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Q‑RAI data‑independent 
acquisition for lipidomic 
quantitative profiling
Jing Kai Chang 1,2, Guoshou Teo 3, Yael Pewzner‑Jung 4, Daniel J. Cuthbertson 5, 
Anthony H. Futerman 4, Markus R. Wenk 1,2, Hyungwon Choi 1,3 & Federico Torta 1,2*

Untargeted lipidomics has been increasingly adopted for hypothesis generation in a biological context 
or discovery of disease biomarkers. Most of the current liquid chromatography mass spectrometry 
(LC–MS) based untargeted methodologies utilize a data dependent acquisition (DDA) approach 
in pooled samples for identification and MS‑only acquisition for semi‑quantification in individual 
samples. In this study, we present for the first time an untargeted lipidomic workflow that makes 
use of the newly implemented Quadrupole Resolved All‑Ions (Q‑RAI) acquisition function on the 
Agilent 6546 quadrupole time‑of‑flight (Q‑TOF) mass spectrometer to acquire MS2 spectra in data 
independent acquisition (DIA) mode. This is followed by data processing and analysis on MetaboKit, a 
software enabling DDA‑based spectral library construction and extraction of MS1 and MS2 peak areas, 
for reproducible identification and quantification of lipids in DIA analysis. This workflow was tested 
on lipid extracts from human plasma and showed quantification at MS1 and MS2 levels comparable 
to multiple reaction monitoring (MRM) targeted analysis of the same samples. Analysis of serum 
from Ceramide Synthase 2 (CerS2) null mice using the Q‑RAI DIA workflow identified 88 lipid species 
significantly different between CerS2 null and wild type mice, including well‑characterized changes 
previously associated with this phenotype. Our results show the Q‑RAI DIA as a reliable option to 
perform simultaneous identification and reproducible relative quantification of lipids in exploratory 
biological studies.

Lipids are a group of organic compounds with high hydrophobicity that play important biological roles, including 
cellular signalling, energy metabolism and as a structural component of cell  membranes1,2. Lipidomics entails 
comprehensive identification and robust quantitation of lipids using analytical chemistry methods such as liquid 
chromatography mass spectrometry (LC–MS) and it has matured as an independent field of study underscoring 
the importance of metabolism in disease  progression1,2. Typically, untargeted lipidomics focuses on the identi-
fication and relative quantitation of lipids for discovery approaches, while targeted lipidomics serves to identify 
and quantify a group or panel of known lipids with high  sensitivity3.

In untargeted lipidomics there are two common analytical approaches. The first is direct-infusion MS (shot-
gun lipidomics), often performed using a nanospray source and a high-resolution mass spectrometer. Due to its 
speed, this is suitable for high-throughput studies and it has the advantage of allowing a reliable quantification, 
due to the same matrix effect experienced by all  ions4,5. A disadvantage may be lower sensitivity and higher 
complexity of fragmentation spectra when compared to LC–MS. LC–MS based methods can perform better 
in terms of species coverage and sensitivity due to the chromatographic separation. Lipids with similar m/z 
values can be distinguished based on different retention times. In all these experiments, tandem MS (MS/MS) 
is essential for reliable identification. There are two ways to acquire MS/MS data in untargeted lipidomics: data 
dependent acquisition (DDA) and data independent acquisition (DIA). In DDA a full MS scan is conducted 
to obtain abundance-based precursor information of lipids in the sample, followed by fragmentation of the 
precursors to obtain MS/MS spectra of product ions. However, DDA approaches are sometimes ineffective in 
fragmenting low abundance compounds due to the preference given to the most abundant  ones6,7. In addition, 

OPEN

1Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of 
Medicine, National University of Singapore, Singapore, Singapore. 2SLING, Singapore Lipidomics Incubator, Life 
Sciences Institute, National University of Singapore, Singapore, Singapore. 3Department of Medicine, Yong Loo 
Lin School of Medicine, National University of Singapore, Singapore, Singapore. 4Department of Biomolecular 
Sciences, Weizmann Institute of Science, Rehovot, Israel. 5Agilent Technologies Inc., Santa Clara, CA, USA. *email: 
bchfdtt@nus.edu.sg

http://orcid.org/0000-0002-6687-3088
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-46312-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19281  | https://doi.org/10.1038/s41598-023-46312-8

www.nature.com/scientificreports/

peak intensities of product ions are not quantitatively accurate as fragmentation is often triggered before the 
apex of the peak and there are insufficient data points along the  chromatograms6,7. The disadvantages of DDA 
are then low reproducibility and incomplete coverage.

Recent advances in MS technologies have led to the development of DIA for comprehensive MS/MS data 
generation and targeted quantification at both precursor and product ion levels, thereby addressing some of the 
limitations of DDA, including biased selection of abundant ions for fragmentation. In DIA, all precursors within 
a selected mass range are scanned and consistently fragmented regardless of abundance. The major limitation 
of this technique is the high complexity of the spectra generated during fragmentation of co-eluting species, 
which makes lipid identification difficult. Ways of reducing this complexity include the use of well characterised 
LC separations and the use of consecutive quadrupole isolation  windows7,8. A selective DIA methodology that 
was first reported by Gillet et al. utilizes sequential quadrupole isolation windows for acquisition of all theoreti-
cal mass spectra (SWATH) in proteomics applications, where the mass range of interest is divided into several 
subranges (or isolation windows) for  fragmentation9–13. Generally, an overlap is included between windows, to 
ensure that all precursors in the desired mass range are selected for  fragmentation6. When DIA is applied in direct 
infusion shotgun lipidomics, utilizing the MS/MSALL approach that is available in orbitrap mass spectrometers 
and latest hybrid quadrupole time-of-flight (Q-TOF) technologies, all precursors in the sample are essentially 
isolated across the entire mass range of interest in 1 m/z isolation windows, followed by  fragmentation10,14,15.

Isolation window sizes can be customized depending on the application, with key considerations being the 
abundance of precursors, coelution of analytes and chromatographic peak widths. Since all precursors can be 
fragmented, larger window sizes would result in more precursors simultaneously entering the collision cell for 
fragmentation and hence resulting in increased complexity of MS2  spectra8,16. This causes issues particularly 
in high-throughput analyses, where numerous analytes co-elute and chromatographic peaks are narrow, with 
ion suppression and convoluted MS/MS with additional interferences that results in insufficient data points 
for accurate peak area calculation. The isolation window size and the number of windows is inversely related, 
where smaller window sizes would result in a larger number of windows to cover the entire mass range. These 
parameters also determine the total cycle time, which is derived from the MS1 and the MS2 acquisition rates 
and the number of windows. A general consensus is that there should be at least 10 data points (10 cycles) across 
the narrowest chromatographic peak for reliable quantification in chromatographic  analyses17. For this reason, 
25 m/z wide windows are commonly used in proteomics, and 10–20 m/z windows in lipidomics, to ensure a 
good balance between purity of MS/MS spectra and quality of quantification.

