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Cloud Computing model provides on demand delivery of seamless services to customers around 
the world yet single point of failures occurs in cloud model due to improper assignment of tasks to 
precise virtual machines which leads to increase in rate of failures which effects SLA based trust 
parameters (Availability, success rate, turnaround efficiency) upon which impacts trust on cloud 
provider. In this paper, we proposed a task scheduling algorithm which captures priorities of all tasks, 
virtual resources from task manager which comes onto cloud application console are fed to task 
scheduler which takes scheduling decisions based on hybridization of both Harris hawk optimization 
and ML based reinforcement algorithms to enhance the scheduling process. Task scheduling in this 
research performed in two phases i.e. Task selection and task mapping phases. In task selection 
phase, all incoming priorities of tasks, VMs are captured and generates schedules using Harris hawks 
optimization. In task mapping phase, generated schedules are optimized using a DQN model which 
is based on deep reinforcement learning. In this research, we used multi cloud environment to tackle 
availability of VMs if there is an increase in upcoming tasks dynamically and migrate tasks to one cloud 
to another to mitigate migration time. Extensive simulations are conducted in Cloudsim and workload 
generated by fabricated datasets and realtime synthetic workloads from NASA, HPC2N are used to 
check efficacy of our proposed scheduler (FTTHDRL). It compared against existing task schedulers 
i.e. MOABCQ, RATS-HM, AINN-BPSO approaches and our proposed FTTHDRL outperforms existing 
mechanisms by minimizing rate of failures, resource cost, improved SLA based trust parameters.

Cloud Computing is one of the rapid growing paradigm in IT industry renders seamless services to its users 
on demandly based on requirement of user’s application. Applications to be deployed in cloud paradigm are of 
different types and they require different computing, storage and network capacities. All these resources can be 
provisioned by cloud provider by using different types of services virtually as infrastructure, platform and as 
software to users as and when they required with different pricing  models1. Every cloud user may not require 
same cloud deployment model for their application. Therefore, a tailor made customized models are available 
the cloud users and they are public, private, hybrid deployment  models2. Rendering of these services to all users 
with different customized deployment models for different pricing models is a challenge for cloud vendor may 
have different customers around the world and to schedule and allocate all the requests coming from various 
heterogeneous resources and to allocate different types of requests to various virtual resources to compute in 
an effective manner without human intervention is a challenging scenario. Therefore, task scheduling plays a 
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crucial role in cloud computing  paradigm3. Task scheduling is defined as allocating all the incoming tasks to 
virtual resources resided in datacentres considered in this paradigm. It is a challenging problem in this paradigm 
as variety of requests from heterogeneous resources comes to cloud application console where the scheduler 
need to look up all those requests and it should assign it to an appropriate suitable VM which can process this 
request. Many of existing authors proposed various task scheduling algorithms such as  MOABCQ4,  RATSHM5, 
AINN-BPSO6 which are modelled based on metaheuristic approaches but still these approaches are not focused 
on failure rate, resource cost, SLA based trust parameters. Ineffective scheduling of tasks leads to increase in delay 
of processing tasks thereby increase in makespan, resource costs, execution time, energy consumption. It effects 
various parameters and thereby it effects cloud provider’s quality of service and thereby it violates SLA there-
fore trust on cloud provider also be decreased. Many Task scheduling algorithms developed by various authors 
using nature inspired, metaheuristic approaches as task scheduling in this paradigm is highly dynamic and it is 
of type NP-hard problem which cannot give solution in specific polynomial amount of time and scheduling in 
cloud is also the same type it is difficult to schedule variety of heterogeneous dynamic tasks on to VMs as it is 
difficult to predict number of tasks to come onto cloud console. When a task is not properly scheduled onto a 
VM by considering parameters i.e. run time processing capacity, length of task then task execution process may 
get delayed which impacts makespan and in some other cases task may fails due to improper assignment of VM 
there by rate of failures will be increased. When rate of failures increased there is a chance of impact on viola-
tion of SLA which impacts both Quality of service and trust on the cloud provider. Trust on the cloud provider 
depends mainly on success rate of VM, Availability of VM, turnaround efficiency of tasks. For improvement of 
availability of resource and to minimize resource cost we used multi cloud model and migrate tasks based on 
availability of resources in the corresponding resource where VMs are available by minimizing resource cost. 
Therefore, in this research, to minimize rate of failures and to increase trust on cloud provider we developed a 
task scheduler which schedules tasks in two phases i.e. selection of tasks, mapping of tasks on suitable VMs. In 
initial phase, tasks for scheduling is done based on all priorities of tasks, VMs collected from task manager and 
fed to scheduler which generates schedules with the help of Harris Hawks optimization and generated schedules 
are optimized using a reinforcement learning based model i.e. DQN model that minimizes makespan, rate of 
failures, resource cost and improving SLA based parameters.

