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Subtyping of COVID‑19 samples 
based on cell‑cell interaction 
in single cell transcriptomes
Kyeonghun Jeong 1, Yooeun Kim 2, Jaemin Jeon 2 & Kwangsoo Kim 3,4*

In single-cell transcriptome analysis, numerous biomarkers related to COVID-19 severity, including 
cell subtypes, genes, and pathways, have been identified. Nevertheless, most studies have focused 
on severity groups based on clinical features, neglecting immunological heterogeneity within the 
same severity level. In this study, we employed sample-level clustering using cell-cell interaction 
scores to investigate patient heterogeneity and uncover novel subtypes. The clustering results were 
validated using external datasets, demonstrating superior reproducibility and purity compared to 
gene expression- or gene set enrichment-based clustering. Furthermore, the cell-cell interaction 
score-based clusters exhibited a strong correlation with the WHO ordinal severity score based on 
clinical characteristics. By characterizing the identified subtypes through known COVID-19 severity-
associated biomarkers, we discovered a “Severe-like moderate” subtype. This subtype displayed 
clinical features akin to moderate cases; however, molecular features, such as gene expression and 
cell-cell interactions, resembled those of severe cases. Notably, all patients who progressed from 
moderate to severe belonged to this subtype, underscoring the significance of cell-cell interactions in 
COVID-19 patient heterogeneity and severity.

Coronavirus-19 (COVID-19) is an infectious disease that has had a great impact on humanity, as it has caused 
about 6.5 billion confirmed cases and about 6 million deaths internationally, and about 28 million confirmed 
cases and about 30,000 deaths in Korea1. When infected with COVID-19, mild or moderate patients only have 
symptoms such as fever, cough, and fatigue, but in severe patients, pneumonia and organ damage can lead to 
death2.

The body’s immune system recognizes antigens to generate antibodies, and in the process of activating the 
immune system in response, collects immune cells, secretes cytokines, and responds. Cell-to-cell interaction is 
essential for all of these immune responses. Protein-related techniques are needed to accurately capture these 
cell-cell interactions, but because the transcriptome data is much larger and easier to analyze, several method-
ologies are emerging to infer cell-cell interactions3.

According to previous studies, it is suggested that the difference in immune response plays an important role 
in the difference in symptoms between mild and severe symptoms4. One study explored the heterogeneity of cell-
cell interactions in different tissues among moderate and severe COVID-19 patients5. Another study primarily 
conducted their analysis at the cell or cell type level6. While this approach provides valuable cellular insights, it 
may not fully capture the heterogeneity at the sample level, which is essential for a direct correlation with clinical 
traits and symptoms. Therefore, our study places a particular emphasis on sample-level analysis. A further study 
used proteomics to delve into the heterogeneity within severe COVID-19 patients7.

Despite active research to identify markers of severity, existing studies have often not placed sufficient empha-
sis on observing heterogeneity between samples within the same severity groups. In contrast to previous work 
that mainly focused on severity labels, our study aims to uncover the molecular heterogeneity within the same 
severity group. We hypothesized that even within severity groups divided based on clinical variables, samples 
would exhibit unique molecular properties. To substantiate this, our large-scale study aimed to uncover repro-
ducible clusters associated with severity, thereby emphasizing the critical role of molecular heterogeneity. We 
believe that nuanced molecular variations within each severity group are still noticeable and significant. Relying 
solely on severity groups can mask these subtle molecular distinctions, as these classifications often reflect average 
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molecular traits. By focusing on severity-associated features, we aim to highlight these nuanced molecular varia-
tions that might otherwise be overlooked. This approach not only deepens our understanding of molecular subtle-
ties but also bridges the gap between clinical assessments and the inherent molecular complexities of the disease.

To further elucidate this perspective, in this study, we tried to examine the molecular heterogeneity of 
COVID-19 patients by converting Cell-Cell Interaction (CCI) score, an inter-cellular feature, to pathway-level 
using GSVA algorithm to reduce sparsity of CCI score and then clustering based on enrichment score for Ligand-
Receptor (LR) pair set (see Fig. 1).

Clustering based on CCI Gene Set Variation Analysis (GSVA) score performed better than clustering based 
on gene expression or pathway GSVA score. In addition, the Moderate group was divided into two clusters, and 
the clusters were subdivided according to severity and then the immunological character was compared through 
the known marker. In conclusion, we discovered a severe-like moderate subtype “C2M” whose molecular char-
acteristics are similar to those of severe and whose clinical characteristics are similar to moderate. As a result of 
examining worsening patients, all Peripheral Blood Mononuclear Cell (PBMC) samples at the time immediately 
before exacerbation were classified as C2M. Focusing on this point, we searched for factors similar to or different 
from C1M and C2S, focusing on C2M, and found marinal markers between subtypes. These findings are expected 
to play an important role in the selection of stratification and patient-specific treatments in COVID-19 patients.