While the early generation of DIA methods was performed with fixed size windows, the need for reliable 
quantification has also spurred on the development of windows of variable sizes, optimized based on the pre-
cursor density across the entire mass  range18. Smaller window sizes would be adopted for m/z regions with a 
higher density of precursors, while larger window sizes would be adopted for regions where precursors are 
less present, thereby reducing the loss of  sensitivity19. This allows for the same total number of windows to be 
maintained, thereby ensuring that the cycle time is not compromised and enough data points can be captured 
for all ions of interest.

The choice between DDA and DIA methodologies also has implications on the downstream data analysis 
approach. For lipidomic data acquired in DDA mode, software with lipid identification capabilities such as 
MS-Dial, Lipid Annotator, LipidMatch, LipiDex, LipidXplorer, LipidBlast and others have been  developed20–25. 
Most of these tools enable lipid identification by searching against a known database or spectral library using 
a combination of features such as retention time (RT), isotopic distribution, precursor mass and MS2 spectra. 
Others may use alternative approaches: MS-Dial utilises a decision tree algorithm within a rule-based anno-
tation system, LipidXplorer implements user-defined fragmentation pathways described using the molecular 
fragmentation query language and Lipostar can work with a database-free rule-based fragmentation  system21,26. 
Most software can read data from a variety of LC–MS instruments and methods. Recently, we have reported a 
new data processing software package, MetaboKit, to support seamless integration of DDA and DIA for iden-
tification and relative quantification, respectively with potential advantages over the alternatives, including the 
explicit MS/MS-based annotation of in-source fragments (ISFs) and the ability for the user to build and annotate 
an in-house spectral library based on product ion spectra and retention  times27. The DIA module of MetaboKit 
performs a targeted extraction of MS2 fragments using spectral libraries obtained from DDA, which facilitates 
users to gradually build a customized database of MS2 spectra and decreases reliance on commercially or publicly 
available libraries for benchmarking in the long term.

Meanwhile, LC-based DIA methodologies for lipidomics have been most actively developed on SCIEX Triple-
TOF instruments, with standardized workflows for identification and  quantification18. Software packages such 
as MetDIA and MS-Dial have been developed to analyse the acquired MS2 complex data, where the fragmenta-
tion spectra are deconvoluted and benchmarked to spectral libraries in-built within the  software21,28. Spectral 
deconvolution strategies are essential in DIA as the direct link between precursor and product ion spectra is 
lost and data become more complex due to higher background signals in the obtained  spectra29. To optimize 
analytical methods, tools such as the SWATH Acquisition Variable Window Calculator by SCIEX, that calculate 
the best sequence of variable windows based on the density of precursors have been  released30. However, these 
approaches have not been extensively validated for other instruments.

Herein, we report the development and application of Quadrupole-Resolved All Ions (Q-RAI) data from the 
Agilent 6546 Q-TOF, in combination with DDA-based library construction, as a novel alternative DIA analysis 
platform on Agilent LC–MS instruments. The proposed workflow is seamlessly supported by the MetaboKit 
software package. The Q-RAI acquisition mode is a SWATH-like data independent acquisition mode newly 
developed on the Agilent 6546 LC/Q-TOF, first reported for quantitative analysis of per- and polyfluoroalkyl 
substances (PFAS)31. However, this acquisition mode has not been tested for high throughput lipidomic applica-
tions and could provide an additional tool for simultaneous untargeted lipid identification and quantification 
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at both MS1 and MS2 levels without significant loss in lipid coverage, particularly for users with this line of 
instruments. This DIA approach would be advantageous over conventional untargeted DDA workflows where 
MS2-based quantification is not applicable, especially for compounds in which the product ions offer quality ion 
chromatograms as good as or better than that of the precursor ion. In addition, it will also enable easier devel-
opment of targeted assays from the product ion spectra of specific lipids of interest. To properly test this newly 
developed instrumental and data analysis workflow, we first analysed commercially available human plasma 
and then conducted a differential abundance analysis of murine serum samples from wild type and a Ceramide 
Synthase 2 (CerS2) null model.

Materials and methods
Reagents
1-Butanol was purchased from Merck (Darmstardt, Germany). Methanol, isopropanol and acetonitrile were 
purchased from Thermo Fisher Scientific (Waltham, Massachusetts, United States). Ammonium Formate (10M 
in water) was purchased from Sigma-Aldrich (St. Louis, Missouri, United States). All solvents were of HPLC 
grade. Pooled commercial human plasma obtained via EDTA whole blood from healthy subjects of European 
descent and mixed gender was purchased from Sera Laboratories International (West Sussex, United Kingdom). 
MilliQ water used for mobile phase preparation had a resistivity of 18 mΩ.

Most internal standards were purchased from AVANTI (Alabaster, Alabama, United States), including cera-
mide (Cer) d18:1/12:0, Cer m18:1/12:0, cholesterol (COH)-d7, glucosylceramide (HexCer) d18:1/12:0, dihexo-
sylceramide (Hex2Cer) d18:1/12:0, lysophosphatidylcholine (LPC) 13:0, lysophosphatidylethanolamine (LPE) 
14:0, phosphatidylcholine (PC) 13:0/13:0, phosphatidylethanolamine (PE) 17:0/17:0, phosphatidylglycerol (PG) 
17:0/17:0, phosphatidylinositol (PI) 12:0/13:0, phosphatidylserine (PS) 17:0/17:0, plasmalogen phosphatidyl-
choline (PC-P) 18:0/18:1-d9, plasmalogen phosphatidylethanolamine (PE-P) 18:0/18:1-d9 and sphingomyelin 
(SM) d18:1/12:0. Other standards include acylcarnitine 16:0-d3, triacylglycerol (TG) 12:0/12:0/12:0 and TG 
17:0/17:0/17:0 from Sigma-Aldrich, ganglioside GM3 d18:0/18:1-d3 and globotriaosylceramide (Hex3Cer) 
d18:0/18:1-d3 from Cayman (Ann Arbor, Michigan, United States), cholesteryl ester (CE) 18:0-d6 from CDN 
isotopes (Quebec, Canada) and diacylglycerol (DG) 15:0/15:0 from Santa Cruz Biotech (Dallas, Texas, United 
States).