Motivation and contributions
Task scheduling in cloud paradigm poses challenges to cloud provider as it is difficult to map tasks with different 
run time capacities to precise VMs. This is a challenge in cloud paradigm and improper mapping or assigning 
of tasks to VMs effects the QoS of cloud provider. It directly effects makespan, turnaround efficiency of tasks by 
delaying task execution on VMs which leads to decay of quality service. In some cases, due to ineffective mapping 
of tasks by scheduler i.e. if size of task or runtime processing capacity is not matched with the VM capacity then 
there is a chance of failure occurs in that VM. Therefore, rate of failures can also be an effected parameter for 
ineffective scheduling. Another parameter to be effected in cloud computing paradigm is Availability of VMs as 
if a task is assigned to VM and if that resource is not available at that instance of time then it directly effects the 
task execution by making that task to be failed. Success rate of VM effects QoS of cloud provider as if the task 
assignment is not done accurately onto a VM then it directly effects quality of service, SLA violations. The above 
reasons motivated us to take up this research while mapping tasks to accurate VMs by considering priorities 
of Tasks, VMs using both Harris Hawks for selecting tasks and scheduling them and DQN model to optimize 
generated schedules while addressing makespan, resource cost, SLA based trust parameters.

Highlights of our manuscript are indicated as below.

• A Fault tolerant based task scheduling algorithm(FTTHDRL) for multi-cloud environment.
• This task scheduler modelled using hybrid approach Harris hawk optimization and a DQN model based on 

deep reinforcement learning.
• Scheduling of tasks to precised VMs modelled in two phases i.e. task selection and generation of schedules 

using Harris Hawks optimization. In task mapping phase optimization of generated schedules designed by 
using DQN model which works based on Deep reinforcement learning.

• Extensive simulations are conducted on Cloudsim with fabricated and realtime computing worklgs from 
HPC2N, NASA.

• Proposed FTTHDRL evaluated against existing approaches i.e. RATS-HM, MOABCQ, AINN-BPSO and 
evaluated parameters makespan, resource cost, rate of failures, SLA based trust parameters in multi cloud 
environment.

Rest of the manuscript is organized as indicated below. Section “Existing related works” discusses existing 
related works, Section “Fault tolerant trust aware task scheduling using Harris Hawks and DRL in multi cloud 
environment” discusses Proposed architecture of FTTHDRL, Section “Simulation and results” discusses meth-
odology used for our proposed approach i.e. Harris Hawks optimization, DQN model, Section “Conclusion 
and future works” discusses Simulation and Results. Finally Section 6 discusses Conclusion and Future works.