Results
Clustering evaluation
We selected features that showed significant differences between severe and moderate cases for each data type of 
CCI GSVA, Pseudobulk, and Pathway GSVA. We then used k-means clustering to analyze the selected features 
in each data type. The clustering results showed that all three data types had a maximum silhouette score when 
k was 2 (see Supplementary Fig.1 ,Table S4). In the Discovery dataset, we named a cluster containing a majority 
of the Severe group based on the World Health Organization Ordinal Scale (WOS) a severe-enriched cluster, 
and a cluster that did not contain a majority of the Severe group a Moderate-enriched cluster. We evaluated the 
clustering result for the three data types (CCI GSVA, Pseudobulk, and Pathway GSVA) in terms of reproduc-
ibility and severity-association.

In-Group Proportion (IGP) analysis was performed to evaluate the reproducibility of the clusters. IGP analy-
sis assesses how robust and reliable the clusters discovered in the discovery set are when replicated on external 
datasets8. After computing the distance between the data points of the external dataset and the cluster centroids 
of the discovery dataset, the sample is assigned to the cluster of centroids with the minimum distance. For each 

Figure 1.   Summary of the overall analysis workflow: After preprocessing single-cell RNA sequencing data, 
sample-level features were generated. From the generated features, severity-associated features were extracted 
and clustering was performed. Clustering results were compared for each variable type, and a better-performing 
clustering result was selected. By combining clusters and severity, subtypes were defined and their characteristics 
were identified.
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external data point assigned to each cluster, calculate the ratio of how many nearest neighbors were assigned to 
the same cluster. This ratio, called IGP value, evaluates the cluster’s reproducibility.

Cluster results based on CCI GSVA showed better reproducibility than cluster results based on two different 
variable types. Clusters based on CCI GSVA had high IGP values of 0.9 or higher on both external datasets, but 
clusters based on Pathway GSVA and Pseudobulk showed low reproducibility on certain datasets or specific 
clusters (see Table 1).

Since features used for clustering each variable type (CCI GSVA, Pathway GSVA, and Pseudobulk) were 
selected based on severity, we can assume the cluster result is related to severity. We evaluated the severity associa-
tion for the three cluster results through clustering purity for severity. In the discovery dataset, Pseudobulk and 
CCI GSVA-based clusters had the same purity value. However, in the external dataset, CCI GSVA had a higher 
purity. Based on these results, we found that the CCI GSVA-based clustering result had a higher reproduction 
rate and better reflected the severity (see Table 1).

The results of the CCI GSVA-based clusters are displayed in Fig. 2a as a heatmap. In the Discovery dataset, all 
of the samples in Cluster 1 were moderate, while Cluster 2 included all of the severe samples and some moderate 
samples. “MHC-II” interaction and “IL16” interaction were enriched in Cluster 1. Notably, “MHC-II” interactions 
were enriched in all samples belonging to Cluster 1. particularly for all Cluster1 samples of “MHC-II” interac-
tion. Cluster 2 had upregulated LR pair sets that included “COLLAGEN” interaction from B to CD14 Monocyte, 
“THBS” signaling through autonomous interactions in CD14 monocytes, and “MIF” from CD4 T cell to NK. The 
“MHC-II” interaction in Monocyte was degraded, which is in line with the pattern observed in dysfunctional 
monocytes reported to increase in severe patients9. The tendency and pattern of the severity class distribution 
and enriched interaction observed in the discovery data set were consistent with those in the validation data set.

Characterization of CCI‑based subtypes
To explore the correlation between severity and clusters in COVID-19, we divided Cluster 2 into two groups: 
moderate (C2M) and severe (C2S), based on the level of severity. As illustrated in Fig. 2, C2M was more closely 
related to the samples in the severe group than to the samples in Cluster 1, which belonged to the same moder-
ate group.

In order to confirm that the moderates of Cluster 2 (C2M) are close to severe only in CCI GSVA, the difference 
between each subtype was examined using the already known severity related biomarkers (Known markers) in 
the COVID-19 single cell transcriptome study.

Intermediate pattern of C2M subtype between C1M and C2S was seen in marker gene signature score of 
activated monocytes and dysfunctional monocytes, known as severity-related subpopulation9. We selected 2 types 

Figure 2.   Clustering results. (a) Heatmap showing the clustering results for each dataset. (b) PCA results based 
on CCI GSVA in the Discovery set. Each point represents a sample, colored according to severity, cluster, and 
subtype.
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of cell subpopulation in CD14 monocyte known to be related with severity (see Fig. 3a,b). Activated monocytes, 
which is represented by high expression of HLA-DR and CD83, are commonly found in moderate patients, while 
dysfunctional monocytes, which express low HLA-DR and high alarmins (S100A8/9/12), exist in high level in 
severe patients compared to the moderate ones9. In our data, marker gene signature score of activated monocytes 
exhibited lower expression in moderate samples relative to severe samples, as expected. Our new found subtype, 
C2M showed an intermediary expression level between C1M and C2S. In contrast, severe samples were highly 
above moderate samples by marker gene signature score of dysfunctional CD14 monocytes. Similar to the previ-
ous description, scores of C2M samples were in-between C1M and C2S samples.

