.0). The plots in panel B 
depict bioclimate variables having high influence in predicting the suitability of that ecosystem. Plots on the far 
left (A) indicate the predicted suitability for the Apacherian-Chihuahuan Mesquite Upland Scrub ecosystem in 
the San Andres National Wildlife Refuge (NWR), which increases over time, partly due to the decline in annual 
precipitation (B). The middle plots (A) show how ecosystem suitability for the Rocky Mountain Ponderosa 
Pine Woodland in the Tonto National Forest (NF) declines by mid-century, as the maximum temperature of 
the warmest quarter increases (B). Plots on the right (A) depict ecosystem suitability for the Southern Rocky 
Mountain Dry-Mesic Montane Mixed Conifer Forest and Woodland in Rocky Mountain National Park, which 
increases over time due to rising annual precipitation on the western and eastern borders of the park ((B) R 
version 4.2.3 https://​www.r-​proje​ct.​org/).

https://www.r-project.org/
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mid-century, influenced by declining annual precipitation, as the amount of suitable area for other ecosystems, 
like the Apacherian-Chihuahuan Semi-Desert Grassland and Steppe and the Inter-Mountain Basins Semi-Desert 
Shrub-Steppe halved (Fig. 9; Supplementary Table 2). Tonto National Forest loses much Rocky Mountain Pon-
derosa Pine Woodland given increases in the maximum temperature during the warmest month, as suitable area 
for Sonoran Paloverde Mixed Cacti Desert Scrub increases 1.6 times by mid-century (Fig. 9; Supplementary 
Table 2). These temperature increases likely impact water availability, despite annual precipitation remaining 
relatively unchanged27. Projections for Rocky Mountain National Park indicate widespread increases in suitability 
for the Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest and Woodland and 10% decreases 
in Intermountain Sage Steppe by mid-century (Fig. 9; Supplementary Table 2). Ecosystem suitability within all 
jurisdictions can be similarly examined.

We selected a few informative abiotic variables for each of the ecosystems and jurisdictions, to exemplify 
and help simplify visualizations of why and where temporal and geographical changes in ecosystem suitability 
occur. Properties containing less information (i.e., fewer pixels) for examining spatial and temporal changes in 
ecosystem suitability, would benefit by taking a larger landscape perspective. Analyses could incorporate changes 
in ecosystem suitability within and around a focal property, to subsequently deduce and interpret projected 
changes occurring inside it. Importantly, the amount of ecosystem suitability occurring at a given location within 
or outside these jurisdictions relies on the interplay among all abiotic variables as determined historically (Fig. 2), 
plus the GCMs and emission scenarios selected to make future projections. Plots describing the mean and vari-
ability in the amounts of ecosystem suitability across geographical space and time show where projected values 
are more consistent or uncertain (Fig. 8, Supplementary Fig. 3).

The dominant species within each ecosystem influence the bioclimatic and ecosystem relationships6,28. When 
ecosystems share dominant species, predictions of ecosystem suitability can overlap, even when variable impor-
tance differs (Supplementary Table 1). This situation occurs in the Colorado Plateau Pinyon Juniper Woodland, 
Great Basin Pinyon-Juniper Woodland and Madrean Pinyon Juniper Woodland. These ecosystems are biogeo-
graphically based, so if one is working on pinyon-juniper habitats in New Mexico, the ecosystem would be clas-
sified as Colorado Plateau Pinyon Juniper Woodland. Were one particularly concerned about this mixing effect, 
the spatial predictions for the pinyon-juniper ecosystems could simply be combined.

Ecosystems in geographical locations with declining climatic suitability can persist and resist changes until 
they experience a pronounced ecological event like extreme fire, prolonged drought, or insect outbreaks13,29. 
Afterwards, the ecosystem may lose resilience, struggle to reestablish, and be supplanted with a different eco-
system better suited to the new abiotic regime29–31. The bioclimatic conditions influencing ecosystem suitability 
may also shift faster than ecosystems can track, causing composition changes and transitions to novel ecosystem 
states14,32,33. Observations on post-disturbance ecosystem recovery or controlled experiments help reveal such 
changes.

Our approach relates abiotic data from the recent past with ecosystem presence, to project ecosystem suitabil-
ity in the future. Albeit a common approach for ecological modeling, we recognize that the historical composition 
of ecosystems is also influenced by other factors besides bioclimate (e.g., depopulation in Native Americans, 
long-term atmospheric features, fire34,35).

Our procedures for quantifying and summarizing ecosystem suitability applies to any region, given ecosystem 
locations (field sampled or remotely sensed) and downscaled bioclimatic data. Results predict ecosystem suit-
ability, the conditions required for maintaining and establishing ecosystems. Temporal and spatial suitability 
changes will cause ecosystem replacement or shifts to novel locations, with some ecosystems moving intact and 
others in pieces14,36.