CerS2 serum samples
CerS2 null mice were generated as previously described, in accordance with the Animal Research: Reporting 
of In Vivo Experiments (ARRIVE)  guidelines32,33. The experimental protocols were approved by the Weizmann 
Institute of Science’s Institutional Animal Care and Use Committee (IACUC), with animals treated according to 
the IACUC Animal Care Guidelines and the National Institutes of Health’s Guidelines for Animal Care. Serum 
was isolated from wild type and CerS2 null mice at 26 weeks.

Lipid extraction
Lipid extraction from commercial human plasma and mouse serum samples was performed using a variation of 
the Butanol-Methanol extraction  method34. Briefly, 180 µL of Butanol-Methanol (1:1, v/v) spiked with internal 
standards were added to 20 µL of sample. The resultant mixture was vortexed for 10 s and then sonicated in a 
water bath at 4 °C for 30 min. Centrifugation was subsequently performed at 14,000 rcf at 4 °C for 10 min. The 
supernatant was transferred into MS vials for LC–MS analysis. To develop the DIA method, the lipid extracts 
from human plasma samples were pooled, mixed and aliquoted into MS vials.

Serum samples from five wild-type mice and five CerS2 null mice were used for DIA analysis. The sequence of 
serum samples for extraction and subsequent LC–MS analysis were obtained via random sampling on Microsoft 
Office Excel 2016. Aliquots from each serum extract were pooled and split across the analytical run for equili-
bration of the system (5 samples) and as technical quality control (QC) samples (6 samples analysed at regular 
intervals).

LC–MS measurements
Lipid extracts were analysed on an Agilent 1290 Infinity II LC System coupled to the Agilent 6546 LC/Q-TOF 
system using a ZORBAX Eclipse Plus, C18, 95 Å, 1,8 µm, 2,1 × 50 mm (Agilent). Samples for MRM targeted 
analysis were measured with the same chromatographic system connected to the Agilent 6495 LC/TQ. The 
Agilent Data Acquisition Software Version 10.1 was used for all LC–MS analyses.

For the chromatographic runs, Water/Acetonitrile (6:4, v/v) + 10 mM Ammonium Formate was used as 
Mobile Phase A and Isopropanol/Acetonitrile (9:1, v/v) + 10 mM Ammonium Formate was used as Mobile Phase 
B, with an elution gradient starting at 0 min with 80% A and including: 2 min 40% A, 12 min 0% A, 14 min 
80% A. The stop time was set at 15.8 min with a flow rate of 0.4 mL/min and a column temperature of 40 °C. An 
injection volume of 4 µL was used in positive mode and 8 µL in negative mode. For the dilution series, injection 
volumes of 0.25, 0.5, 1, 2, 4 and 8 µL were used.

The ion source parameters for DDA and DIA were as follows: Gas temperature 325 °C, Drying gas 10L/min, 
Nebulizer 20 psi, Sheath gas temperature 350 °C, Sheath gas flow 12L/min, Capillary voltage 3500 V, Nozzle 
voltage 1000 V, Fragmentor voltage 180 V, Skimmer voltage 45 V and Octopole RF 750 V.

DDA
For DDA, acquisition was set to auto MS/MS mode with a mass range of 300–1000 m/z for MS1 and 50–1000 for 
MS2 at acquisition rates of 4 spectra/s (Cycle Time 1.6 s). The iterative MS/MS function was used to increase the 
number of fragmented species and was set at 20 ppm tolerance with RT exclusion tolerance of 0.2 min. A narrow 
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(~ 1.3 m/z) isolation width, collision energy of 20 V, 5 maximum precursors per cycle, precursor abundance-based 
scan speed of 10,000 counts/spectrum, 200 counts at 0.01% as the threshold for MS/MS, purity stringency of 
100% and purity cut off of 30% were also used. Reference masses at 121.0599 m/z and 922.0098 m/z were used 
in positive mode and 112.9856 m/z and 966.0007 m/z in negative mode. Active exclusion was enabled for one 
repeat for 0.08 min, corresponding to about half peak width. Abundance dependent accumulation was used 
with a value of 10,000 counts with MS/MS maximum accumulation time limit set to the method cycle time and 
precursors that cannot reach target abundance were not rejected.

DIA
Acquisition was set to data independent acquisition mode with a mass range of 300–1000 m/z for MS1 and 
50–1000 for MS2 at acquisition rates of 20 spectra/s for MS1 and 40 spectra/s for MS2. A fixed collision energy 
of 20 V was used.

The variable windows were obtained by analysing the acquired DDA data on the DIAwindow_calc module in 
the in-house developed MetaboKit software. The module first applies a feature detection step on the MS1 map to 
get a list of MS1 features. For each of these features, the density (number of features nearby) was calculated. The 
summed density for all features was approximately equal among all windows, subject to minimum and maximum 
window size allowable by the mass spectrometer. Finally, each window was extended by 0.5 m/z on both ends to 
ensure a 1 m/z overlap. The analysis was done using a window width of 10–100, 20 windows and mass range of 
300–1000 m/z, with all other parameters kept as default.

Fixed and variable windows values used during method development are detailed in Tables S1 and S2 and 
the variable windows used for the mouse study are reported in Table S4. Variable windows in positive mode as 
depicted in Table S2 were used for the dilution series.

MRM
The triple quadrupole scan type was set to dynamic MRM with a delta EMV of 200 V (+) and 0 V (−) for analy-
sis in positive mode. Time filtering was enabled with a peak width of 0.07 min and the cycle time was 900 ms. 
Ion source parameters were as follows: Gas temperature 250 °C, Gas flow 14 L/min, Nebulizer 35 psi, Sheath 
gas temperature 250 °C, Sheath gas flow 11 L/min, Capillary voltage 3000 V (+) and 4000 V (−), Nozzle voltage 
1000 V (+ , −), High pressure RF 150 V (+ , −), Low pressure RF 60 V (+ , −).

DDA data analysis
Lipid annotator
Raw DDA data files were analysed for identification of all lipid classes using settings as recommended by Koelmel 
et al.20: Q-Score ≥ 30, Mass deviation ≤ 10 ppm, Fragment Score ≥ 30, Total Score ≥ 60, Report dominant constitu-
ent if relative abundance differential ≥ 10%. All other parameters were kept as default.

MetaboKit
Agilent raw data files were first converted using MSConverter to mzML format. MSConverter is an open-source 
tool for conversion of raw data files to mzML format for data processing and is available at https:// prote owiza rd. 
sourc eforge. io/ downl oad. html35. DDA data were analysed on MetaboKit (2023/07/19 release) using the following 
settings: ms1to1 = 0.005 (amu), ms2to1 = 0.01 (Da), MS2_score = 0.5, min_peaks = 1 and RT_shift = 10. All other 
settings were kept as default, with MS/MS fragment matching fixed at 0.01 Da.

