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SIGNET: transcriptome‑wide causal 
inference for gene regulatory 
networks
Zhongli Jiang 1, Chen Chen 2,5, Zhenyu Xu 1,5, Xiaojian Wang 3,5, Min Zhang 1,4 & 
Dabao Zhang 4*

Gene regulation plays an important role in understanding the mechanisms of human biology and 
diseases. However, inferring causal relationships between all genes is challenging due to the large 
number of genes in the transcriptome. Here, we present SIGNET (Statistical Inference on Gene 
Regulatory Networks), a flexible software package that reveals networks of causal regulation 
between genes built upon large-scale transcriptomic and genotypic data at the population level. 
Like Mendelian randomization, SIGNET uses genotypic variants as natural instrumental variables 
to establish such causal relationships but constructs a transcriptome-wide gene regulatory network 
with high confidence. SIGNET makes such a computationally heavy task feasible by deploying a well-
designed statistical algorithm over a parallel computing environment. It also provides a user-friendly 
interface allowing for parameter tuning, efficient parallel computing scheduling, interactive network 
visualization, and confirmatory results retrieval. The Open source SIGNET software is freely available 
(https://​www.​zstats.​org/​signet/).

Recently, gene regulatory networks (GRNs) have attracted increasing attention due to the availability of high-
throughput gene expression data. GRNs can elucidate the disease mechanisms when cells are under dysregula-
tion and greatly accelerate the wet lab experiments by precise predictions1–3. Many methods have been widely 
applied to construct GRNs based on gene co-expression4, 5. However, co-expression-based methods only infer 
association rather than direct causation. Hence the activator or repressor role of genes will remain ambiguous. 
On the other hand, unmeasured confounding variables and possible reverse causation challenge the utility of 
directed acyclic graphs for plausible causal interpretations between genes6–8.

A two-stage penalized least squares approach (2SPLS) has been developed to simultaneously conduct causal 
inference on all genes for their regulation with each other9. 2SPLS employs genotypic variants as instrumental 
variables, which also enables the practice of Mendelian randomization10. While Mendelian randomization can 
only establish a local causal relationship between a pair of genes, 2SPLS can construct a transcriptome-wide gene 
regulatory network11. This is a significant improvement, as it allows us to understand the complex interactions 
between genes in a more comprehensive way. 2SPLS is able to handle large amounts of transcriptomic and geno-
typic data by designing gene-based tasks of parallel computing at each of its two sequential stages9. This makes 
it possible to construct the transcriptome-wide gene regulatory networks that would otherwise be intractable.

We developed SIGNET, a handy and flexible platform for constructing transcriptome-wide GRNs. SIGNET 
takes advantage of 2SPLS and the computational power provided by clustered computers. SIGNET can be applied 
to transcriptomic and genotypic data for all tissues regardless of species. Driven purely by collected data, SIGNET 
applies the state-of-art 2SPLS as well as the greedy algorithm for clustering12 to automatically identify regulatory 
structures, prune for better accuracy, and report confidence on each constructed regulation. It also provides 
interactive visualization of the transcriptome-wide GRN and its subnetworks, and connects with public databases 
to provide validatory information on the identified causal relationships.

SIGENT is ready to apply to transcriptomic and genotypic data from The Cancer Genome Atlas (TCGA) 
project13 and the Genotype-Tissue Expression (GTEx)14 project. It also provides an interface to apply to user-
preprocessed transcriptomic and genotypic data. We illustrated the use and capability of SIGNET by applying 
it to the Lung Adenocarcinoma (LUAD) data from TCGA and healthy lung tissue data from GTEx. With the 
LUAD data, we identified 4079 regulations for 4904 genes in each of the 1000 bootstrapped datasets. Similarly, 

OPEN

1Department of Statistics, Purdue University, West Lafayette, IN  47907, USA. 2UCB Pharma, Brussels  1070, 
Belgium. 3ByteDance, Shanghai  201107, China. 4Department of Epidemiology and Biostatistics, University of 
California, Irvine, CA 92617, USA. 5These authors worked on this project as research assistants in the Department 
of Statistics, Purdue University. *email: dabao.zhang@uci.edu

https://www.zstats.org/signet/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-46295-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19371  | https://doi.org/10.1038/s41598-023-46295-6

www.nature.com/scientificreports/

with the healthy lung tissue data from GTEx, we identified 4301 regulations for 3603 genes. Many of these identi-
fied regulations have been reported in biological pathways with validated protein-protein interactions, however 
many others have not been reported before.