Existing related works
This section clearly discusses about various existing task schedulers which addresses different parameters and 
techniques they used to develop schedulers in cloud computing paradigm.  In7, authors focused on scheduling 
tasks effectively by minimizing makespan, execution time on VMs. They improved differential evolution approach 
to a hybrid level by incrementing scaling factors to enhance exploration, exploitation in the searching process 
of a solution in search space. All experimentation conducted on Cloudsim. HDE compared against state of art 
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algorithms SMA, EO, GWO, FCFS, RR to check effectiveness of proposed HDE. Results proved that HDE domi-
nant with respect to execution time, makespan. Penalty function which is related to SLA violations in cloud 
computing plays a major role in this paradigm. Authors  in8, formulated adaptive task scheduling mechanism 
which addressed penalty function as a parameter to adjust scheduling process dynamically as per SLA made by 
cloud provider. Symbiotic organisms search is improved to enhance scheduling process to adapt to search space 
as and when more workload generated it schedules workload to VMs. This simulation conducted on Cloudsim 
with random workload and results proved that penalty related to SLA violation minimized with ABFSOS. Authors 
 in9 formulated a task scheduling mechanism which uses improved version of MVO approach by adjusting aver-
age position of solution in scheduling. These simulations are conducted on Cloudsim and evaluated parameters 
i.e. execution time, throughput, VM processing Power. It evaluated over existing algorithms MVO, mMVO and 
proposed IMOMVO reveals that it improves above said parameters while compared with existing approaches. 
Authors  in10 developed multi objective task scheduling model addressed the parameters consumption of energy, 
makespan. A hybrid approach was used to model task scheduler. This model works based on combining Whale 
optimization, differential evolution techniques for better enhancement of scheduling process in cloud paradigm. 
Simulations performed extensively in developing this scheduler which takes standard realtime datasets as input 
to algorithm i.e. curie workloads, HPC2N by varying different number of iterations. Results revealed that 
h-DEWOA dominates other non-differential approaches by minimizing both energy consumption, makespan. 
A multi objective scheduling mechanism developed to tackle parallel workloads in cloud environment. This 
approach aims at makespan, throughput. This mechanism modelled by using hybrid BAT approach to explore 
near optimal solution in search space. Real time parallel workload given as an input to algorithm and simulations 
are conducted on Cloudsim. Performance of hybrid BAT evaluated over classical BAT and other metaheuristic 
approaches. Evaluated results evident that it outperforms existing mechanisms for specified parameters. For the 
benefit of cloud user and service provider authors  in12 proposed a task scheduling strategy which provides Quality 
of service and improves resource utilization. It was modelled using both IQSSA, QSSGWA algorithms which 
were inspired based on Quantum computing, Salp swarm algorithms. All simulations are conducted on 
MATALAB. Both IQSSA, QSSGWA tested against more than 10 benchmark functions to evaluate convergence 
of proposed approach. It evaluated against existing approaches SSA, GWO algorithms. These approaches shown 
huge impact over state of art algorithms for above mentioned parameters. Degree of imbalance for tasks is one 
of the major concern in cloud computing as they rush towards application console. This parameter efficiently 
tackled by authors  in13. Initially they used WOA to explore its ability in local search process while horse optimi-
zation is used as global search to fine tune convergence rate. It was compared to baseline mechanisms PSO, GWO, 
WOA approaches to address makespan, degree of imbalance.  In14, authors developed job scheduling mechanism 
in Fog computing i.e. DOLSSO. It was modelled based on opposition learning social spider optimization com-
bined with a reinforced mechanism which was implemented on Ifogsim. Initially, schedules generation was 
populated by OLSSO and optimization of those schedules were done by reinforcement strategy used in the 
approach. Workflows used in simulation are generated randomly in Ifogsim. It was ratified against state of art 
approaches and results shown that DOLSSO dominates other approaches for utilization of CPU, consumption 
of energy. Resource cost is also a crucial parameter which effects scheduling impact in cloud computing para-
digm. It was discussed by authors  in15. They developed a task scheduling mechanism which consists of both 
cuckoo search and harmony search to tackle scheduling problem in cloud computing. CS acts as local search to 
explore solution space while HS used as global search to explore solution space. Simulations are conducted on 
Cloudsim tool. It was compared over CS, HS, CGSA approaches. Finally from generated results of CSHA it proved 
that resource cost, penalty is minimized over existing approaches. Authors  in16 also focused on total execution 
cost in Fog computing that effects scheduling. They developed a task scheduling mechanism which is based on 
hyper heuristic approach which tunes convergence of solutions. It evaluated against baseline metaheuristic 
approaches and entire simulation conducted on Ifogsim. Results shown the effectiveness of HHS on other 
approaches while minimizing execution cost, latency, execution time. A Job scheduling strategy developed  in17 
to find a best possible VM to execute tasks which are highly dynamic in IOT applications. This mechanism was 
developed in two stages. In first stage, all the nodes are clustered together and grouped them together and trained 
with different levels of utilization. In second stage, SSA combined with DE used to optimize degree of imbalance, 
throughput, consumption of energy. Power consumption in datacentres effects cloud provider as if proper sched-