MS‑dial
Agilent raw data files were first converted to abf format using AnalysisBaseFileConverter. DDA data were 
analysed on MS-Dial Version 4.72, with MS1 Tolerance 0.01 Da, MS2 Tolerance 0.025 Da, MS1 mass range 
300–1000 m/z and MS2 mass range 50–1000 m/z. All other parameters were kept as default.

Lipostar
Raw DDA data files were directly analysed on Lipostar 2.1.2. Peak detection was done using a signal filtering 
threshold of 200 and m/z tolerance of 0.02 amu while all other parameters were kept as default. Identification was 
done using MS tolerance of 10 ppm and MS/MS tolerance of 20 ppm with all other parameters kept as default.

For the manual curation and filtering of software outputs, only [M +  H]+ and [M +  NH4]+ adducts were consid-
ered in positive mode and [M–H]− and [M +  HCOO]− adducts in negative mode. Manual curation of all identified 
lipid species was done based on RT and manual inspection of the quality of spectral matching. Duplicate IDs for 
the same lipid species were also removed from the final set of readouts. For ambiguous lipid classes or species 
identified by the software but not previously observed in-house, quality of the spectral matching with the library 
was used as the main criterion for evaluation. We exercised a more conservative approach whereby at least two 
matching MS/MS peaks are required, followed by verification through in-house targeted tandem high-resolution 
MS/MS of these species using the same extracts. Lipids identified by the software but not present in the sample 
according to this manual inspection process were deemed to have failed filtering. For Lipostar outputs, identified 
lipids with an isotopic pattern score of 0 were also considered to have failed the filtering process.

https://proteowizard.sourceforge.io/download.html
https://proteowizard.sourceforge.io/download.html
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DIA data analysis
MetaboKit
Agilent raw data files were first converted to mzML format using MSConverter. DIA data were analysed with 
MetaboKit using the following settings: ms1to1 = 0.005, ms2to1 = 0.01, min_peaks = 1, RT_shift = 20. All other 
settings were kept as default, with MS/MS fragment matching of the software fixed at 0.01 Da.

Lipostar
Raw DIA data files were directly analysed on Lipostar 2.1.2. Parameters for peak detection and identification 
were the same as those used for DDA. Identified lipids with an isotopic pattern score of 0 were deemed to have 
failed the filtering process.

For both software, only [M +  H]+ and [M +  NH4]+ adducts were considered in positive mode and [M–H]− and 
[M +  HCOO]− adducts in negative mode. Ambiguous species that were not identified in all triplicate injections, 
not previously observed and verified through in-house DDA or have doubtful RT were deemed to have failed 
the filtering process.

MRM data analysis
Dilution series data were analysed with MassHunter Quantitative Analysis, Version 10.1 using a quantitative 
method specific for MRM data. Agile2 was used as the default integrator while for transitions with close multiple 
peaks, either General or Spectral Summation integrators were used. Manual inspection was also performed for 
all data following peak integration.

Reference spectral libraries
For data analysis performed with MetaboKit, the HMDB, NIST, LipidBlast, Lipid Atlas and all publicly avail-
able libraries in the MS-Dial repository were used, together with an RT list and spectral library obtained from 
prior in-house DDA analysis. These libraries contained a total of 892,093 publicly available spectra in positive 
mode, 845,599 publicly available spectra in negative mode and 729 in-house spectra. However, all possible con-
stituents for the same lipid sum composition are listed in the Lipid Atlas library in ascending numerical order 
and MetaboKit gives priority to the molecular composition with the highest match score, followed by the last 
entry listed in the spectral library when generating the outputs (e.g. SM 32:1 can be identified in negative mode 
based on the matching of the 659.5148 ion from formate loss and the 168.0416 phosphatidylcholine head group 
fragments but it is shown as SM 30:1;2O/2:0 in the output, which is the last entry for this particular sum com-
position in the Lipid Atlas library). Hence, all readouts were expressed as sum composition in the data for ease 
of interpretation. Readouts identified against the Lipid Atlas library had the sum composition computed using 
an in-house R script while readouts identified against the other libraries had the sum composition computed 
manually. Automated generation of sum composition lipid names by MetaboKit would be implemented in the 
foreseeable future but in the meantime, it is advisable for users to report the results at both levels to facilitate 
decision making with regard to the level of structural detail.

For MS-Dial analysis, all publicly available libraries in the MS-Dial repository were used for identification. 
In-silico libraries used in Lipid Annotator were taken from the MS-Dial repository using specific algorithms for 
transfer and assessment of quality  control20.

Statistical analysis
All calculations of  R2, plotting of heatmaps and analysis for the mice study were done in RStudio (https:// www. 
rstud io. com). Dot plots and visualization of lipid class distributions were generated using Graphpad Prism Ver-
sion 8.4.3. Data for all other figures and tables were processed and analysed using Microsoft Office Excel 2016.

Software availability
MetaboKit is an open-source command line tool publicly available at https:// github. com/ Metab oKit/ Metab oKit. 
MS-Dial is also an open-source  software21.

Results and discussion
Generation of spectral libraries
Conventional DIA workflows begin with MS/MS spectral library construction via DDA analysis. After generating 
an in-house MS/MS spectral library of lipids based on DDA acquisition of a commercial human plasma sample, 
we first tested the performance of different software packages for identification and quantification of lipids in our 
sample. Prior to data acquisition, we tested the impact of different collision energies (10 V, 20 V and 30 V) and 
observed that 20 V provided the best lipid coverage in both DDA and DIA (data not shown). Considering that 
the Q-RAI acquisition method is only configured with a single collision energy at the time of this publication, 
20 V was selected for all our LC–MS analyses to maximize the lipid species coverage.

At this stage, the term quantification refers to peak area integration without normalisation by lipid standards, 
with the exception of the validation case study. In our experiment, ten iterative MS/MS injections of a pooled 
lipid extract were analysed using MetaboKit, Lipid Annotator, MS-Dial and Lipostar software in parallel, and 
the numbers of lipid species identified by individual tools were compared. MS-Dial was used for comparison as 
it is a commonly used software for processing of untargeted lipidomics data acquired using the DDA and DIA 
approaches and contains the spectral libraries used by MetaboKit. Lipid Annotator was used for this compari-
son as it was developed by Agilent specifically for the analysis of iterative DDA data files from Agilent Q-TOF 
instruments. Iterative MS/MS allows precursors selected for fragmentation in prior injections to be excluded 

https://www.rstudio.com
https://www.rstudio.com
https://github.com/MetaboKit/MetaboKit
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from fragmentation in subsequent analysis of the same sample, allowing less abundant precursors to be detected 
and hence improving the overall coverage in DDA. On Agilent Q-TOF instruments, iterative selection of pre-
cursors can be enabled in the acquisition method whereas open-source iterative tools may be required for other 
platforms, such as AcquireX that is used for Thermofisher Orbitrap  instruments36.