SIGNET is publicly available on GitHub with detailed documentation and example data for illustration. It 
allows users to quickly pick up the analysis and provides options for customization. A singularity container is 
provided for SIGNET, which can be used to run SIGNET on local servers or high-performance computing (HPC) 
clusters without having to install any additional software or libraries. This makes it easy for users to get started 
with SIGNET and reproduce their results.

Results
SIGNET workflow
SIGNET has four main components, (i) preprocessing transcriptomic and genotypic data; (ii) identifying instru-
mental variables for each gene; (iii) causal inference of gene regulations; and (iv) visualizing constructed GRN 
with validatory information from public databases (Fig. 1). The four components can be easily integrated to set 
up a pipeline of constructing GRNs from transcriptomic and genotypic data. Each component is designed to work 
independently, allowing users to customize the pipeline with available functions in, e.g., R15, Bioconductor16, and 

Figure 1.   SIGNET workflow for gene regulatory network (GRN) construction. SIGNET takes four steps 
to conduct causal inference and construct a GRN from transcriptomic and genotypic data: 1. Preprocessing 
transcriptomic and genotypic data to ensure data quality; 2. Identifying genotypic instrumental variables; 3. 
Constructing a transcriptome-wide GRN via causal inference; 4. Visualizing subnetworks of the GRN and 
validating with public databases.
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PLINK17. Options are also provided at each step to fine-tune, e.g., cutoffs for filtering genotypic variants, and 
significance levels for identifying gene regulatory effects. In summary, SIGNET provides a flexible platform to 
meet users’ diverse demands in constructing transcriptome-wide GRNs with their own data or with data from 
TCGA and GTEx but with self-defined criteria. It is noteworthy that SIGNET can be applied to transcriptomic 
and genotypic data from any tissue of any taxonomy as long as both are preprocessed to pass quality control.

Preprocessing transcriptomic and genotypic data
Both transcriptomic and genotypic data need to be processed before they can be used to construct GRNs. This 
processing includes removing low-quality data, imputing missing values, and correcting for confounding effects. 
There are well-established protocols and pipelines for processing each type of data18, 19. SIGNET streamlines the 
data preprocessing procedures for transcriptomic and genotypic data provided by TCGA and GTEx14, 20, 21. It 
provides separate functions for each type of data, making it easy to process data from either source.

For transcriptomic data, SIGNET filters out genes with low reads to improve the statistical power. It handles 
the heteroscedasticity in the count data and normalizes the data by taking account of the library sizes. SIGNET 
transforms the transcriptional abundance with a base-2 logarithm for the downstream analysis, using the variance 
stabilizing transformation (VST)20 for TCGA data and TMM21 for GTEx data, respectively. SIGNET allows users 
to select only protein-coding genes to work in the downstream analysis. As confounding factors may lead to 
spurious association and result in false regulation, SIGNET provides functions to adjust for confounding effects 
from race, gender, and possible population stratification. An interactive interface is provided to help identify 
necessary principal components to account for the genetic differences in the population.

For genotypic data, SIGNET provides a function for preprocessing TCGA data. This function assembles 
procedures such as quality control using PLINK17, removal of genotypic variants and samples with high missing 
rates, and disposal of single nucleotide polymorphisms (SNPs) discordant with Hardy Weinberg equilibrium 
(HWE). SIGNET streamlines the SNP imputation procedure in parallel using IMPUTE222. This significantly 
speeds up the process by simultaneously imputing missing values of multiple genetic regions. SIGNET also 
provides a function that combines and streamlines the procedures in the GTEx pipeline14. This function starts 
with the phased genotypic data which are directly available at dbGaP23 and have passed through quality control.