In addition, there are other COVID-19 related factors expressed in CD4+ T cells (see Fig. 3c). CD2AP 
expressed on the surface of CD4+ T cells regulates follicular helper T cell differentiation and enhances anti-
body responses during viral infection. TNFSF14 activates and recruits T cells from peripheral blood to tissues. 
Altogether, these markers are T cell activation promoting factors, and are known to be elevated in COVID-19 
patients compared with healthy controls10. In our data, severe patients showed decreased expression of these 
markers, implying that reduced T cell activation, recruitment, antibody responses might have resulted in severe 
conditions. C2M exhibited intermediate expression between C1M and C2S as well.

Lastly, some genes expressed in CD8+ T cells are identified as markers for proliferative exhausted CD8+ T 
cell, which shows positive correlation with COVID-19 severity(see Fig. 3d)11,12. These signatures displayed higher 
expression in severe population of our data as well. C2M demonstrated transitional state as same as the other 
known markers, but was slightly closer to C2S.

In conclusion, since C2M subtype exhibited similar immunophenotype to C2S while clinical phenotype 
characterized it as moderate, we defined C2M subtype as “severe-like moderate”.

Figure 3.   Boxplots for subtypes and markers (cell types) associated with COVID-19 severity. Gene signature 
scoring was conducted for marker gene sets of cell types known to be associated with severity.
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Association analysis between subtype and clinical trait
This analysis was conducted to investigate the clinical variables associated with the differences between the C2M 
and C1M groups, both of which presented with moderate symptoms. As the clusters were designated based on 
samples, patients were assigned to clusters according to their earliest available sample. The analysis was carried 
out separately for both continuous and categorical variables (see Fig. 4, Supplementary Table S2, S3).

Among the continuous clinical variables, significant differences were found between the subtypes in age, 
body temperature (the worst recorded during hospitalization), and oxygen saturation (the worst recorded dur-
ing hospitalization). Age and body temperature (worst recorded) were significantly higher in C2M compared to 
C1M, while oxygen saturation (worst recorded) was significantly lower in C2M.

Regarding the categorical clinical variables, significant differences were observed in diabetes (comorbidity), 
low-dose oxygen therapy via nasal prong during hospitalization, ECOG performance status at the time of admis-
sion, and presence of pneumonia on chest X-ray/CT scan at the time of visit. Specifically, among the 55 patients 
in C2M, 18 had diabetes, while of the 80 patients in C1M, 9 had diabetes as a comorbidity. The proportion of 
patients with limited physical activity according to ECOG performance status was significantly higher in C2M. 
In the Severe group, the 23 samples were obtained from 7 male patients, while the 9 samples were from 3 female 
patients, indicating a gender bias. However, in the C1M and C2M groups, the gender distribution was more bal-
anced with 42 males and 38 females in the C1M group, and 28 males and 27 females in the C2M group. Fisher’s 
exact test confirmed that this distribution was not significantly different (p.value = 0.863).

Mostly, between C1M and C2S, C2M also showed significant differences with C2S, presenting intermediate 
characteristics, but there were clinical variables showing distinguishing patterns. In the case of the worst body 
temperature, C2M had a distinctively higher value compared to the other two subtypes (see Supplementary 
Figure 2). Regarding the findings of pneumonia, there was no significant difference between C2M and C2S. 
Half of the patients in C1M (40/80), 73% of the patients in C2M (40/55) had pneumonia findings at the time of 
visit, and all patients in C2S had pneumonia findings at the time of visit (see Supplementary Table S5). The nasal 
prong low-dose oxygen therapy showed no difference between Moderate and Severe, as the Moderate had fewer 
cases receiving oxygen therapy, and Severe patients received a higher level of oxygen therapy like facial mask, 
therefore, there was no frequency difference observed.

From these observations, it could be inferred that C2M had intermediate characteristics between Moderate 
(C1M) and Severe in terms of age, ECOG performance, and comorbid diabetes. A distinctive feature of C2M 
was the occurrence of high fever symptoms. Moreover, it was observed that the probability of belonging to C2 
(C2M, C2S) was higher in cases with pneumonia findings.