All properties we examined were predicted to experience ecosystem shifts. The response of the animals and 
plants within them depends on the species vagility, landscape connectivity, characteristics of the property and 
neighboring land uses (e.g., agriculture, urban development, transportation corridors). Some species will track 
ecosystems shifts, while others require human intervention. Assisted migration is one example of a mitigation 
approach for moving species from historical ranges into novel locations37. Our data informs assisted migration, 
by identifying where and when ecosystem suitability declines, thereby threatening focal species, and predicting 
alternative areas suitable for species introduction. Working collaboratively, some properties could resist ecosys-
tem shifts, buying time as other properties accept (or direct) ecosystem shifts, thereby providing suitable areas 
to pursue natural or assisted migration37.

In practice, projections of ecosystem suitability should incorporate GCMs and emission scenarios chosen by 
the partners, so the assumptions in model inputs align with their requirements and produce results they want for 
building mitigation strategies. We chose two GCMs and emission scenarios to design the method, demonstrate 
the process, and exemplify the utility of results to inform landscape-scale mitigation for climate change. Our 
approach can incorporate any number of GCMs and emission scenarios.

Best scientific practices dictate that mitigation strategies be informed by a suite of GCMs, to quantify uncer-
tainty in model predictions. Therefore, we used 9 GCMs with three emission scenarios to predict ecosystem 
suitability within the Colorado Plateau Pinyon Juniper Woodland and exemplify the importance and relevance of 
integrating uncertainty into mitigation design (Fig. 8; Supplementary Fig. 3, Supplementary Table 3). Geographi-
cal locations having low predictive uncertainty indicate places with greater confidence in the suitability predic-
tions (Fig. 8, Supplementary Fig. 3). For this ecosystem, the southern latitudes (e.g., Arizona and New Mexico) 
are likely to lose > 50% suitable area (from historical levels), given the low amounts of prediction uncertainty 
(Fig. 8, Supplementary Fig. 3). Higher latitudes (Colorado) display more uncertainty, with consistent gains in 
ecosystem suitability at mid-century, followed by suitability loss at end-of-century (Fig. 8, Supplementary Fig. 3). 
In southern latitudes, were this ecosystem to suffer severe disturbance (e.g., drought, disease, fire) the ecosystem 
is unlikely to return to its prior state (loses resilience). Likewise, the National Park Service (NPS) is likely to lose 
much ecosystem suitability for Colorado Plateau Pinyon Juniper Woodland (low uncertainty), while projections 
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for the US Fish and Wildlife Service have higher uncertainty with suitability declines by end-of-century (Fig. 8). 
Changes in the suitability for this ecosystem are already discernable, exemplified by increases in tree mortality 
rates and transitioning plant distributions caused by drought and insect outbreaks38,39.

The appropriate mitigation response depends on the climatic context. Mitigation responses should be pro-
portional to the risks of potential changes in ecosystem suitability. In this example, many locations in Arizona 
and New Mexico are projected to experience climatic regimes removed from those suitable for the maintenance 
and establishment of Colorado Pinyon Juniper Woodland, while locations in Colorado display less climatic 
divergence (Figs. 6, 7 and 8). Properties in Arizona and New Mexico may focus on accepting ecosystem shifts, 
and transition to open grass and shrublands, while locations in Colorado practice resistance to mitigate suitability 
loss, as ecosystem suitability shifts northward (Figs. 6, 7 and 8, Supplementary Fig. 2). Similarly, if conserving 
Colorado Pinyon Juniper Woodland is important to the NPS, they can work to manage new properties where this 
habitat remains stable, or partner with other land managers to ensure stewardship of this ecosystem elsewhere. 
Integration of data describing the relationships between ecosystems and bioclimate, suitability predictions, and 
the proactive monitoring of bioclimatic conditions help agencies assess the status and trends in ecosystem suit-
ability within their properties to inform such mitigation strategies.

Our results should alert agencies to the scope and scale of ecosystem changes affecting their properties 
spanning regional geographies. As climate change affects ecosystems regionally, addressing this issue requires 
collective action matching the regional scale. Land stewards (e.g., Federal, State, Tribal, Private) must build com-
prehensive and coordinated implementation strategies to generate solutions having greater chances of success. 
Properties acting independently risk haphazard, ineffectual responses (i.e., imagine a property accepting changes 
while its neighbor resists them). Collaboration at such scales rarely occurs, and irrespective of the ecological 
obstacles, the social and institutional challenges are formidable. Few precedents exist, with success hinging on 
leveraging shared concerns about resource degradation and sustainability, making accomplishments early in the 
process and participants’ long-term commitment40–44. Understanding the nature and timing of ecosystem shifts 
at regional scales permit such systematic, jurisdictional integration, to address the effects of climate change on 
ecosystems and the species inhabiting them.