Identifying genotypic instrumental variables
Possible confounding factors and reverse causation make it challenging to conduct causal inference in 
observational studies. For a successful inference, we need instrumental variables (IVs) which (i) are associated 
with the exposure; (ii) are independent of the confounders of both exposure and outcome; (iii) affect the outcome 
only through the exposure24, 25. As shown in Mendelian randomization, genotypic variants in a gene’s genetic 
region, that is, the gene’s cis genotypic variants, have the random assignment nature during meiosis, so they 
have the aforementioned properties and serve naturally as instrumental variables for their host genes. SIGNET 
can detect significant cis-acting genotypic variants, i.e., genetic variants in a gene’s genetic region, for each 
gene at a prespecified significance level (0.05 by default) and may use multiple cis-acting genotypic variants as 
instrumental variables.

Revealing transcriptome‑wide gene regulation
SIGNET implements 2SPLS9, which takes advantage of IVs identified in the previous stage to infers transcriptome-
wide causal regulatory networks. Unlike many methods constructing directed acyclic graphs (DAGs) to decipher 
causality in gene regulations, SIGNET builds non-recursive yet directed cyclic graphs (DCGs) to realistically 
describe causal regulations between genes. This is because DCGs can capture reciprocal regulation between genes 
or regulatory feedback loops among a group of genes. Statistically, for any gene with its cis genotypic variants 
as instrumental variables, the rank condition26, serving as a necessary and sufficient condition for uniquely 
estimating parameters in a system of equations, assures that SIGNET can systematically explore and identify all 
causal effects on other genes.

With the parallel nature of 2SPLS, SIGNET is computationally fast in constructing a transcriptome-wide GRN 
from a set of transcriptomic and genotypic data. This allows SIGNET to bootstrap the original dataset, construct 
a causal regulatory network for each bootstrap dataset, and aggregate all networks to infer a transcriptome-wide 
GRN with desired confidence (Fig. 1).

SIGNET can estimate the total execution time and automatically optimize the allocation of available 
computing resources for distributed computing over server clusters. It can submit jobs and collect the results on 
any high performance computing (HPC) cluster with SLURM (Simple Linux Utility for Resource Management) 
Workload Manager27. With multi-nodes with multi-cores in an HPC cluster, SIGNET can construct a 
transcriptome-wide GRN from hundreds of samples in a day. With two stages of parallel computing in 2SPLS, 
SIGNET instantly summarizes the results upon the completion of the first stage and submits the jobs for the 
second stage. It also allows users to customize the parallel computing at each of the two stages.

SIGNET reports its constructed causal network using an adjacency matrix, where each entry encodes the 
confidence of the corresponding regulation. With a customized confidence level, the whole network may be 
broken down into disconnected subnetworks. SIGNET provides functions to output and further inspect these 
subnetworks. These subnetworks can be saved in files with various formats, allowing users to conduct downstream 
analysis using other packages such as STRING28, Cytoscape29, and Ingenuity Pathway Analysis (IPA)30.

Visualizing gene regulatory networks
The causal network constructed by SIGNET may involve thousands of genes and hence tens of thousands of 
possible regulations. The huge size of such networks makes it challenging to visualize and interpret. To address 
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this challenge, SIGNET provides a web-based interactive interface that is developed upon R package Shiny31 and 
allows users to explore the rich results in constructed networks and incorporate biological interpretation from 
STRING28. With an adjacency matrix recapitulating the bootstrap results from the above network construction, 
users may customize the confidence level and take SIGNET to summarize the constructed network, e.g., reporting 
the numbers of genes and regulations involved as well as hub genes and pivotal interactions. Such hub genes and 
pivotal interactions together with the underlying sub-networks may direct users to the most relevant protein 
complex for further investigation. For example, pertinent confirmatory information may be obtained from the 
STRING database28 which reports protein-protein interaction (PPI) scores, indicating confidence shown in 
biochemical experiments, co-expressions, and other databases.