Longitudinal analysis
We identified subtypes and explored their associations with the patterns of worsening/improvement in patients 
who experienced a change in severity from moderate to severe or from severe to moderate (see Fig. 5, Supple-
mentary Table S2). We selected patients with worsening changes from the discovery dataset (2 patients), valida-
tion dataset 1 (1 patient), and validation dataset 2 (2 patients). Among these 5 patients, 4 patients’ samples were 
classified as C2M before worsening to severe. When only PBMC samples were considered, all samples before 
worsening from moderate to severe were classified as C2M. Conversely, in patients who improved from severe 
to mild, their molecular characteristics remained similar to those of Cluster 2 despite the changes in severity. In 
the case of COV.CCO.072, the sample changed to C1M seven days after improvement to moderate.

These findings suggest that the molecular subtype is related to the patterns of worsening or improvement 
in COVID-19 patients. Patients who worsened to severe tended to belong to C2M before the worsening, while 
patients who improved to moderate tended to maintain the characteristics of Cluster 2 (C2M) even after their 
improvement. These results may provide insights into the underlying mechanisms of COVID-19 severity and 
help in developing targeted therapies based on molecular subtypes.

Figure 4.   Boxplot for continuous clinical variables with significant differences between C2M and C1M.
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Marginal markers between subtypes
In this part of our study, we set out to identify the subtle and intermediate differences among the C2M, C1M, and 
C2S groups. Even though patients in C2M presented with moderate symptoms, they found themselves clustered 
with the severe symptom group (C2S) due to similar intercellular features. This ambivalence in their classification 
hinted at an underlying complexity, prompting us to investigate further.

By arranging the variables using C2M as a base, we hoped to uncover specific marginal markers that could 
shed light on this ambivalence. These markers helped us highlight the intermediate differences between C2M 
and the other two groups. We coined the terms “C1M-like” and “C2S-like” to categorize these markers. Factors 
that diverged between C2M and C2S but were similar to C1M were designated “C1M-like”. Conversely, factors 
that differed between C2M and C1M but were akin to C2S were labeled “C2S-like” (see Fig. 6).

We assumed that by dissecting the ambivalence within C2M, we could identify markers instrumental in 
determining clinical severity. This study sets the groundwork for such investigations, enhancing our understand-
ing of how these patient clusters are determined and offering insights into the nature of disease progression.

C1M‑like factors
Several markers included in C1M-like factors have notable functions related to COVID-19 severity, which could 
help elucidate the identity of C2M subtype. PLSCR1, induced by interferon, is known for playing a crucial role 
in enhancing the antiviral response through increased expression of a select subset of potent antiviral genes13. 
Similarly, OAS1 is also an IFN-responsive gene, which can contribute to innate antivral response in cells. Spe-
cifically, C-terminal prenylated OAS1 can bind to SARS-CoV-2 5’UTR in membranous replicative oragnelles 
of SARS-CoV-2 infected cells, and block virus replication14. While these markers were upregulated compared 
to C2S, there are other C1M-like marginal markers suppressed in C1M and C2M. EPAS1, which is called as 
HIF-2alpha as well, is induced by hypoxia, playing a key role in virus infection and pro-inflammatory response. 

Figure 5.   Line plot illustrating the severity (WOS) and subtype at each timepoint for patients with worsened 
or alleviated conditions. (a–d) represent patients who experienced alleviation, while (e and f) depict patients 
who initially worsened and subsequently improved. the color of the dots represents the severity of the patient’s 
condition and whether single cell RNA-seq was used at that time point. Red indicates severe conditions, orange 
indicates moderate conditions, and grey is used when single cell RNA-seq was either not available.
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COVID-19 patients exhibit dysregulated HIF-1alpha signaling, showing high expression, which leads to immune-
inflammatory cytokine expression15.

Several pathways associated with COVID-19 severity were identified as C1M-like factors. Pathways related to 
“Mitochondrial fatty acid beta oxidation of unsaturated fatty acids”, “PI3K AKT activation”, and “IL-18 signaling” 
were identified in CD14 monocytes, while the “Regulation of gene expression by hypoxia inducible factor” was 
identified in NK cells, and “NGF sitmulated transcription” was identified in CD4 T cells. In particular, IL-18 
signaling in the lung has been reported to activate inflammasomes associated with disease severity, and levels 
of IL-18 have been observed to increase over time in deceased patients7. These pathways have been previously 
linked to COVID-19 severity and prognosis, with mitochondrial fatty acid beta oxidation, nerve growth factor, 
and hypoxia inducible factor showing particular relevance16–19.

C2S‑like factors
On the other hand, C2S-like factors were also detected in our research, and could have a possibility of interpret-
ing the phenomenon of COVID-19 severity. TNFRSF10C is part of the TNF-receptor superfamily, comprising 
a transmembrane domain and extracellular TRAIL-binding domain. TNFRSF members control innate and 
adaptive immune cells by co-stimulating or co-inhibiting immune responses. High expression of TNF-related 
genes is observed in severe conditions and is associated with mortality20.

In CCI analysis, TNF signaling between B cells and CD4 T cells was identified as a C2S like factor. TNF-related 
genes identified through gene analysis were found to affect the interaction between these cell pairs.