After manual curation, a total of 228 lipid species were identified with MetaboKit in the positive mode data, 
compared to 216 with MS-Dial, 177 with Lipid Annotator and 226 with Lipostar (Fig. 1a). Different tools showed 
variable coverage of molecular species identified in each class; more SM species were reported by MS-Dial, more 
DG species by Lipostar and more Hex2Cer, PC-Ps, PEs and ether lipids by MetaboKit. Across all software, TGs 
were the most commonly identified species, followed by PCs, SMs and LPCs.

In the negative mode data, Lipid Annotator, MetaboKit, MS-Dial and Lipostar gave a total of 125, 113, 126 
and 163 species respectively (Fig. 1b). Similar to the positive mode analysis, some differences were observed in 
lipid class composition. MetaboKit was the only software that identified N-acyl-lysophosphatidylethanolamine 
(LNAPE) and lysophosphatidylglycerol (LPG) species, while Lipostar identified more ceramides, PCs, PEs and 
SMs. For Lipid Annotator, MetaboKit and MS-Dial in both polarities, a higher lipid coverage as compared to 
the traditional DDA approach was indeed observed with the iterative DDA approach and the use of five iterative 
injections was enough to reach the maximum number of species identified. (Fig. S1).

Although Lipostar gave the best identification results, it also reported 21,186 outputs that were manually fil-
tered out in positive mode, which was significantly higher than other software ( Supplementary File 1). MS-Dial 
performed well but its report also contained a higher number of identifications that were filtered out in positive 
mode (334), compared to 73 and 203 in Lipid Annotator and MetaboKit, respectively (Supplementary File 1). 
Similarly, 15,762 identifications from Lipostar were filtered out in negative mode, compared to 86, 65 and 69 
with MS-Dial, Lipid Annotator and MetaboKit respectively.

These differences in identification results could be due to the different identification algorithms, score thresh-
olds, error rates and spectral libraries used by the different software. For instance, the Bayesian theorem algorithm 
combined with non-negative least squares for spectral deconvolution that is unique to Lipid Annotator could have 
resulted in a more conservative annotation, leading to lesser identified species in positive  mode20. Conversely, the 
rule-based annotation system adopted by MS-Dial leads to a number of identifications generated without MS/

Figure 1.  Identification of lipid species using Lipid Annotator vs MetaboKit vs MS-Dial vs Lipostar for (a) 
Positive Mode and (b) Negative Mode when analysing samples with iterative MS/MS (10 iterative injections) 
and DDA. In positive mode, MetaboKit gave the highest coverage with 228 lipids. In negative mode, Lipid 
Annotator, MetaboKit and MS-Dial gave comparable coverage while Lipostar gave the most identifications.
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MS evidence, which may have resulted in more false positives and reduced annotation  confidence21. This would 
also imply that certain lipid classes are detected better by different tools. In turn, a balance needs to be achieved 
between identification numbers and stringency and any compounds of interest identified through this DDA 
approach would need to be further verified through tandem MS/MS and targeted analysis of the product ions.

To further assess the identification performance in DDA for MetaboKit, an analysis was also conducted using 
the same search space (spectral libraries) as MS-Dial, which yielded comparable performances (Fig. S2). These 
results showed that MetaboKit delivers comparably reliable identification performances with a coverage equiva-
lent to other widely used tools, with the additional benefit of generating a customized MS/MS spectral library 
that includes product ion peak intensities and retention times. Overall, these findings suggest that MetaboKit is 
suitable for untargeted lipidomic analysis when using DDA and facilitates the generation and customization of 
data resources also for DIA analysis.

DIA using the Q‑RAI acquisition function for lipidomics
While initially developed as a quantitative tool for small molecules, we used the Agilent Q-RAI acquisition 
function as both a discovery and quantitation workflow for DIA analysis of lipids. Using the spectral library 
generated in DDA mode, a DIA approach was performed in both polarities on triplicates of the same pooled 
human plasma lipid extracts, using both fixed (20(+ 1) Da) and variable quadrupole windows. In this workflow, 
DDA was used as the primary mode of lipid identification while quantification in DIA was done only if tandem 
MS supported the lipid identification in DDA mode.

Among the lipids quantified in DIA positive mode, MetaboKit was able to extract quantitative data for 215 
and 220 lipid species using fixed and variable windows, respectively (Fig. 2a, Supplementary File 2). Though 
these numbers show a slight reduction when compared to the 228 species identified with DDA positive mode 
using iterative MS/MS, these observations are expected since the quantification module requires that the ion 
chromatograms for the fragment ions in the DDA spectral library be retrievable for peak identification in DIA. 
Both types of isolation windows gave similar lipid class distributions, with TGs being the most represented, fol-
lowed by PCs, SMs and LPCs. This trend is similar to the class distribution observed in DDA.

Among the lipids quantified in DIA negative mode, MetaboKit was able to extract quantitative data for 112 
and 108 lipids using fixed and variable windows respectively (Fig. 2b, Supplementary File 2). Similar to the obser-
vations in positive mode, these numbers show a slight reduction when compared to the 113 species identified with 
DDA negative mode using iterative MS/MS. Detailed curation resulted in 145 and 124 MS1 features being filtered 
out in positive mode in fixed and variable windows respectively and 42 and 45 MS1 features being filtered out in 

Figure 2.  Number of lipid species identified when using DIA with the MetaboKit and Lipostar software for 
(a) Positive Mode and (b) Negative Mode using either fixed (20 (+ 1) Da) or variable windows. Lipostar gave 
marginally improved identification results, with the variable windows setup providing a slightly higher lipid 
coverage for both software in both polarities with the exception of MetaboKit in negative mode.
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negative mode in fixed and variable windows respectively. These results indicate that peak areas were associated 
to most of the lipid entries in the spectral library built with the previous DDA analysis and the targeted DIA 
extraction of MS2 fragments by MetaboKit enables MS2 quantitation of most lipid species identified in DDA.