Methods
We modeled and mapped ecosystem suitability in the states of Arizona, Colorado, New Mexico, Nevada and Utah 
within the southwestern continental United States (1,390,512 km2; Fig. 1). We established relationships between 
these ecosystems and 19 bioclimate variables from downscaled historical WorldClim v2.1 2.5-min grids (https://​
www.​world​clim.​org/) representing historical and future GCM projections45. We included terrain information, 
represented as slope degree, elevation, and transformed aspect (which measures potential solar radiation). These 
terrain variables were developed using a 90 m digital elevation model (DEM) from the shuttle research and 
topography mission (SRTM, Table 2). All raster data were scaled to the 2.5-min bioclimate layers using nearest 
neighbor resampling in the raster package v. 3.5–21 for R statistical software (3.6 × 4.6 km: 16.7 km2 pixel)46.

Spatially referenced field data for each ecosystem consisted of 10 m × 10 m and 20 m × 20 m plots with per-
cent cover by plant species collected between 2000 and 2003 by the USGS National GAP Analysis Program47. 
We extracted plots and ecosystem occurrence records for each state using ecosystem classifications assigned to 
plots according to NatureServe and the International Vegetation Classification (IVC) system at the macrogroup 
level [i.e., vegetation type defined by diagnostic plant species and growth forms48. Data queries and processing 
were completed using the RODBC v. 1.3–1949 and rgdal v. 1.5–3250 for R statistical software v. 4.2.1. We selected 
ecosystems with a minimum of 50 occurrence records. The average number of independent occurrence records 
(e.g., occurring within a single grid cell) was 742 (SD 851) per ecosystem (Table 1).

We modeled ecosystem suitability by intersecting ecosystem plots with the bioclimate grids, represent-
ing average historical climate conditions between 1970 and 200045. We used the CMIP6 BCC-CSM2-MR and 
GFDL-ESM4 GCMs, representing moderate climate sensitivity (the potential warming based on a doubling of 
atmospheric CO2 concentrations) for all 22 ecosystems. We included the SSP3-7.0 and SSP5-8.5 GHG emissions 
scenarios for BCC-CSM2-MR and SSP3-7.0 with GFDL-ESM4 (SSP5-8.5 remained unavailable) to estimate 
future ecosystem conditions at mid-century (2041–2060) and end-of-century periods (2081–2100; https://​www.​
world​clim.​org/​data/​cmip6/​cmip6_​clim2.​5m.​html). We modeled historical and future ecosystem distributions 
with a machine learning ensemble approach. Ensemble models often improve model fit and lower prediction 
error in comparison with individual model types16. We developed ML ensembles using a set of ‘base learners’ 
requiring only modest parameter tuning to avoid excessive computation time and overfitting51,52. We used four 
ML approaches known to produce robust results, namely gradient boosted (GBM), extreme gradient boosted 
(XGBT), extreme gradient boosted linear (XGBL) and random forest (RF) regression tree models. The first three 
models use “boosting” to assess and focus on model error at each of several model training iterations. The extreme 
boosting models include additional regularization steps and model tuning parameters to reduce the influence of 
weak predictors for obtaining parsimonious and generalizable model solutions53. Random forest applies “bag-
ging” and multiple model iterations running in parallel to test predictors, and ultimately uses an aggregated 
voting process to select predictors showing the lowest model error54. A consolidated meta-model combined each 
technique or component model and used model weights based on the Root Mean Squared Error performance 
measure, for making predictions with a generalized gradient boosted model (‘gbm’). We used the caret v. 6.0.92 
and caretEnsemble v. 2.0.1 packages in R statistical software for the model training, testing and prediction55,56.

We trained the distribution models for each ecosystem type by creating a polygon envelope encompass-
ing all the spatially referenced occurrence records for that ecosystem. A random starting allocation of 2500 
pseudo-absence points were located within the polygon envelope, centered on each occurrence record (100 km 
radius), constrained to the 5-state area. Each polygon envelope encompassed a broad range of conditions so that 

https://www.worldclim.org/
https://www.worldclim.org/
https://www.worldclim.org/data/cmip6/cmip6_clim2.5m.html
https://www.worldclim.org/data/cmip6/cmip6_clim2.5m.html


16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19964  | https://doi.org/10.1038/s41598-023-46371-x

www.nature.com/scientificreports/

pseudo-absence locations were principally outside the range of suitable climate conditions but were in the same 
proximate portion of the study region as GAP occurrences.