Pathway analysis revealed pathways previously known to be related to COVID-19 severity. The “Metal seques-
tration by antimicrobial proteins” pathway was identified in CD4 T cells, and the presence of metal ions at various 

Figure 6.   Heatmap of marginal markers to visualize the dual characteristics of C2M. Factors exhibiting a 
similar pattern to C2S are defined as C2S-like, and those showing a pattern similar to C1M are defined as C1M-
like. (a). Results from gene analysis, (b). Results from CCI GSVA, (c). Results from pathway GSVA.
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concentrations in hospitalized COVID-19 patients has already been reported21. The Kallikrein kinin system 
pathway was also identified, which is known to be related to inflammation, vascular homeostasis, and coagulation 
in COVID-19 pathology22. The study also reported a relationship between the activation of the Kallikrein kinin 
system and the prognosis of COVID-19 patients. The “Detoxification of reactive oxygen species” pathway was 
identified in CD8 T cells, as tissue damage, thrombosis, and red blood cell dysfunction can be induced by reac-
tive oxygen species in COVID-19 patients23. However, this study focused on the relationship with neutrophils. 
In CD14 monocytes, pathways related to highly calcium permeable nicotinic acetylcholine receptors, recycling 
of bile acids and salts, and SIRT negatively regulating rRNA expression were identified. Nicotinic acetylcholine 
receptors (nAChRs) are known to affect cytokine liberation and virus replication. The association between 
increased serum levels of bile acids and inflammation has been reported, and it has been suggested that this is 
related to tissue damage in COVID-19 disease progression24,25. There is also a study reporting changes in bile 
acid metabolism in COVID-19 hospitalized patients26,27. SIRT-1 is related to NAD+ levels, which are known to 
decrease with age, hypertension, obesity, and diabetes. There is a study reporting a decrease in NAD+ levels in 
patients infected with COVID-1928. In addition, it has been suggested that T and B cell signaling and lymphocyte 
homeostasis may also be affected.

Evaluation of subtype predictivity using machine learning
We could not identify any specific markers that were up- or down-regulated in the C2M subtype among the 
variables such as Gene, Pathway, and CCI. Based on the known markers, the C2M subtype exhibited intermedi-
ate characteristics compared to other subtypes. Therefore, we constructed a logistic regression model to verify 
whether C2M could differentiate from other subtypes. Additionally, we evaluated whether our devised subtype 
classification criteria, which was based on molecular characteristics, was a better classification criterion than the 
severity-based moderate/severe classification by constructing a logistic regression model for the severity class 
independently and comparing the classification performance of both models (see Table 2).

Although the severity classification was binary, and the subtype classification was multi-class, the performance 
of the multi-class subtype classification model outperformed the severity classification model. Although the clas-
sification performance for severe cases was low, we observed an improvement in the classification performance 
for severe cases (C2S) after classifying moderate cases into C1M and C2M.

These results suggest that our newly defined subtypes based on molecular features could provide additional 
information beyond the conventional severity classification, and highlight the potential value of integrating 
molecular and clinical features for improved patient stratification and personalized treatment in this disease.

C2M specific cytokine markers
To identify specific markers of C2M, we explored cytokines and conducted Wilcoxon rank-sum tests to determine 
differences between groups. Significant differences were defined as those with an FDR (False Discovery Rate) 
< 0.05. Among the cytokines showing significant differences with other groups and with the lowest or highest 
median of C2M, SDF-1, MBL, and IL-2 were selected as potential markers (see Fig. 7a).

The analysis revealed that SDF-1 was up-regulated in C2M, while it showed a low expression trend in the 
severe group (C2S). SDF-1 is a cytokine known to promote the movement of hematopoietic stem cells and 
immune cell infiltration to infection sites. The up-regulation of SDF-1 in COVID-19 patients with C2M may be 
interpreted as a host response to the virus, which leads to the migration of a large number of immune cells to the 
infection site. This migration of immune cells could potentially accelerate viral clearance at the site of infection.

In contrast, MBL and IL-2 showed decreased expression in patients with moderate COVID-19 symptoms 
(C2M), while they exhibited higher expression in the severe subtype (C2S). Both cytokines were up-regulated 
in C2S, indicating a stronger immune response in severe cases. MBL is an important protein of the complement 
system that plays a crucial role in viral clearance. IL-2 is a cytokine that regulates the proliferation and activation 
of T cells, which is closely related to the immune response29. Further studies have implied that IL-2 could be a key 
factor in predicting neutralization levels, particularly emphasizing its role in T cell activation and proliferation7. 
Therefore, the increase in MBL and IL-2 expression in severe COVID-19 patients (C2S) can be interpreted as an 
attempt of the immune system to fight off the virus. On the other hand, compared to the other subtypes, it can 
be interpreted that this viral response is relatively less pronounced in C2M.

