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Causal effect of gut microbiota 
on DNA methylation phenotypic 
age acceleration: a two‑sample 
Mendelian randomization study
Yedong Huang 1,2, Xiaoyun Chen 3, Jingwen Ye 4, Huan Yi 1,2* & Xiangqin Zheng 1,2*

The causal relationship between gut microbiota and DNA methylation phenotypic age acceleration 
remains unclear. This study aims to examine the causal effect of gut microbiota on the acceleration of 
DNA methylation phenotypic age using Mendelian randomization. A total of 212 gut microbiota were 
included in this study, and their 16S rRNA sequencing data were obtained from the Genome‑wide 
Association Study (GWAS) database. The GWAS data corresponding to DNA methylation phenotypic 
age acceleration were selected as the outcome variable. Two‑sample Mendelian randomization 
(TSMR) was conducted using R software. During the analysis process, careful consideration was given 
to address potential biases arising from linkage disequilibrium and weak instrumental variables. The 
results from inverse‑variance weighting (IVW) analysis revealed significant associations (P < 0.05) 
between single nucleotide polymorphisms (SNPs) corresponding to 16 gut microbiota species and 
DNA methylation phenotypic age acceleration. Out of the total, 12 gut microbiota species exhibited 
consistent and robust causal effects. Among them, 7 displayed a significant positive correlation with 
the outcome while 5 species showed a significant negative correlation with the outcome. This study 
utilized Mendelian randomization to unravel the intricate causal effects of various gut microbiota 
species on DNA methylation phenotypic age acceleration.

The human gastrointestinal tract harbors an immensely large microbial community, encompassing an estimated 
range of 1000–1150 bacterial species collectively known as the gut microbiota (GM)1. In recent years, gut micro-
biota has emerged as a prominent focus of medical research and has been substantiated to be intricately associ-
ated with immune function, metabolism, and the development of various  diseases2, 3. The composition of GM 
undergoes dynamic changes from infancy to adulthood and throughout the aging process in human  individuals4. 
Therefore, gaining a comprehensive understanding of the profound association between gut microbiota and 
individual aging holds significant importance in the realms of anti-aging interventions and the prevention of 
age-related diseases.

The epigenetic clock, developed by Levin et al.5 in 2018, is a tool that utilizes gene methylation patterns to 
infer an individual’s biological age. Existing research has demonstrated that biological age, as measured by the 
epigenetic clock, outperforms chronological age in assessing an individual’s true aging status and predicting their 
 lifespan6. DNA methylation phenotypic age acceleration, also known as epigenetic clock acceleration, serves as 
a biomarker reflecting an individual’s aging status. It is commonly used to refer to the difference between an 
individual’s biological age and chronological  age7. Currently, it has been firmly established that GM is significantly 
associated with organismal aging and several age-related  diseases8–10. However, the causal effects of GM on DNA 
methylation phenotypic age acceleration remain unclear.

Mendelian randomization (MR) is an epidemiological research method that utilizes genetic variation as 
instrumental variables (IVs) to investigate the causal associations between exposures and  outcomes11. MR has 
gained widespread application in medical research in recent years due to its ability to mitigate confounding 
factors and reverse causality, which are often encountered in traditional epidemiological studies. Moreover, MR 
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offers advantages such as cost-effectiveness, efficiency, and increased control over variables compared to rand-
omized controlled trials (RCTs)12, 13. This study aims to investigate the causal impact of gut microbiota on DNA 
methylation phenotypic age acceleration using the analysis method of Mendelian randomization.

Materials and methods
Data sources and software preparation
The 212 gut microbiota datasets utilized in this study were obtained from GWAS database (http:// gwas. mrcieu. ac. 
uk/ datas ets/). These data were derived from the sequencing information of the 16S rRNA of the gut microbiota 
in a total of 18,340 samples across 24 cohorts, as conducted by Kurilshikov et al14. The data on DNA methylation 
phenotypic age acceleration originates from a GWAS dataset based on epigenetic aging, specifically encoded as 
ebi-a-GCST9001429215. The data analysis was performed using the R software (version 4.1.3) and the TwoSa-
mpleMR package.