When analysing the same data files with Lipostar, which also supports lipid identification using DIA data, 
212 and 243 lipid species were identified in positive mode using fixed and variable windows respectively, while 
127 and 144 lipid species were identified in negative mode (Fig. 2). Manual curation resulted in 12,662 and 
14,313 MS1 features being excluded in positive mode in fixed and variable windows respectively and 4,505 and 
5,327 MS1 features being excluded in negative mode. As this type of data generation is not yet widely adopted 
on Agilent instruments, the input file format was not compatible with MS-Dial (at least when this manuscript 
was generated) and we were not able to optimally process Q-RAI Agilent data files using this bioinformatic tool. 
In addition, Lipostar does not provide MS2 quantification in the software outputs and hence we were unable to 
compare MS2 quantification performances.

In terms of quantification, when using MS1 data obtained with DIA in both polarities, 98–99% of identified 
features showed RSD < 30%. Even though the fixed and variable windows approaches gave similar lipid cover-
ages, the variable windows approach provided more reproducible results at the MS2 level, as seen from a higher 
number of fragments with RSD < 30%. The variable windows setup also generated more quantifiable MS2 frag-
ments, as expected and previously  reported6,37. More than 90% of MS1 signals had at least one corresponding 
MS2 fragment with RSD < 30%, confirming that a reliable quantification of lipids using their product ions is 
one of the advantages of the DIA approach. As expected, the RSD values at both MS1 and MS2 levels decreased 
exponentially with increasing abundance, with MS2 quantitation giving higher RSD than MS1 (Fig. S3). Table 1 
summarizes the quantification data.

These results show that the Q-RAI DIA approach coupled with MetaboKit processing is a feasible approach 
for semi-targeted quantification of lipids in both MS1 and MS2. For this purpose, a variable windows approach 
may be more suitable, due to its higher reproducibility and sensitivity (Table 1). The improved identification 
performances using variable windows, as seen from the Lipostar readouts, also showcases an added benefit of 
this methodological approach but would require further testing of identification algorithms in MetaboKit and 
other tools.

Comparison between Q‑RAI DIA and MRM modes for quantification of lipids
To better evaluate the quantification performance of the Q-RAI DIA methodology, a dilution series using pooled 
plasma extracts was analysed using variable windows in DIA positive mode with the Q-TOF and, at the same 
time, with a targeted MRM method using a QQQ. While our DIA approach was not expected to outperform 
MRM due to different sensitivity performances, the rationale was to use the MRM approach as a benchmark and 
compare different quantification strategies. Various lipid amounts on column were measured by injecting serially 
increasing volumes: 0.25, 0.5, 1, 2, 4 and 8 µL. Table 2 and Supplementary File 3 summarizes the obtained results.

When using DIA, similar results were obtained for the RSD at MS1 and MS2 level, with 8 µL injection volume 
giving the lowest RSD values followed by 4 µL (Table 2). However, saturation was evident at injection volumes 
above 4 µL. In view of this, the  R2 for all outputs was calculated only up to an injection volume of 4 µL. A good 
linear response was observed, whereby MS1 showed  R2 of 0.988 and for MS2 this was found to be 0.978 (Table 2). 
For the 106 lipid species monitored in the DIA dilution series data, heatmaps of the normalized median-centred 

Table 1.  Descriptive statistics for the comparison between MS1 and MS2 measurements in DIA mode.

Positive Mode Negative Mode

Fixed Windows (20 (+ 1) Da) Variable Windows Fixed Windows (20 (+ 1) Da) Variable Windows

MS1

 Total Number of Features 215 220 112 108

 Number of Features with 
RSD < 30% 209 (97.21%) 217 (98.64%) 112 (100%) 107 (99.07%)

 Median RSD for Features 
with RSD < 30% 2.43 2.37 3.04 2.06

 Number of Features with 
RSD > 30% 6 (2.79%) 3 (1.36%) 0 (0%) 1 (0.93%)

MS2

 Total Number of Fragments 1982 2038 1078 1040

 Number of Fragments with 
RSD < 30% 1150 (58.02%) 1317 (64.62%) 471 (43.69%) 523 (50.29%)

 Median RSD for Fragments 
with RSD < 30% 8.44 7.16 10.96 9.45

 Number of MS1 Features with 
MS2 Fragments of RSD < 30% 210 (95.45%) 217 (98.64%) 109 (97.32%) 107 (99.07%)

 Number of Fragments with 
RSD > 30% 573 (28.91%) 540 (26.50%) 316 (29.31%) 301 (28.94%)

 Number of Non-Quantifiable 
Fragments 259 (13.07%) 181 (8.88%) 291 (26.99%) 216 (20.77%)
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fold changes showed proportional increases in the abundance for all lipids according to the injection volume, 
both at the MS1 (Fig. 3a) and MS2 (Fig. 3b) level.

To further investigate the potential use of MS2 for quantification, we calculated the Pearson’s correlation 
between the 651 generated DIA MS2 fragments and their corresponding MS1 precursors, obtaining a median 
Pearson’s  R2 of 0.973 with only 126 fragments (19.35%) having  R2 < 0.8 (Table S3). As the best candidates for 
quantification for each of the 106 identified lipid species, the DIA MS2 fragments with the highest  R2 for each 
MS1 feature were chosen. When considering these 106 MS2 fragments, the median  R2 increased to 0.997 with 
no fragments having  R2 < 0.8 (Table S3).

A similar comparison between MRM and DIA showed that across all injection volumes, the median RSD and 
the percentage of fragments with RSD > 30% were the lowest when using MRM and highest when using DIA MS2 
(Table 2). As described for DIA, saturation was observed for injection volumes > 4 µL, while MRM gave the best 
linearity values, with no transitions having  R2 < 0.8 and a median  R2 of 0.997 (Table 2). In light of this, different 
injection volumes of 4 µL and 8 µL were deemed optimal for DIA MS2 quantification in positive and negative 
mode respectively, due to the different sensitivity for different polarities and based on the lowest median RSD 
calculated when injecting different volumes.

When using only the lipid species commonly found in the DIA and MRM methods, similar results were 
obtained in terms of RSD and  R2 (Figs. S4, S5). 4 signals out of 88 showed a Pearson’s  R2 < 0.8 when considering 
MRM vs DIA MS2, higher than the 2 signals out of 106 when comparing MRM and DIA MS1 (Fig. S6). When 
selecting the DIA MS2 fragment that showed the best correlation with DIA MS1, a higher correlation value with 
the corresponding MRM data was also observed, improving the results obtained when using the same MS2 frag-
ment for both DIA and MRM (Fig. S7). Comparing the lipid species in common between DIA MS1, DIA MS2 and 
MRM also saw a reproducible linear increase of signal with injection volume for all three approaches (Fig. S8).