SIGNET allows users to search for genes of interest and identify their connections with other genes. SIGNET 
can break down the constructed networks into subnetworks based on network modularity32. By characterizing 
the divisibility of a network, SIGNET can identify densely connected communities within the network, where 
regulations are much denser than interactions between subnetworks. SIGNET utilizes STRING to extract 
enriched pathways, which are subsequently employed to partition the network. In fact, SIGNET provides a bar 
plot of these enriched pathways shown in decreasing order of p values. Genes can be selectively highlighted for 
investigation of their specific function, facilitating the study of their enriched effect. SIGNET also accentuates 
transcript factors for their important roles in the network. With the interactive interface provided by SIGNET, 
users can select two connected genes and check for pertinent confirmatory information in other databases. The 
interactive plots on GRN are also accessible in a portable HTML format, allowing for effortless sharing and 
dissemination of the plots among fellow researchers (Supplementary Files 1, 2).

SIGNET is able to complete all aforementioned interactive visualization and clustering on subnetwork 
community structures efficiently. It provides an R shiny-based interactive application for easy access. The 
visualization functions provided by SIGNET can also be applied to networks constructed elsewhere, with 
adaptability to various genome assemblies and species. SIGNET can generate multiple portable results, making 
it flexible to conduct downstream analysis using other packages. Users may integrate the visualization function 
of SIGNET and other databases to generate numerous innovative biological hypotheses for further study.

Transcriptome‑wide GRN for healthy lung tissues
We applied SIGNET to construct the transcriptome-wide GRN for healthy lung tissues using transcriptomic 
data from lung tissues and genotypic data from the blood of 482 healthy individuals in the GTEx study14. Out of 
a total of 16,761 protein-coding genes passing the quality control, 10,965 genes were identified with unique IVs, 
consisting of 279,504 SNPs or SNP regions (Fig. 2a). SIGNET detected 4301 gene regulations involving 3603 
genes, comprising 1325 subnetworks in each of 1000 bootstrap datasets, and 30,108 gene regulations involving 
13,606 genes in over 95% of these bootstrap datasets (Fig. 2b, Supplementary Table 5 for complete listing).

We investigated the GRN detected in every bootstrap dataset, and identified the largest subnetwork shown 
in Fig. 2d, which consists of 145 genes including 23 transcription factors. Validation in STRING33 shows 
that this set of genes is enriched in 19 human KEGG pathways ( p ≤ 10−5 ) with the top ten shown in Fig. 2f, 
including 21 genes found in the IL-17 signaling pathway ( p = 7.04× 10−24 ) and 20 genes in the TNF signaling 
pathway ( p = 6.49× 10−21 ), both of which play an important role in the immune response (Supplementary 
Table 6). As highlighted in Fig. 2d,e, STRING also shows rich connections between genes, evidenced via text 
mining, experiments, database, and co-expression with a score over 0.8. However, our constructed GRN further 
reveals the causal regulation in comparison to mere interaction. The GRN constructed on LUAD also finds 
significant enrichment in IL-17 signaling pathway and TNF signaling pathway on its fifth largest subnetworks 
(Supplementary Note, Supplementary Fig. 1).

We also validated the same set of genes using IPA30 but restricted to human lung tissues. We identified 35 
Ingenuity canonical pathways enriched with these genes ( p ≤ 10−5 ), with top ten pathways shown in Fig. 3a 
(Supplementary Table 7 for complete listing). Note that half of the top ten pathways are related to IL-17, as both 
pathways on cytokine production are on the differential regulation of cytokine production between IL-17A and 
IL-17F. IPA also reports that this set of genes is significantly associated with 55 types of diseases and functions 
( p ≤ 10−5 ), with top five shown in Fig. 3b (Supplementary Table 8 for complete listing). In fact, there are 37 
genes in respiratory disease, 74 genes in infectious disease, and 126 genes associated with organismal injury and 
abnormalities. In each of these three types, viral respiratory infection is the most significant disease involving 
28 genes from the subnetwork ( p = 2.50× 10−25 ). Furthermore, this subnetwork has 30 genes associated with 
COVID-19 ( p = 5.72× 10−15 ) and 17 with severe COVID-19 ( p = 8.19× 10−14 ). Akin to the result for healthy 
lung tissues, the fifth-largest subnetwork in GRN constructed using LUAD data is also significantly enriched 
with COVID-19 (Supplementary Note, Supplementary Fig. 2).