Selection of instrumental variables for GM
The SNP selection for the gut microbiota followed the criterion of P < 1*10–5. To ensure adherence to Mendel’s 
Second Law of Independent Assortment, which represents the principle of free combination, in this study, the 
criteria for linkage disequilibrium were set as follows:  r2 < 0.001 and kb > 10,000. The SNPs filtered based on the 
aforementioned criteria will be used as IVs for subsequent analysis.

Exclusion of weak instruments
To ensure the accuracy of the study results and the validity of the instrumental variable assumptions for Mende-
lian randomization, weak IVs were identified and removed based on the calculated F-statistic. The F-statistic is 
a statistical measure that reflects the strength of the association between IVs and the exposure factor. It is calcu-
lated using the formula: F = (β/SE) 2. SNPs are regarded as weak IVs and are excluded from the analysis if F < 10.

Data analysis
Mendelian randomization analysis was conducted using the TwoSampleMR package in R software, employing 
the inverse-variance weighting (IVW) method. The regression results of IVW are used to determine whether 
there is a significant causal effect and directionality between the exposure and the outcome. To mitigate potential 
biases introduced by individual statistical methods, the weighted median (WM) and MR-Egger were employed as 
complementary analyses to the IVW. If the directions of the regression coefficients in the three aforementioned 
analyses are inconsistent, it indicates an unstable causal effect. In this step of the analysis, if the P-value of the 
IVW < 0.05, it is considered as a significant association between the exposure and the outcome.

Heterogeneity and horizontal pleiotropy testing
In this study, Cochran’s Q test and MR-Egger intercept test were employed to assess the heterogeneity and hori-
zontal pleiotropy of the results, respectively. Heterogeneity represents the variability of causal effect estimates 
among each SNP. If heterogeneity is significant, it suggests an unstable causal effect between the exposure and 
the outcome. On the other hand, horizontal pleiotropy refers to the possibility of SNPs influencing the outcome 
through factors other than the exposure. If horizontal pleiotropy is significant, it indicates a violation of the 
exclusivity assumption in MR analysis. In both of the aforementioned tests, P-value < 0.05 is considered statisti-
cally significant.

Ethics approval and consent to participate
This analysis of publicly available data does not require ethical approval.

Results
Data and detailed information
The GM data obtained from the GWAS database is used as the exposure variable, while DNA methylation phe-
notypic age acceleration is considered the outcome variable in this study. The GM data consists of a total of 212 
sub-datasets, which cannot be fully presented in Table 1. For detailed information regarding the GM data, please 
refer to Supplementary Material 1 (Suppl. 1).

IVs selection, linkage disequilibrium, and weak IVs exclusion
The following criteria were used to screen for SNPs: P < 1*10–5; linkage disequilibrium parameters:  r2 < 0.001 
and kb > 10,000. IVs with an F-statistic < 10 were excluded from the analysis. The F-statistics of each SNP and 
more detailed information can be found in Supplementary Material 2 (Suppl. 2), with F-statistics ranging from 
14.90981 to 35.41665 for all SNPs.

Table 1.  Detailed information of the dataset used in this study.

Exposures/Outcomes ID Sample size Author Population Year

Gut microbiota abundance Not applicated 18,340 Kurilshikov European and mixed 2021

DNA methylation PhenoAge Accel ebi-a-GCST90014292 34,463 McCartney DL European 2021

http://gwas.mrcieu.ac.uk/datasets/
http://gwas.mrcieu.ac.uk/datasets/
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Results of MR
As shown in Fig. 1, the analysis results of IVW indicate a potential causal association (P < 0.05) between the 
abundance of 16 GM species and DNA methylation phenotypic age acceleration. If the regression coefficients’ 
directions from the Weighted median, MR-Egger and IVW methods are not consistent, it is considered an indi-
cation of an unstable causal effect and should be excluded from the final results. The detailed results of IVW and 
MR-Egger for the 16 GM species, including P-values and beta values are recorded in Table 2. Supplementary 
Material 3 (Suppl. 3) provides more detailed information about the 16 GM species.