uler is not used to execute tasks, therefore there is an increase in consumption of power in cloud paradigm which 
effects cloud provider directly but it also effects customer because they need to pay extra pricing for services they 
consume. Authors  in18 developed a scheduler which tackles with power consumption, execution cost, runtime. 
It was modelled using NSGA-III which considers an adaptive fitness function to adjust and schedule tasks to 
VMs appropriately. From results, it proved that NSGA-III dominated other approaches in terms of power con-
sumption, cost, Runtime. Resource allocation optimization in cloud paradigm is challenging issue as mapping 
tasks to VMs is a challenge in cloud paradigm as it is a NP hard problem. For this to happen, authors  in19 pro-
posed task scheduler which developed by combining GTO, RSO. This approach initially predicts features in 
upcoming tasks by extracting them using PCA. These features are fed to HMEERA which allocates tasks to virtual 
resources by optimizing them using GTO, RSO approaches. It was compared over existing approaches and results 
shown dominance of HMEERA in view of response time, waiting time. Execution time, Cost are prominent 
concerns for task scheduling in cloud model. These parameters are addressed and tackled  in20 by using hybrid 
technique HWOA-MBA. It was developed by enhancing RDWOA by tuning mutation of Bee’s algorithm. It was 
simulated on Cloudsim and ratified against MALO, IWC, BA-ABC. Results shown that proposed HWOA-MBA 
dominated over state of art algorithms for task completion time, execution time.  In21, authors developed a task 
scheduler which improves makespan in cloud computing paradigm. This was developed by using IPSO which 
is an improved version of PSO by segregating particles as ordinary, local best particles which converges towards 
solution fast when compared with classical PSO. IPSO ratified over CEC 2017 benchmark and results shown 
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huge impact over state of art algorithms for makespan, load balancing. Authors  in22 proposed an AI based 
scheduling technique to precisely map tasks to VMs while addressing rate of task completion, energy consump-
tion. It was modelled by extending GGCN by adding a recurrent unit to it. Simulation results of HunterPlus 
shown it was greatly minimizes consumption of energy by 17%, improves rate of task completion by 10%. 
Resource cost, makespan are addressed by authors  in23 by formulating a task scheduler for cloud paradigm which 
is a hybridized approach by integrating adaptive weight strategy to ACO algorithm. It was compared over ACO, 
Min-Min, MTF-BPSO algorithms. Results of HWACO shown improvement in makespan, cost over compared 
approaches.  In24 bio inspired task scheduling paradigm which deals with cost saving of resources. It was designed 
by sea gull optimization technique which adapts to cloud environment. It compared over CJS, MSDE, FUGE 
approaches and finally results evident that cost of  virtual resources, consumption of energy minimized with 
SOATS.  In25, task scheduling algorithm which optimizes quality of service parameters concerned with cloud 
computing. It was modelled as a hybridized approach by combining rider optimization with cuckoo search to 
get adapted to dynamic nature of cloud paradigm. It was implemented on Cloudsim tool. RCOA ratified against 
COA, Rider algorithm, PSO. RCOA shown huge impact while minimizing makespan. Multi objective scheduling 
technique developed by authors  in26 using QOGSHO by combining QOBL, SHO by designing an adaptive fitness 
function to evaluate SLA Violation, makespan, resource utilization. This experimentation conducted on a cus-
tomized cloud environment. Services for mobile computations are restricted as it is difficult to assign resources 
to applications in mobiles. Therefore, offloading is a technique where intensive computations are migrated and 
offloaded to cloud servers for computing tasks. This offloading process designed by authors  in27 using African 
wild dog algorithm based on hunting cooperation behaviour of wild dogs. This entire simulation process con-
ducted on Cloudsim. AWDA evaluated over existing approaches. Results of AWDA dominated other state of art 
algorithms by minimizing cost, delay time, energy. User satisfaction to gain trust over cloud provider is a serious 
concern in terms of business of cloud provider. Authors  in28 hybridized PSO, GA algorithms to handle the con-
cerns related to user satisfaction, processing efficiency. Cloudsim tool is used to conduct simulations. All simula-
tions are conducted with uniform simulation settings for all the other algorithms to which PGSAO is ratified 
against them. Simulation results shown high impact over against existing state of art approaches by improving 
user satisfaction. Concurrent tasks are difficult to schedule tasks in VMs resided in Physical nodes. In datacentres 
minimizing energy consumption is a huge challenge in datacentres as tasks are raised from various resources to 
cloud application  console29. In the first phase, OBL, PSO are integrated with WOA algorithm to enhance per-
formance of algorithm. In second phase, OBL, PSO optimizes exploration and minimizes energy consumption, 
makespan over existing state of art algorithms.  In30, task scheduling algorithm is formulated to address multiple 
objectives availability, success rate, makespan, turnaround efficiency. ICOATS is proposed quality of service 
scheduling algorithm which concerned with length of task, priorities. It was simulated on Cloudsim. It ratified 
over state of art approaches. Results of simulations dominated in terms of above mentioned parameters. Task 
scheduling algorithm with multiple objectives developed  in31 to address makespan, execution cost, utilization 
of resources in integrated cloud-fog computing model. This approach modelled using IJFA by considering with 
variations in sizes of tasks, task speed, capacity of VMs in cloud-fog environment. Ifogsim was used as a simula-
tion environment and ratified over state of art approaches to check the efficacy of IJFA.