The amount of presence and absence records were similar in sample size but left unbalanced, to improve 
model predictability57. This procedure allows absence locations to potentially occur within the minimum distance 
of one grid cell (approximately 4 km). The presence and absence data were combined and intersected with the 
historical bioclimate and terrain layers. Only a single presence or absence location per grid cell was allowed to 
eliminate sample redundancy (presence superseded absence). For each ecosystem, we used a random selection 
containing 80% of data for training the ensemble models and the remaining 20% for model validation.

Feature selection for optimizing predictor variables can improve distribution model performance58. There-
fore, prior to model development we applied recursive feature elimination (RFE), a backward feature extraction 
method used to reduce and optimize predictor variables for each ecosystem type59. We implemented random 
forest tree functions (‘rfFuncs’) in the R caret package to rank predictors important to ecosystem distribution 
models. We considered the point at which the minimum root mean squared error (RMSE) was reached to select 
an optimized set of model predictors, which were used to fit each ML model in the ensemble.

We developed ‘historical’ ecosystem suitability models (1970–2000) using the 2.5-min scale historical biocli-
mate layers, producing the foundational ecosystem and bioclimate relationships. Model training included tenfold 
cross validation with bootstrap training data for parameterization. Validation data, omitted from model training, 
was used to assess RMSE, the receiver operating characteristic (ROC) for estimating area under the curve (AUC), 
and the Sørensen Similarity Index (SOR), calculated as TP/(FN + 2TP + FP) where TP indicates true positives, 
FN represents false negatives, and FP are false positives. Model predictions with AUC values ≥ 0.75 and Sørensen 
Similarity Index ≥ 0.5 indicate highest performance. The performance thresholds are ours, informed by our 
results and the thresholds frequently used by the scientific community, as generally accepted thresholds remain 
undefined. We developed future projections with the bioclimate predictors (predicted values and their spatial 
location) based on the different GCMs employed. Lastly, variable importance from permutational RMSE was used 
to evaluate key predictor variables underlying the habitat suitability predictions in the ensemble models using the 
DALEX package v. 2.4.2 for R statistical software60. The magnitude of increased RMSE with a variable removed 
from the models was used as an indicator of its importance to ecosystem suitability. This approach advances our 
prior methods for predicting ecosystem and climate relationships over geographical space and time4.

We examined ecosystem shifts by using suitability predictions, on a per ecosystem basis, by calculating the 
proportional change in total ecosystem area. For each ecosystem, we calculated the amount of suitable area per 
pixel by multiplying the suitability value occurring within the pixel by pixel area, and summing those values. We 
calculated percent change in total area of ecosystem suitability (future total−historical total)/historical total). We 
also calculated the proportional change in elevation and UTM northing between historical and future predic-
tions of ecosystem suitability. For these calculations, we filtered pixels with suitability values ≥ 0.33 (except for 
Inter-Mountain Basins Juniper Savanna which used suitability values ≥ 0.16), extracted the corresponding pixel 
value for elevation or northing, obtained the mean values and quantified the proportional changes.

We quantified suitability for all ecosystems within specific, individual land management properties 
(n = 52,565). We utilized spatial polygons identifying these locations from the USGS Protected Areas Database 
(PAD-US) v. 3.0 (https://​www.​usgs.​gov/​progr​ams/​gap-​analy​sis-​proje​ct/​scien​ce/​pad-​us-​data-​downl​oad). We also 
made predictions of ecosystem suitability for the Colorado Plateau Pinyon Juniper Woodland within locations 
subdivided by state boundaries, ownership (e.g., State, Federal, Tribal, and private) and properties managed by 
the National Park Service (NPS), United States Forest Service (USFS), Bureau of Land Management (BLM) and 
United States Fish and Wildlife Service (USFWS). For this exercise, we examined multiple GCMs (n = 9) with a 
wide range of climate sensitivities and SSP2-4.5, SSP3-7.0 and SSP5.85, to examine climate model uncertainty 
and geographical changes in future ecosystem suitability, given different model assumptions and rates of climate 
warming (Supplementary Table 3).

Data availability
All predictions of ecosystem suitability within the southwest United States based on climate change predictions 
using the Coupled Model Intercomparison Projects generation 6 (CMIP6), BCC-CSM2-MR and GFDL-ESM4 
climate models, that incorporate the Shared Socioeconomic Pathways (SSP) 3–7.0 and SSP5-8.5 emissions sce-
narios are located here: https://​ecos.​fws.​gov/​ServC​at/​Refer​ence/​Profi​le/​150238. Please cite the following DOI # 
for these data: https://​doi.​org/​10.​7944/​P99PT​GP4.
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