Heterogeneity and horizontal pleiotropy tests
Heterogeneity and horizontal pleiotropy tests were conducted using Cochran’s Q test and MR-Egger intercept 
test, respectively. If there is significant heterogeneity and horizontal pleiotropy (P < 0.05) observed for the SNPs 
corresponding to the GM in relation to the outcome, it indicates that the causal effect is not established. A total of 
12 GM species showed relatively stable causal effects and passed the heterogeneity and horizontal pleiotropy tests 

Figure1.  Forest plot for IVW results of 16gut microbiota.

Table 2.  Detailed analysis results of IVW and MR-Egger of 16 gut microbiota.

ID.exposure Exposure information nsnp Beta of IVW Beta of MR-Egger P value of IVW P value of MR-Egger

ebi-a-GCST90016914 class Coriobacteriia id.809 14 − 0.432500 − 0.570237 0.047535 0.529630

ebi-a-GCST90016917 class Gammaproteobacteria 
id.3303 6 − 0.576390 0.347753 0.045634 0.728321

ebi-a-GCST90016930 family Christensenellaceae 
id.1866 27 0.370366 0.811673 0.042454 0.222573

ebi-a-GCST90016933 family Coriobacteriaceae 
id.811 14 − 0.432500 − 0.570237 0.047535 0.529630

ebi-a-GCST90016945 family Peptococcaceae id.2024 9 0.376363 1.000420 0.035539 0.055978

ebi-a-GCST90016989 genus Dorea id.1997 10 0.522970 0.820856 0.027930 0.249041

ebi-a-GCST90017013 genus Haemophilus id.3698 9 0.314864 − 0.010395 0.049975 0.978671

ebi-a-GCST90017025 genus Lachnospiraceae 
UCG001 id.11321 13 0.340038 0.841954 0.036977 0.273631

ebi-a-GCST90017027 genus Lachnospiraceae 
UCG008 id.11328 11 0.411210 1.285281 0.004303 0.122338

ebi-a-GCST90017030 genus Lactobacillus id.1837 10 − 0.347330 − 1.301232 0.037937 0.025866

ebi-a-GCST90017046 genus Rikenellaceae RC9 gut 
group id.11191 11 − 0.274830 0.050404 0.011965 0.944437

ebi-a-GCST90017049 genus Ruminiclostridium5 
id.11355 11 0.507447 − 0.173350 0.033470 0.864088

ebi-a-GCST90017066 genus Ruminococcus torques 
group id.14377 9 − 0.547570 − 0.578948 0.024936 0.417178

ebi-a-GCST90017075 genus Tyzzerella3 id.11335 13 0.328764 0.536296 0.005028 0.417083

ebi-a-GCST90017096 order Coriobacteriales id.810 14 − 0.432500 − 0.570237 0.047535 0.529630

ebi-a-GCST90017114 phylum Firmicutes id.1672 16 0.455203 0.662726 0.024021 0.170209



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18830  | https://doi.org/10.1038/s41598-023-46308-4

www.nature.com/scientificreports/

(Table 3). As shown in Figs. 2 and 3, among the aforementioned 12 GM species, 7 species exhibited a significant 
positive correlation with the outcome (Fig. 2), while 5 species showed a significant negative correlation with the 
outcome (Fig. 3). Figure 4 presents a heatmap, generated using the complexheatmap package in R (version 4.1.3), 
displaying the sorted β-values of the 12 GM species in relation to DNA methylation phenotypic age acceleration.

Discussion
Numerous studies have demonstrated a strong correlation between changes in GM and the aging process. How-
ever, there is a lack of definitive conclusions regarding the causal relationship between the two in the majority 
of these  studies16. In the GM of healthy adults, the abundance of Bacteroidetes and Firmicutes phyla is generally 
higher, while Actinobacteria and Proteobacteria phyla are comparatively less  abundant8,17. During the aging 
process, there is a gradual increase in the abundance of Bacteroidetes and Proteobacteria phyla, while the diver-
sity of the gut microbiota tends to  decrease18. Due to the complexity and diversity of the GM itself, identifying 
specific GM alterations associated with aging becomes challenging. Hence, this study aimed to explore the causal 
relationship between the GM and DNA methylation phenotypic age acceleration using MR analysis approach 
from the perspective of epigenetic clocks.