From the above section “Existing related works” and Table 1 it is clearly observed that earlier authors who 
formulated task scheduling algorithms addressed parameters execution time, cost, utilization of resources, makes-
pan, consumption of energy. They haven’t addressed SLA based trust parameters in a multi cloud environment 
with inclusion of task, VM priorities. This approach modelled by using hybridization of Harris hawks Optimiza-
tion algorithm(HHOA), DQN model which is a reinforcement learning based technique to optimize generated 
schedules which minimize makespan, resource cost, rate of failures and improves SLA based trust parameters.

Fault tolerant trust aware task scheduling using Harris Hawks and DRL in multi 
cloud environment
This section discusses overall system architecture and mathematical modelling used in Fault tolerant trust 
aware model developed for multi cloud environment modelled by hybridizing Harris Hawks Optimization 
algorithm(HHOA) and DQN models which is used to check availability for multiple cloud environments to map 
tasks to corresponding VMs to minimize rate of failures, resource cost in this model. The subsection “FTTHDRL 
Problem definition and system architecture” discusses FTTHDRL mathematical modelling, problem formulation.

FTTHDRL problem definition and system architecture
In this subsection, we precisely formulated problem definition for FTTHDRL(Fault tolerant trust aware Harris 
Hawk and Deep reinforcement Learning) based system architecture. Assume that we have i number of tasks 
represented as {ta1, ta2, ta3 . . . ., tai} , j number of VMs represented as 

{

v1, v2, . . . vj
}

 , k number of physical nodes 
represented as {pn1, pn2, . . . .pnk} , l  number of datacentres represented as {d1, d2, d3 . . . ., dl} . Now problem for-
mulation can be done as i tasks are mapped to j VMs placed in k  physical nodes which are placed in l  datacen-
tres by considering priorities of both tasks, VMs while tackling all the parameters. Initially, all tasks arises from 
various resources which have different processing capacities. All these tasks consists of different lengths, runtime 
capacities. For every task which is coming from user will be submitted to cloud application console which are 
captured by broker included in the cloud provider module. This broker will keep track of priorities of all tasks. 
For all the tasks, priorities are calculated based on task length, execution time. This scheduling process considers 
another priority i.e. VM priority based on electricity cost. All these priorities are to be maintained in a priority 
queue to be fed to the scheduler module which is integrated with Harris Hawk algorithm and DQN model to 
tackle parameters rate of failures, resource cost, makespan, SLA based trust parameters. While scheduling each 
task to a VM based on priorities a task with highest priority should be mapped to a VM with highest priority 
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means that VM resided in a datacentre which run with low electricity cost. If there is no VM suitable for the task 
available in the datacentre as we are using multi cloud environment it will check for the VM in the another cloud 
and if it is suitable it migrates tasks to another cloud environment which runs with same priority. In another 
case, if the task need to be mapped to a VM which scans all the VMs available in multi cloud environment and 
schedules task to a VM which incurs less resource cost. In the first phase, all priorities captured by task manager 
and fed to scheduler which generates schedules based on HHA algorithm and then all these generated schedules 
are optimized using DQN model to tackle above mentioned parameters.