In patients with C2M, the expression of SDF-1 was up-regulated, indicating a host response to the virus and 
potentially accelerating viral clearance at the infection site30. However, the expression of MBL and IL-2 was 
decreased in C2M, suggesting a less pronounced viral response compared to other subtypes.

The findings suggest that the expression levels of SDF-1, MBL, and IL-2 could be useful biomarkers for strati-
fying COVID-19 patients into different subtypes. Monitoring the expression of these cytokines in COVID-19 
patients could provide valuable information for predicting disease progression and identifying patients who may 
benefit from more aggressive treatment or interventions. Therefore, the results of this study could have important 
clinical implications for the management of COVID-19 patients.

We identified cytokines that showed significant differences even within the moderate subtypes (see Fig. 7b). 
Among C1M and C2M, which were both classified as moderate, we found differences in CXCL9/MIG, MMP-8, 
TRANCE/TNFSF11/RANK L, and Pentraxin3/TSG-14. We used an absolute relative median difference > 0.45 
and a Wilcoxon rank-sum test FDR < 0.01 as the criteria for determining significant differences. Interestingly, 
even among the moderate subgroups, there were significant differences in cytokine expression. CXCL9/MIG, 
MMP-8, TRANCE/TNFSF11/RANK L, and Pentraxin3/TSG-14 showed differences between C1M and C2M, 
with C2M having intermediate levels between the moderate and severe groups.

CXCL9/MIG plays a role in recruiting immune cells to sites of infection and inflammation31. The higher levels 
in severe cases suggest a stronger immune response that could help control the progression of the disease. MMP-8 
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is involved in tissue repair and remodeling and can also be produced by immune cells in response to infection32. 
Higher levels in severe cases could reflect increased tissue damage and inflammation. TRANCE/TNFSF11/RANK 
L is involved in bone remodeling and can activate immune cells33. Higher levels in severe cases could reflect 
the involvement of bone tissue in the disease process or an increased need for immune activation. Pentraxin3/

Figure 7.   Boxplots for C2M-specific cytokines. (a) Cytokine markers specifically up- or down-regulated in 
C2M. (b) Cytokine markers with significant differences between C1M and C2M.

Table 1.   Comparison of clustering performance based on different variable types. For each clustering result, 
In-group Proportion (IGP) analysis and severity purity calculations were conducted. For IGP values, the 
calculation was performed after classifying clusters into moderate-enriched and severe-enriched clusters. 
Significant values are in bold.

Dataset Cluster CCI GSVA Pseudobulk Pathway GSVA

In-group proportion (IGP value)

Validation 1
Moderate enriched cluster 1.00 0.86 0.95

Severe enriched cluster 0.96 0.87 0.83

Validation 2
Moderate enriched cluster 0.93 0.91 0.88

Severe enriched cluster 1.00 0.95 0.87

Clustering purity

Discovery 0.79 0.78 0.67

Validation 1 0.80 0.65 0.74

Validation 2 0.98 0.57 0.58
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TSG-14 is involved in the innate immune response and can bind to microorganisms and other molecules to 
help clear infections34. Higher levels in severe cases could reflect a more robust immune response to the virus.

The findings suggest the presence of molecular subtypes that have not been clinically classified, which could 
have implications for understanding the mechanisms underlying COVID-19 and developing targeted therapies.

Discussion
In this study, we conducted a comprehensive clustering analysis on 320 COVID-19 PBMC samples using single-
cell RNA-seq data. Our analysis included diverse demographic and clinical characteristics, ensuring robust and 
representative results. The validity of our findings was further reinforced by performing similar analyses on 
external datasets, which confirmed the existence and characteristics of the subtypes we discovered.

Our approach utilized inter-cellular feature-based CCI GSVA, which allowed for the creation of severity-asso-
ciated clusters with higher reproducibility than intra-cellular feature-based methods. This finding underscores 
the critical role of cell-cell interactions in the immune response and the severity of COVID-19. Interestingly, 
no cluster consisting exclusively of moderate cases was found except in the case of CCI GSVA, suggesting the 
importance of inter-cellular communication in disease progression.

Interestingly, we observed significant differences in known severity-associated markers not only between 
severity groups but also between C1M and C2M, both of which are classified as moderate. This implies that 
traditional clinical severity classifications may be insufficient in capturing the nuanced immune responses at 
the molecular level, even within the same severity level. These findings underscore the need for the establish-
ment of molecular subtypes for more precise patient stratification and individualized treatment strategies in 
infectious diseases such as COVID-19. Our study also raises questions about the current clinical guidelines that 
rely heavily on severity labels, advocating for a more nuanced approach that incorporates molecular data into 
patient management.

Despite some limitations in our study, such as not using a specialized algorithm for CCI and the use of an 
LR pair set database, and the focus being on inter-sample heterogeneity within given severity levels rather than 
transitions between different severity levels, our work provides valuable insights into the molecular mechanisms 
underlying the pathogenesis of COVID-19. This could facilitate the development of targeted therapies based 
on patient-specific molecular subtypes, and pave the way for more detailed patient stratification in the future.