The differences observed in the reproducibility (RSD) and linearity suggest that quantification performances 
are better in MRM mode. Although we did not observe a clear superiority of the Q-RAI DIA workflow, our 
results show that DIA MS1 features, DIA MS2 fragments and MRM transitions are highly correlated. This result is 
somewhat expected, considering the high sensitivity and reproducibility of MRM methodologies. However, con-
sidering that prior knowledge of lipids of interest is required for MRM, together with the time and effort required 
to develop a suitable targeted panel, the Q-RAI DIA approach is a valid choice for simultaneous untargeted lipid 
identification without prior knowledge and reasonably precise MS2 quantification of identified lipid species.

Due to the presence of multiple MS2 fragments for each lipid, this DIA workflow can also be used to iden-
tify the best quantifier ions for targeted lipidomics optimization. User discretion might be advisable in terms 
of selecting the most representative MS2 fragments to quantify each MS1 feature for different applications. As 
shown in our results, Pearson’s correlation may be used as a criterion for selection of the best performing MS2 
fragments for improvement of existing MRM lists. In addition to this, a variety of other criteria such as RSD, 
dot product score and linearity assessment may be used for the selection of either MS1 or MS2 ions. In general, 
MS1 measurements may have higher precision while MS2 measurements would be more sensitive and with 
their fragmentation information could serve as a more accurate quantifier, but this would be dependent on the 

Table 2.  Descriptive statistics for the comparison between measurements acquired on a Q-TOF by MS1 (DIA) 
and MS2 (DIA), or on a QQQ by MRM, for a six-point dilution series of a lipid extract from commercially 
available human plasma.

Injection Volume (μL)

0.25 0.5 1 2 4 8

DIA MS1

 Total Number of Features 106

  Median RSD (%) 3.80 2.35 1.82 1.09 1.08 0.92

 Number of Features with RSD > 30% 1 (0.94%) 0 (0%) 0 (0%) 3 (2.83%) 2 (1.89%) 1 (0.94%)

  Median  R2 0.990

 Number of Features with  R2 < 0.8 5 (4.72%)

DIA MS2

 Total Number of Quantified Fragments 651 out of 1007 (64.65% of all fragments)

  Median RSD (%) 15.15 11.02 8.27 6.06 5.42 4.74

 Number of Fragments with RSD > 30% 167 (25.65%) 108 (16.59%) 73 (11.21%) 61 (9.37%) 37 (5.68%) 58 (8.91%)

  Median  R2 0.957

 Number of Fragments with  R2 < 0.8 143 (21.97%)

MRM

 Total Number of Transitions 287

  Median RSD (%) 5.74 1.71 1.41 1.68 1.38 5.51

 Number of Transitions with RSD > 30% 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

  Median  R2 0.997

 Number of Transitions with  R2 < 0.8 0 (0%)
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analytes. For instance, ionization efficiency is dependent on numerous factors such as basicity of the analytes 
and solvents, relative intensities of the analytes, type of LC–MS instrument and experimental conditions, which 
could all contribute to deviation in MS1 quantification. The fragmentation yield is largely dependent on colli-
sion energy and may not be the optimal one for all analytes when using a constant  value38,39. As such, one might 
expect to observe less background noise for MS2 and more variability in MS1 quantitation (although a larger 
cohort would have to be used to further evaluate this aspect).

Case study: lipidomic analysis of blood serum from Ceramide Synthase 2 null mice
Ceramide Synthase 2 (CerS2) is one of the six Ceramide Synthase (CerS1-CerS6) enzymes, which are distin-
guished by their use of distinct sub-sets of acyl CoAs for N-acylation of the sphingoid  base40. CerS2 uses mainly 
C22 and C24 acyl CoAs, thus generating very long acyl chain (VLC)-dihydroceramides and ceramides—the 
backbones of all sphingolipids (SLs)32,33. Lack of CerS2 results in a significant reduction of all VLC-SLs and a 
compensatory higher production of long chain C16 and C18  SLs32,33. The depletion of VLC-SLs changes mem-
brane properties, disrupting membrane domains and their properties. CerS2 null mice show defects in insulin 
resistance (by inhibition of insulin receptor translocation), fatty acid uptake (by CD36 mislocalization and 
FATP5 down-regulation) and gap junction  dysfunction41. Increased levels of C16-ceramides and sphinganine 
inhibit the mitochondrial respiratory complex IV, causing chronic oxidative  stress42. Hence, perturbation of the 
expression of CerS2 results in a reduction of C22- and C24-containing SLs and could induce a possible signifi-
cant change in the concentrations of other lipid classes, which has not been extensively studied, via a possible 
regulatory effect of the affected sphingolipid species. Application of our newly developed DIA workflow in this 
context would both confirm the effect of CerS2 suppression on the SL levels but also shed light on the influence 
of SL perturbations on other lipid pathways.

The DIA workflow was applied to the identification and quantification of lipids in serum samples from 
wild type (WT) and CerS2 null male mice. Five iterative injections of a pooled extract of all the murine samples 
were analysed in both polarities in DDA mode for generation of an in-house spectral library of lipids in mouse 
serum. Study samples, from five WT and five CerS2 null mice, were then injected in triplicates in DIA acquisition 
mode, using variable windows calculated by MetaboKit (Table S4).

Similar to what was found in human plasma, DIA MS1 provided a more reproducible quantification than 
MS2 on average, based on the metrics calculated for the pooled quality control (QC) samples. The median RSD 
associated with DIA MS1 measurements was 7.41 and 5.23 across all features in positive and negative mode 

Figure 3.  Heatmaps of normalized median-centred fold changes of DIA MS1 (a) and DIA MS2 (b) for 106 lipid 
species identified and quantified in dilution series of lipid extracts from commercial human plasma. A distinct 
increase in concentration, directly proportional to increasing injection volumes (grey to black), is shown for all 
lipids measured, for both DIA MS1 and DIA MS2 acquisitions.
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respectively, while for DIA MS2 the median RSDs were 17.72 and 18.13 (Table 3). In total, 244 and 143 lipid 
species were quantified in DIA positive and negative mode in the QC samples (Table 3).