Discussion
SIGNET is an open-source software that can construct causal networks of gene regulation purely based on user-
provided transcriptomic and genotypic data, incorporating biological information on the genome. SIGNET 
employs genotypic variants as natural instrumental variables, making it feasible for causal inference. Our method 
builds upon a structural graph describing regulatory causality between all genes and intends to construct a 
transcriptome-wide GRN, rather than local causal inference on a single exposure-outcome pair as traditional 
Mendelian randomization does. Providing a comprehensive map of gene interactions, transcriptome-wide GRNs 
can help us understand cellular mechanisms and disease pathways1, 34, as well as accelerating drug discovery35 
and developing broad-based therapeutics of different diseases36.

Although the task of transcriptome-wide causal inference is formidable, SIGNET implements 2SPLS9, which 
innovatively employs a penalized limited-information method to construct causal networks in two sequential 
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stages, with each stage parallelly conducting computation on a batch of genes. This makes it feasible to construct 
transcriptome-wide GRN in HPC. For example, in constructing networks for 1000 datasets bootstrapped from 
the healthy lung dataset, SIGNET took 5.7 h to complete 10,965,000 tasks (in 3000 parallel jobs) at the first 
stage and 16,761,000 tasks (in 7000 parallel jobs) at the second stage using Purdue HPC with 448 nodes of Two 
Rome CPUs (2.0GHz), each having 128 cores. Without parallel computing, it would take more than 3 years to 
complete. Moreover, SIGNET can set up parallel tasks adaptable to available cores, memories, and wall time of 
HPC, alleviating the burden for users unfamiliar with parallel computing.

2SPLS is built upon the assumption of linear causal systems and well-developed identification results on such 
systems. The recent development of ensemble models and deep learning methods makes it appealing to explore 
nonlinear causal systems, e.g., constructing GRNs without the linear assumption. However, such an endeavour is 
still challenged by the model identification issue, i.e., when and how we are assured that a constructed relationship 

Figure 2.   Results of analyzing the GTEx data for healthy lung tissues. (a) Manhattan plot of numbers of IVs 
across all chromosomes. (b) Histogram of numbers of edges and nodes with respect to different bootstrap 
frequency cutoffs. (c) Circular plots of the largest subnetworks in Cytoscape, with darker color indicating the 
larger size of regulatory effects. (d) The largest subnetwork, with transcription factors highlighted in yellow and 
node sizes proportional to node degrees. (e) Highlight of gene regulations shaded in d with gray connections 
verified by STRING, which also identifies genes in red and green enriched in IL-17 and TNF signaling pathways, 
respectively. (f) Radar plot of the ten KEGG pathways in which the subnetwork in d is enriched the most, with 
IL-17 and TNF signaling pathways as the top two.
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Figure 3.   IPA validation of the top subnetwork constructed for healthy lung tissues. (a) Top ten significant 
Ingenuity canonical pathways, with IEC abbreviated for Intestinal Epithelial Cells, RA for Rheumatoid Arthritis, 
MTC for Macrophages and T Helper Cells, and COPD for Chronic Obstructive Pulmonary Disease. (b) The 
five most significant types of diseases and functions identified by IPA, with each type shown as the top ten 
significant diseases/functions.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19371  | https://doi.org/10.1038/s41598-023-46295-6

www.nature.com/scientificreports/

is truly causal. Furthermore, building ensemble models implies more computational burdens, and deep learning 
methods also require a sufficient amount of data.

SIGNET is available with a Singularity container, which includes all the required software and packages. 
The container is user-friendly and can save users a huge amount of time setting up the required computational 
environment. SIGNET is also a flexible command-line tool that allows users to adjust multiple parameters to 
customize their analysis. Additionally, SIGNET provides independent functional units that advanced users can 
easily modify and integrate with their own analyses. We also provide the example data and a detailed document 
with step-by-step instructions.

Methods
Transcriptomic data preprocessing
SIGNET sets up the preprocessing procedures for transcriptomic data following two studies, i.e., GTEx and 
TCGA, and provides template functions for each study14, 20, 21. The function for preprocessing GTEx data assumes 
input files including gene count data and gene TPM (transcript per million), directly from the GTEx portal 
(https://​gtexp​ortal.​org/​home/​datas​ets). The function for preprocessing TCGA data takes the log-transformed 
HTSeq gene count data, available at UCSC Xena37, and transforms them back to the original gene counts.