Future studies could extend the scope of this work by investigating patient heterogeneity in more depth, pos-
sibly incorporating transitions from moderate to severe and vice versa based on molecular features. Moreover, 
this methodology offers a scalable framework that can be adapted for studying other infectious diseases, thereby 
broadening its applicability beyond COVID-19. Our findings also contribute to the existing body of literature by 
offering a more nuanced understanding of severity-associated molecular features, thereby filling a critical gap in 
current research that often overlooks intra-group heterogeneity.

Methods
Used data
A total of three datasets were used in this study (see Table 3). The Discovery set consists of 320 peripheral blood 
mononuclear cell (PBMC) samples derived from 145 COVID-19 patients35. Validation set 1 comprises 45 samples 
from 25 patients, while validation set 2 is composed of 133 samples derived from 79 patients9,12. All samples were 
collected when the patients’ severity was at a WHO ordinal scale of 3 or higher.

The Discovery set, which contains the largest number of samples, was used to derive clusters, evaluate cluster-
ing, and perform all downstream analyses. Validation sets 1 and 2 were employed for selecting severity-associated 
features and calculating the reproducibility and clustering purity of the derived clusters. These sets were also 
used to compare the clustering performance according to different variable types (CCI GSVA, pathway GSVA, 
and pseudobulk gene expression).

Preprocessing single cell RNA sequencing data
We followed COVID-19 PBMC single cell RNA-sequencing preprocessing method proposed by36, but applied a 
more strict quality control metric. Each single cell RNA-seq sample was preprocessed using Seurat37. Cells that 

Table 2.   Classification performance of logistic regression models for subtype and severity, respectively.

Classification Class Precision Recall F1-score

Subtype

C1M 0.986 1.000 0.993

C2M 0.915 0.940 0.927

C2S 0.731 0.594 0.655

Macro average 0.877 0.844 0.858

Weighted average 0.927 0.931 0.929

Severity

Moderate 0.945 0.962 0.954

Severe 0.593 0.500 0.542

Macro average 0.769 0.731 0.748

Weighted average 0.910 0.916 0.912
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did not meet the following criteria were filtered out: the number of expressed genes in a cell should be greater 
than 200, and the proportion of mitochondrial gene expression counts to the total expression counts should be 
less than 50%. Cell type annotation was performed using PBMC reference single cell dataset and data transfer 
method implemented in Seurat, and cells with mapping, prediction score exceeding 0.6 were left38. CD14 Mono-
cyte, CD16 Monocyte labelled cells were filtered using prediction score of level 2, and level 1 prediction score 
for the remaining cell types. Also, genes expressed in more than 5 cells were left.

To select cell types found in most of the patients, and LR pair interactions frequently detected among them, 
cell types with more than 10 cells in at least 90% of all samples were selected, and we used samples possessing 
more than 10 cells of the selected cell types.

Cell‑cell interaction enrichment analysis
Cell-cell interaction scores (CCI) were calculated individually for each sample using CellChat39. The Ligand-
Receptor (LR) pair level CCI was calculated through the basic procedure presented by CellChat.

In the database CellChatDB.Human, each LR-pair corresponds to a gene, and the pathway information to 
which the LR pair belongs is corresponding to a gene set. CCI pathway score (CCI GSVA) was calculated for 
each source-target cell type pair. gsva function of the R package GSVA was used to calculate the engineering 
score, and Gaussian kernel was used as kernel function40.

Pathway enrichment analysis
Pathway enrichment analysis was performed for each cell type in the sample for pseudobulk expression. The 
Gaussian kernel was used using function gsva of the GSVA. KEGG, REACTOME, and GO of msigdb v7.5.1 were 
used gene sets41,42.

Severity associated feature selection
Features showing significant differences between severe and moderate were selected in all three datasets (Discov-
ery, Validation 1,2). In the case of gene expression, the FDR in the DEG test was less than 0.05, and for CCI and 
pathway, t-test was conducted on the difference in enrichment score between the two groups. Pathways (gene 
set, CCI set) with p.value less than 0.05 were defined as severity associated feature. In all datasets, only variables 
with the same sign of difference between the severe and moderate were selected.

Clustering analysis
K-means clustering algorithm was used. After performing all of parameter k=2,3,4, and 5, k having the maximum 
average silhouette score was selected. The kmeans function of the R package stats was used, and clustering was 
performed by setting the parameter to maximum iteration = 200 and the number of start points = 50. In the case 
of pseudobulk gene expression, k-means clustering was performed after scaling with z-score for the aggregated 
gene count of each cell type. Using function IGP.clusterRepro in the R package clusterRepro, clustering repro-
ductivity was evaluated on two validation sets8. After calculating the euclidean distance between samples in the 
validation set and centroid in the discovery set, samples were assigned to a cluster of centroid with the minimum 
distance. The following equation (1) was used to calculate the clustering purity.