In this study, we identified seven specific GM species that exhibited significant positive causal effects on 
DNA methylation phenotypic age acceleration. These species were Christensenellaceae, Peptococcaceae, Dorea, 
Lachnospiraceae UCG001, Lachnospiraceae UCG008, Tyzzerella3 and Firmicutes. A total of five GM species 
exhibited significant negative causal effects on DNA methylation phenotypic age acceleration. These species were 
Coriobacteriia, Coriobacteriaceae, Lactobacillus, Ruminococcus torques group and Coriobacteriales. Among them, 
Coriobacteriia, Coriobacteriaceae, and Coriobacteriales belong to the phylum Actinobacteria, while Lactobacillus 
and Ruminococcus torques group belong to the phylum Firmicutes. Therefore, based on the results of this study, 
it can be concluded that the causal effects of GM on DNA methylation phenotypic age acceleration are complex. 
In 2022, Kumar et al.19 utilized D-galactose to establish an animal model for accelerated aging and intervened by 
administering Lactobacillus through dietary supplementation. The findings revealed that Lactobacillus exhibited 
antioxidant potential in ameliorating the accelerated aging model. These results are consistent with our research, 
demonstrating a negative causal effect between the abundance of Lactobacillus and DNA methylation phenotypic 
age acceleration. In 2023, Liu et al.20 investigated the relationship between GM and longevity using Mendelian 
randomization. The results demonstrated a positive correlation between the abundance of Coriobacteriaceae and 
increased odds of longevity, which is consistent with the findings of our study.

In recent years, researchers have put forth the idea of fecal microbiota transplantation (FMT) in the context 
of longevity. FMT involves the transfer of gut microbiota from healthy and long-lived individuals to patients, 
aiming to potentially delay aging and promote  longevity21,22. Although some studies have suggested a potential 
association between GM and the aging  process23–26, the consistency of results among different studies is relatively 
poor. Therefore, further research is needed to comprehensively understand the impact of different GM species 
on the epigenetic clock. The findings of this study suggest that the causal effects of GM on the aging process are 
intricate, with different microbial taxa exerting distinct influences on DNA methylation phenotypic age accel-
eration. In conclusion, the findings of this study provide valuable insights for the clinical application of FMT 
and personalized treatments.

This study has several limitations. Firstly, the majority of the GWAS data used in this study were based 
on European individuals, which may introduce geographical and ethnic biases; Secondly, this study did not 
investigate the specific mechanisms through which different GM species influence the epigenetic clock. Further 
exploration is required using larger sample size and laboratory data to address these limitations.

Conclusion
This study utilized Mendelian randomization to uncover the complex causal effects of different gut microbiota 
species on DNA methylation phenotypic age acceleration.

Table 3.  Detailed information of 12 gut microbiota with causal effect on the outcome. Footnote: The β values 
here specifically denote the β of the IVW method.

ID Microbiota Beta Direction

ebi-a-GCST90016914 class Coriobacteriia id.809 − 0.432500 Negative

ebi-a-GCST90016930 family Christensenellaceae id.1866 0.370366 Forward

ebi-a-GCST90016933 family Coriobacteriaceae id.811 − 0.432500 Negative

ebi-a-GCST90016945 family Peptococcaceae id.2024 0.376363 Forward

ebi-a-GCST90016989 genus Dorea id.1997 0.522970 Forward

ebi-a-GCST90017025 genus Lachnospiraceae UCG001 id.11321 0.340038 Forward

ebi-a-GCST90017027 genus Lachnospiraceae UCG008 id.11328 0.411210 Forward

ebi-a-GCST90017030 genus Lactobacillus id.1837 − 0.347330 Negative

ebi-a-GCST90017066 genus Ruminococcus torques group id.14377 − 0.547570 Negative

ebi-a-GCST90017075 genus Tyzzerella3 id.11335 0.328764 Forward

ebi-a-GCST90017096 order Coriobacteriales id.810 − 0.432500 Negative

ebi-a-GCST90017114 phylum Firmicutes id.1672 0.455203 Forward
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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