Mathematical modelling of FTTHDRL
This subsection discusses about mathematical modelling of fault tolerant trust aware task scheduler by hybridi-
zation of HHA and DRL based DQN model. In the initial phase to generate schedules calculation of priorities 
for tasks, VMs to be done. In the below equation, present workload on considered VMs in this architecture are 
calculated using Eq. (1).

where loadvj is present running tasks workload on j VMs. All these j VMs are placed in k physical nodes. Present 
workload on all physical nodes are calculated using Eq. (2).

 where loadpnk is present running tasks on k physical nodes. For calculation of task priorities processing capacities 
of VMs to be properly identified and they are represented in Eq. (3).

Processing capacity of all VMs are represented using below Eq. (4).

(1)loadvj =
∑

loadj

(2)loadpnk =
loadj
∑

pnk

(3)Provj = pron ∗ promips

Table 1.  Parameters and technique used in various task scheduling algorithms in cloud computing.

References Methodology used Addressed parameters
7 HDE Makespan, Execution time
8 ABFSOS Penalty function
9 IMOMVO Execution time, throughput, VM Processing Power
10 h-DEWOA Energy Consumption, makespan
11 Hybrid BAT Makespan, throughput
12 IQSSA, QSSGWA Quality of Service, Resource utilization, rate of SLA Violation
13 IWHOLF-TSC Makespan, degree of imbalance, resource utilization
14 DOLSSO CPU Utilization, Energy Consumption
15 CHSA Cost, memory usage, energy consumption, penalty
16 HHS Consumption of energy, total execution cost, total execution time, latency
17 CSSA-DE Throughput, degree of imbalance, resource utilization, consumption of energy
18 NSGA-III Runtime, power consumption, cost
19 HMEERA Waiting time, response time, load balancing
20 HWOA-MBA Task Completion time, execution time
21 IPSO Makespan, load balancing
22 Hunterplus Consumption of energy, rate of task completion
23 HWACO Makespan, cost
24 SOATS Cost, consumption of energy
25 RCOA Makespan, energy consumption
26 QOGSHO Makespan, resource utilization, SLA Violation
27 AWDA Delay time, cost, energy
28 PGSAO User satisfaction, Processing efficiency
29 OWPSO Makespan, energy consumption
30 ICOATS Makespan, turnaround efficiency, availability, success rate
31 IJFA Makespan, execution cost, resource utilization
32 PFA Total execution time, cost, resource utilization
33 Hybrid FPA Makespan, degree of imbalance
34 Hybrid Lion-GA Turnaround time, resource usage
35 G-SOS Makespan
36 HMOA Execution time
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Priorities of tasks depends on two components i.e. length of task, runtime or processing capacity of a VM. 
All incoming length of tasks are calculated and they are represented in Eq. (5).

In the step 5, we identified length of all i tasks considered in our system architecture. Now, Priorities of all 
incoming tasks are represented by Eq. (6).

In Eq. (6). after calculation of task priorities, we calculated all j VM priorities to schedule all incoming i 
tasks to suitable VMs considered in our architecture. In order to map tasks appropriately, VM priorities based 
on electricity cost at datacentre location is represented by Eq. (7).

From Eqs. (6) and (7) priorities of tasks, VMs are calculated. These priorities are fed to scheduler in which 
high prioritized task should map to a high prioritized VM. If high prioritized VM is not available at the current 
cloud vendor look for the high prioritized VM in the another cloud vendor as we are using multi cloud environ-
ment. If high prioritized VMs are not available at both the cloud vendors and then look for a VM which is having 
next highest priority in any cloud vendor which have less resource cost. Therefore, it is necessary to calculate 
resource cost in cloud model and it is represented by Eq. (8). It is an important parameter need to be addressed 
in this model as we said earlier our model is aimed at minimization of resource cost which is an important aspect 
for both cloud provider and user. It is represented in Eq. (8).

Makespan is one of the important parameter which should be addressed after identifying resource cost in 
this model. For any task scheduler in the cloud environment it is important to calculate makespan as it impacts 
quality of service of cloud provider and other parameters which effects SLA violations and related to trust on 
the cloud provider. It is represented by Eq. (9).

In this proposed algorithm, another important objective to address is to minimize rate of failures thus by 
improving fault tolerance using this scheduler in multi cloud environment. It is represented by Eq. (10).

where mtbf  represents mean time between failures, mttr represents mean time to repair or restore a node from 
a failure to restore process. We formulated fault tolerance for all i tasks in this model. Our next objective is to 
relate fault tolerance with SLA based trust parameters which effects Quality of service of cloud provider. SLA 
based trust parameters are of three types. They are Availability, Success rate, Turnaround efficiency of VMs. Thus, 
we calculated availability of j VMs and it is represented using Eq. (11).