In this equation, the variables represent the following:

(1)Purity (C,S ) =

kc∑

i=1

wi ·
ks

max
j=1

count(ci , sj)

count(ci)

Table 3.   Sample and patient information for the single-cell RNA-seq datasets used in this study.

Discovery set35 Validation set 19 Validation set 212

Total

# of samples (# of patients) 320 (145) 45 (25) 133 (79)

Male 174 (77) 21 (13) 78 (45)

Female 146 (68) 24 (12) 55 (34)

Median age 58 (mean: 57.23, min: 20, max: 96) 63 (mean: 60.67, min: 23, max: 83) 64 (mean 62.75, min: 26, 
max: 89)

Moderate WOS < 5

# of samples 288 20 92

Male 151 10 46

Female 137 10 46

Median age 57 (mean: 55.9, min: 20, max: 96) 63 (mean: 55.5, min: 23, max: 83) 68 (mean: 64.71, min: 26, 
max: 89)

Severe WOS > 4

# of samples 32 25 41

Male 23 11 32

Female 9 14 9

Median age 68 (mean: 69.16, min: 49, max: 91) 63 (mean: 64.8, min: 43, max: 78) 61 (mean: 58.37, min: 33, 
max: 88)
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•	C  : Cluster labels
•	 S  : Severity class labels
•	 kc : Maximum number of cluster labels
•	 ks : Maximum number of severity class labels
•	 wi : Weight of cluster i (the proportion of data in cluster i relative to the total data)
•	 count(ci , sj) : The number of data points with cluster label i and severity class label j occurring simultaneously

Gene signature scoring
For cluster description, we compared gene signature scores constructed by known markers related to COVID-
19 between clusters. Gene signature score was generated by calculating the mean z-score of selected genes. In 
the case of activated, dysfunctional monocytes, we selected top 30 marker genes per cell type based on average 
log2-transformed fold change.

Association analysis between subtypes and clinical traits
To investigate the association between subtype and clinical trait, we conducted association analysis. For cat-
egorical variables, Fisher’s exact test was performed, and for continuous variables, Wilcoxon rank-sum test was 
conducted. A p-value less than 0.05 was considered statistically significant.

Marginal marker analysis
We conducted a marginal marker analysis to identify variables that are differentially expressed between two 
groups. First, we divided the variables based on the C2M subtype classification. We defined C1M-like variables 
as those that show a significant difference between C2M and C2S, but not between C2M and C1M. Conversely, 
we defined C2S-like variables as those that show a significant difference between C2M and C1M, but not between 
C2M and C2S. To identify these variables, we applied the following criteria: absolute median difference> 0.4 
and FDR< 0.01 with opposite sign of median for CCI GSVA values, and absolute median difference> 0.2 and 
FDR< 0.01 with opposite sign of median for pathway GSVA values. We also considered variables with p-values 
greater than 0.5 as non-significant or “same”. We used t-tests to perform statistical testing. In case of genes, we 
performed pairwise DEG analysis between each subtype via edgeR and employed PValue, FDR, logFC values 
to determine marginal markers. Following criteria were used: absolute value of logFC≥ 1.0 and FDR< 0.01 as 
significantly different variables, and absolute value of logFC< 0.01 and P.value> 0.9 as non-significant variables.

Evaluation of subtype predictivity using machine learning
To validate the effectiveness of the new types of cluster labels proposed in this paper, a simple classification model 
using the CCI GSVA score was used. The classification accuracy was measured using a multi nominal linear 
regression classifier with 3-fold cross validation with a linear regression model from python library scikit-learn. 
To build the logistic regression model, values of CCI GSVA scores were used as input value. In the case of class 
imbalance in the data, F1-score were used. Specifically, the macro average calculates each metric (F1, Recall, 
Precision) for each label independently, then takes the unweighted average of these scores, treating all classes 
equally. On the other hand, the weighted average gives more importance to the larger classes by weighting each 
metric (F1, Recall, Precision) by the number of samples from that class.

Data availability
The discovery dataset used for clustering in this study, including clinical data, cytokine profiling, and scRNA-seq, 
is available from the Clinical and Omics Data Archive (CODA; https://​coda.​nih.​go.​kr). The clinical data, cytokine 
profiling, and scRNA-seq datasets have been deposited at CODA with the accession numbers CODA-000034, 
CODA-000035, and CODA-000041, respectively. The COVID-19 single cell RNA validation sets are available at: 
https://​github.​com/​RGLab/​covid​19_​sc. Custom scripts for data analysis are available upon request. For further 
data requests, please contact the first author, Kyeonghun Jeong, at scientist0205@snu.ac.kr.
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