SIGNET follows the GTEx pipeline14 to conduct the quality control for GTEx data. It selects genes with 
TPM greater than 0.1 in at least 20% of the samples and at least six reads in at least 20% of samples. For TCGA 
data, SIGNET filters out genes with total counts less than 2.5 million or missing in more than 80% of the 
samples38. Both types of transcriptomic data are normalized via base-2 logarithm transformation, with GTEx 
data normalized via the TMM method21 available in the edgeR package39 and TCGA data normalized via the 
variance stabilizing transformation available in the DESeq2 package40.

Genotypic data preprocessing
SIGNET streamlines the preprocessing procedure for genotypic data from both GTEx and TCGA​14, 41, 42, and 
provides corresponding functions for each study. The function for preprocessing GTEx data assumes phased 
genotypic data after quality control, which are directly available at dbGaP (https://​www.​ncbi.​nlm.​nih.​gov/​gap/). It 
filters out genetic variants with the total counts of minor alleles across samples of fewer than five. The function for 
preprocessing TCGA data takes the input of genotypic data in PLINK file format17, which can be converted from 
the BAM files available in the GDC data portal (https://​portal.​gdc.​cancer.​gov/). It follows the GDC bioinformatics 
pipeline42. The more detailed data information and data preprocessing procedures, which include conversion 
from whole-exome sequencing BAM files to PLINK format, are available in Supplementary Note.

SIGNET excludes samples and genetic variants with high missing rates. By default, it excludes samples with 
a missing rate of more than 10% across genetic variants and genetic variants with a missing rate of more than 
10% across samples. It then filters out genetic variants discordant with the Hardy-Weinberg equilibrium, tested 
via PLINK with a p-value cutoff at 0.0001 by default. The missing values are imputed via IMPUTE222 with 1000 
Genomes Phase 3 as the reference genome43. This may be time-consuming, so SIGNET speeds up the process 
by simultaneously imputing multiple genetic regions, e.g., each region with 5× 106 base pairs by default. For 
variants missing in the reference genome, SIGNET imputes their missing values with the major alleles.

Adjusting for confounding factors
SIGNET uses linear regression to remove the effects of potential confounding factors from the gene expression 
data for subsequent causal inference. It provides separate functions for GTEx and TCGA because there are 
different factors available in the two studies. Specifically, SIGNET removes the confounding effects of sex, 
sequencing platform (Illumina Hiseq2000 or Illumina HiseqX), and library construction protocol (PCR based 
or PCR free) from gene expression in GTEx data14, but only races and sex from gene expression in TCGA data13.

Population stratification via principal components (PCs) of genotypic data is an important step in local 
association studies. PCs can be used to control the confounding effects of other genetic variants44. SIGNET 
removes the effects of top PCs (top three PCs by default) from the gene expression data before identifying IVs. 
This is because SIGNET is conducting local association studies for IVs. On the other hand, the gene expression 
data used for the transcriptome-wide causal inference are not adjusted for these PCs. This is because the 
transcriptome-wide causal inference is designed to identify global patterns of gene regulation, and adjusting for 
PCs would remove some of this information.

Genotypic instrumental variables identification
Similar to Mendelian randomization, SIGNET leverages available genetic polymorphisms in a gene’s genetic 
region as its potential IVs. By default, SIGNET scans the cis-acting genetic polymorphisms located within both 
the start and end sites of genes, as well as 1000 base pairs upstream and downstream of these regions. SIGNET 
then categorize the polymorphisms according to their minor allele frequency (MAF): common variants with 
MAF no less than 0.05, low-MAF variants with MAF no less than 0.01, and rare variants with MAF less than 
0.01. Common variants are scanned directly for their qualification of serving as IVs. Both low-MAF and rare 
variants go through a data-adaptive burden test, aSum test45, which aggregately constructs possible IVs to avoid 
loss of power caused by opposite effects of variants.