Lipid species with (1) MS1 and at least one MS2 fragment with RSD < 30% in the QC samples and (2) Pearson’s 
 R2 > 0.8 between MS2 and MS1 in all samples were retained for analysis. Considering both polarities, a total of 
173 lipid species passed the filtering criteria in positive mode and 119 in negative mode (Table S5). For these 
lipids, missing values in the mouse serum samples were then replaced using the outputs in the quant_fill_all text 
file and differential abundance analysis was conducted (Supplementary File 4). Choosing either the MS1 or the 
MS2 readout with the lowest RSD across both polarities as a representative result for each lipid, we found that 88 
lipids had a significantly different abundance between WT and CerS2 null serum (Fig. 4). For some of the lipid 
species, after MS2-based quantification their levels were significantly different between WT and CerS2 null sera 
even when MS1 measurements although showing the same trend, did not reach statistical significance (Fig. S9a,c, 
Supplementary File 5). This indicates that in some cases DIA MS2 may be more sensitive for quantification. 
Nevertheless, for both polarities, most lipids quantified in the two groups were confirmed to be significantly 
different at both MS1 and MS2 levels (Fig. S9a,c). The heatmap of normalized median-centred lipid fold changes 
in the samples also shows distinct clustering based on lipidomic expression profile at both MS1 and MS2 levels 
(Fig. S10). These clusters revealed the presence in the serum of CerS2 null mice of lower levels of VLC-SLs and 
TGs but higher levels of other species, such as LPCs, acylcarnitines and ether-PC and -PE. This approach also 
further emphasized the effectiveness of using Pearson’s correlation in addition to RSD as a criterion for the 
selection of either MS1 or representative MS2 fragments from our Q-RAI workflow for semi-quantification.

Reflecting the specificity of the CerS2 enzyme, the most significant changes were registered on SLs, such as 
ceramides and SMs carrying C22 and C24 fatty acyl chains, having significantly lower levels in CerS2 null mice 

Table 3.  Descriptive statistics of all transitions quantified in DIA mode for the QC samples (n = 6) of the 
CerS2 null mice study.

Positive Mode Negative Mode

DIA MS1 DIA MS2 DIA MS1 DIA MS2

Total Number of Quantified Features/Fragments 244 1844 out of 2505 143 755 out of 1461

Median RSD (%) 7.41 17.72 5.23 18.13

Number of Features/Fragments with RSD > 30% 4 (1.64%) 552 (29.93%) 1 (0.70%) 195 (25.83%)

Number of Features/Fragments with RSD 20–30% 7 (2.87%) 281 (15.24%) 2 (1.40%) 152 (20.13%)

Number of Features/Fragments with RSD < 20% 233 (95.49%) 1011 (54.83%) 140 (97.90%) 408 (54.04%)

Figure 4.  Volcano plot representing all lipids quantified in WT and CerS2 null mice serum using a Q-RAI 
DIA workflow. 88 lipids showed significantly different concentrations between WT and CerS2 null (FC > 2, 
FDR < 0.05). As expected, very long chain sphingolipids (C22-24) were present at significantly lower levels in 
CerS2 null mice, while acylcarnitines, phosphatidylcholines (PCs) and long chain sphingolipids (C16-18) were 
significantly higher in CerS2 null mice.
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(Fig. 5)32,33. At the same time, for the previously mentioned compensatory mechanism, the long chain C16- and 
C18-containing species were increased (Fig. 5)32,33. For most of these SL, significantly different concentrations 
were found both at MS1 level and for all fragments in MS2 (Supplementary File 5). These findings on SL are also 
consistent with the MRM data previously published by Pewzner-Jung et al.32,33 and confirmed the reliability of 
our DIA approach for quantification.

When considering other lipid species, an increase was observed for Coenzyme Q9 (CoQ9), several acylcarni-
tines and PCs, while TG species with saturated or monounsaturated fatty acyl chains decreased. Dysregulation of 
acylcarnitine levels suggests an impaired function of the mitochondria caused by incomplete β-oxidation of lipids, 
possibly leading to elevated oxidative stress, as previously shown in the same animal  model43,44. As a compensa-
tory mechanism, increased production of CoQ9 might occur to coordinate the assembly of the electron transport 
chain and promote antioxidative function within the  mitochondria45. This informative finding was only allowed 
by the Q-RAI DIA untargeted approach, as this is not a molecule usually covered by lipid panels. An increased 
level of C16 sphingolipids can also induce similar mitochondrial defects, which could generate an increase in the 
TG levels as a buffering system for the increase in toxic free fatty  acids43,46,47. Conversely, C22-C24 ceramides can 
cause dysregulation of hepatic CD36/FAT expression, thereby resulting in reduced hepatic accumulation of TGs 
and reduced secretion into plasma as a complex with very low-density lipoproteins (VLDLs) or  chylomicrons48–50. 
Another interesting finding is the negative correlation existing between VLC-SL levels and ether lipids, which 
has been observed earlier by other investigators in cell  models51,52. This effect seems to be due to SL and ether 
lipids having similar functions in the cell membrane. Although the reason for this co-regulation is not known, 
from our results we can hypothesise that this might be mainly governed by the SL species containing VLC FA, 
as in our system the long chain SL changed in the same direction as the ether species.

More in general, 38 and 44 lipids were found to have significantly different levels between WT and CerS2 null 
samples in positive mode and negative mode respectively (Fig. S9b,d). These findings indicate the success of the 
Q-RAI DIA approach in elucidating the possible pivotal role of CerS2 as a regulatory gene in liver homeostasis 

Figure 5.  Dot plot of abundance values for long chain FA (C16 and C18)- and very long chain FA (C22 
and C24)-containing sphingolipid species in WT (n = 5) and CerS2 null (n = 5) mice, obtained using the 
developed Q-RAI DIA workflow. Confirming what was previously reported, very long chain ceramides (a), 
hexosylceramides (b) and sphingomyelins (c) were significantly decreased in CerS2 null mice, while long chain 
species in the same lipid classes were significantly increased in CerS2 null mice (FC > 2, FDR < 0.05).
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and general lipid metabolism, thereby illustrating the potential of this methodology for high-throughput lipid-
omic screening in biological applications.

Conclusion
In summary, we developed for the first time a DIA workflow for lipidomics using Q-RAI acquisition on the 
Agilent 6546 LC/Q-TOF instrument. Following data acquisition, MetaboKit provides robust functionalities in 
untargeted lipid identification for DDA analysis and targeted quantification for DIA data, at both the MS1 and 
MS2 levels, using a customized spectral library. The availability of multiple MS2 fragments for each identified 
MS1 feature in the DIA readouts provides an option for the user to select representative MS2 fragments of interest 
for each compound, using pre-defined objective quality metrics, which will be particularly applicable as a digital 
footprint for development of in-house targeted methods or for small scale biological studies. This solution may 
potentially be extended to larger scale applications and analysis of polar metabolites in the near future.

Data availability
Metabolomics data was deposited to the EMBL-EBI MetaboLights database (https:// doi. org/ 10. 1093/ nar/ gkz10 
19, PMID:31691833) with the identifier MTBLS8097. The complete dataset can also be obtained by contacting 
the corresponding author.
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