SIGNET provides a platform to identify genotypic IVs in parallel by conducting association studies of expres-
sion traits of many genes on their own genetic regions. In particular, SIGNET implements the aSum test as a 
permutation test, which is computationally intensive. SIGNET provides a simple portal that automatically divides 
the whole genome into separate regions and uses parallel computing to efficiently conduct the related tests. A full 
list of identified IVs for healthy lung tissue and LUAD is available in Supplementary Tables 4 and 9. In the case 

https://gtexportal.org/home/datasets
https://www.ncbi.nlm.nih.gov/gap/
https://portal.gdc.cancer.gov/
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of multiple cis-variants detected for a gene, SIGNET will select the top three which are decoupled with pairwise 
correlation under 0.3 by default.

Causal inference model
We focus on a linear system with p genes and q genotypic variants, which are observed in a sample of n 
observations. Let Yn×p = (Y1, . . . ,Yp) and Xn×q = (X1, . . . ,Xq) denote the gene expression and genotypic data, 
respectively. The gene-gene regulations and the genetic effects of variants can be described by the following 
structural equations,

where Ŵ is a p× p matrix with all diagonal elements equal to zero and its non-diagonal elements indicating 
regulatory effects; � is a q× p matrix with the majority of elements known to be zero and its non-zero components 
indicating cis effects of corresponding variants; ǫ is an n× p matrix of disturbance errors, independent of X.

With tens of thousands of genes and even more genotypic variants available in a system, directly maximizing 
the likelihood for model (1) is a formidable task. Instead, when we are only concerned with how all other genes 
regulate the k-th gene, we can deal with the following limited information model,

Note that the first part of the above model is simply the k-th structural equation in the model (1), so Y−k refers 
to Y excluding the k-th column, i.e., the expression of all genes except gene k; γ k refers to the k-th column of Ŵ 
excluding the diagonal zero, indicating all other genes’ regulatory effects on gene k; ψk (cis effects of variants 
of gene k) and ǫk refer to the k-th columns of � and ǫ respectively. The second part of the model (2) is from 
the reduced model derived from model (1), and is necessary for estimating γ k via the model (2). Therefore, the 
limited information model (2) allows a multiple Mendelian randomization to identify regulatory genes for gene k.

Multiple mendelian randomization
The success of the multiple Mendelian randomization on the model (2) relies on available IVs for each gene 
included in Y−k . With a large number of genes investigated simultaneously for their regulatory effects on a single 
gene, SIGNET follows 2SPLS9 to predict the expression levels of each potential regulatory gene using all available 
IVs, which are first screened via the iterative sure independence screening method (ISIS)46. Such a prediction, 
say Ŷj for Yj of each gene j, is optimized by ridge regression47 combined with the generalized cross validation 
method (GCV)48 selecting the best tuning parameters.

Because the majority of elements in ψk are known to be zero, we denote the set with indices with nonzero 
elements as Sk . Then

Further, we denote an orthogonal projection matrix for the column space of XSk
 as

which is computational feasible and involves only low-dimensional matrices as Sk is a small set. Note that, if 
gene k does not have any IVs, Hk is simply an identity matrix.

With predicted Ŷ−k for Y−k , we can apply adaptive LASSO49 to the following high-dimensional regression,

where ζ k is the error term and γ k corresponds to the same potential regulatory effects in model (2). Nonzero 
elements in the estimated γ k indicate that gene k is causally regulated by the corresponding gene. It has been 
proved that the estimated regulatory effects have well-bounded errors and identified gene regulatory causality 
is statistically consistent with the underlying gene regulatory network9.

Transcriptome‑wide causal inference
The above multiple Mendelian randomization will identify all regulatory genes and estimate relevant regulatory 
effects for each gene, say gene k, in two stages: (1) predicting Y−k with Ŷ−k ; (2) identifying and estimating 
regulatory effects by regressing HkYk against HkŶ−k . Since Y−k is a subset of Y , SIGNET implements the 
algorithm by first predicting each individual Yk , k = 1, 2, . . . , p . Therefore, both stages can be computed in 
parallel, which allows high performance computing clusters to quickly conduct transcriptome-wide causal 
inference.

SIGNET constructs model (1) to depict transcriptome-wide causal inference of gene regulation. In the first 
stage, SIGNET pools together genotypic IVs over the whole genome and take them to predict the expression 
values of each gene. SIGNET applies the ridge regression function available in R package MASS50 for the 
prediction purpose, with the tuning parameter optimized by GCV. SIGNET uses R package parcor51 to implement 
adaptive lasso. At the completion of construction, SIGNET outputs the results as a sparse adjacency matrix, with 
each (i, j)-th component including the regulatory effect of j-th gene on i-th gene.

(1)Y = YŴ + X� + ǫ

(2)
{

Yk = Y−kγ k + Xψk + ǫk ,
Y−k = Xπ−k + ξ−k .

Xψk = XSk
ψk,Sk

.

Hk = In − XSk

(

X
T
Sk

XSk

)−1

X
T
Sk

,

HkYk = HkŶ−kγ k + ζ k ,
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Bootstrapping for confidence of gene regulatory effects
The parallel scalability of 2SPLS makes it possible to employ the bootstrap method to evaluate the reliability of 
each constructed regulation. This is usually a challenging task because of the enormous parameters involved in 
a transcriptome-wide GRN. For each bootstrap dataset, we will apply 2SPLS9 to conduct transcriptome-wide 
causal inference of gene regulation. The regulatory effects are stored in matrix C(b) for the b-th bootstrap dataset, 
with its component C(b)

ij  denoting the regulatory effect of gene j on gene i. The corresponding transcriptome-wide 
GRN can be described by an adjacency matrix A(b) , with its component A(b)

ij  defined as A(b)
ij = 1 if C(b)

ij  = 0 and 
A
(b)
ij = 0 if C(b)

ij = 0 . With a total of B networks constructed from B bootstrap datasets, SIGNET averages across 
all adjacency matrices componentwise for the frequencies of regulations identified between each pair of genes,

Automated parallel computing
SIGNET automates the divide-and-combine steps for parallel computing. For each stage involving parallel 
computing, SIGNET randomly selects 10 genes from the input data set and runs with them to evaluate the 
computational burden. Specifically, SIGNET records the maximum running time and memory consumption 
for these genes and employ this information to determine the optimal number of genes for each batch of the 
task. SIGNET then configures batch scripts and submits them via the SLURM scheduler. Upon completion of 
the jobs, SIGNET collects the results, which include coefficient matrices and adjacency matrices as mentioned 
in the previous section, and automatically summarizes the regulatory relationships of all genes identified from 
all bootstrap datasets.

Partitioning GRN into subnetworks
With the averaged adjacency matrix Ā calculated in (3), we can visualize the transcriptome-wide GRN, including 
gene regulations identified over a pre-specified bootstrap frequency. For example, for a frequency cutoff p, we 
can derive a directed graph (V, E) describing the GRN, with V including all the involved genes and E calculated 
with its component

where I[·] is an indicator function.
For each gene i, SIGNET can calculate its total degree as

which counts the number of genes regulating and regulated by gene i. With a partition D of the graph (V, E) 
into certain subgraphs, we denote gD (i) as the subgraph including gene i, and δD (·, ·) an indicator function on 
whether two genes belong to the same subgraph, i.e., δD (i, j) = I[gD (i) = gD (j)] . With N the total number of 
regulations in the graph (V, E), the modularity, under partition D , is calculated as,

It measures the goodness of partition D in defining subnetworks of our constructed GRN by quantifying the 
within-subnetwork regulations. SIGNET maximizes this modularity to obtain the optimal partition by using the 
fast greedy modularity optimization algorithm12, which is implemented in the R packages igraph52.

Data availability
The results produced here are in whole or part based upon data generated by the TCGA Research Network 
(https://​www.​cancer.​gov/​tcga). The gene count data could be downloaded from UCSC Xena (https://​xenab​rowser.​
net/​datap​ages/) and genotypic data are retrieved from the GDC portal (https://​portal.​gdc.​cancer.​gov/). For the 
GTEX project, the gene count data was obtained from the GTEx portal (https://​www.​gtexp​ortal.​org/​home/​
datas​ets). Genotypic data are obtained from dbGaP with accession number phs000424.v8.p2 on July 23, 2019.
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