Another trust based parameter need to be calculated is success rate of VMs. It is represented using Eq. (12). 
It is defined as rate of successful tasks of tai to submitted number of tasks of tai . It is represented by Eq. (12).

Turnaround efficiency of a VM is another parameter which effects trust of cloud provider. It is represented 
by using Eq. (13).

After evaluation of all these SLA based trust parameters, trust on cloud provider is represented by Eq. (14).

(4)totalprovj =
∑

Provj

(5)taleni = ta
mips
i ∗ ta

pro
i

(6)ta
pri
i =

taleni
Provj

(7)vm
pri
j =

highelecost

dlelecost

(8)Rescost =

vmj
∑

j=1

cost for runningtai ∗Memory of tai

vj ∗ pnk

(9)ms(tai) = availi + exej

(10)Failrate =
mtbf

mtbf +mttr

(11)avail
(

vj
)

=
acctai
tai

(12)sucrate
(

vj
)

=
successtai

submittedtai

(13)turneff
(

vj
)

=
esttimetai

acttimetai

(14)trstcp = X1 ∗ avail
(

vj
)

+ X2 ∗ sucrate
(

vj
)

+ X3 ∗ turneff
(

vj
)
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where X1,X2,X3 are coefficient weights which are helpful to evaluate trust on Cloud provider and this value ǫ(0, 1) 
and it is captured  from37. It is calculated using co-variance mechanism The weights in the above equations are 
considered as X1 = 0.5,X2 = 0.2,X3 = 0.1 are considered  from37.

FTTHDRL fitness function for schedules generation using Harris Hawk optimization
This subsection clearly presents fitness function for generation of schedules using Harris Hawk optimization. 
Earlier we said we are using a hybrid approach, thus initially we generate schedules by evaluating fitness function 
using Eq. (15). and there after we use reward function in DQN model to optimize schedules in the second level 
while improving above said parameters.

where β1 + β2 + β3 + β4 + β5 + β6 = 1 . From Eq. (15). as we discussed earlier in the subsection "FTTHDRL 
fitness function for schedules generation using Harris Hawk optimization", we evaluate fitness function and then 
check the values of generated parameters using Harris Hawks algorithm.

Methodology used in FTTHDRL
This subsection clearly presents the methodology used in proposed FTTHDRL. This algorithm modelled by using 
hybridizing Harris Hawk algorithm and DQN model which is based on reinforcement learning. The below Sec-
tion “Harris Hawk Optimization” clearly discusses about different phases of Harris Hawk optimization algorithm.

Harris Hawk optimization
In this section, initial methodology of FTTHDRL i.e. Harris hawk optimization  from38 discussed. It works based 
on cooperative hunting behaviour of Hawks for prey. In the initial stage, it identifies location of the prey based 
on whether it is alone or in the group. Position of prey represented using Eq. (16).

Equation (17) represents average position of Hawk.

Now, we evaluate Prey energy and is represented using Eq. (18).

From Eq. (18), ENER represents escaping energy of prey, ENER0 represents initial escaping energy of prey. 
It ranges from -1 to 1. When energy of prey is decreasing then it is easy for hawk bird to trace prey and exploit. 
Hawk birds exploit prey when it moves from exploration to exploitation phase but it depends on probability of 
escaping of prey from hawk, energy required for prey to escape from hawk bird. Prey hunting by hawk bird totally 
depends on probability of escaping from hawk i.e. if  prob < 0.5 then prey can be escaped or if prob ≥ 0.5 then 
prey can be exploited by hawk. Exploitation according to 38 mentioned in two phases i.e. softly encircled around 
the prey by hawks if prob ≥ 0.5&&|ENER| ≥ 0.5 . It is represented here in the eqns. 19, 20.

Hardly encircled by Hawk birds around the prey if prob ≥ 0.5&&|ENER| ≥ 0.5 . It is represented in Eq. (21).

There is an another encircling mechanism for prey by using incremental steps by observing the previous 
movements of prey. It is known as soft encircling mechanism with incrementing their steps up to the prey’s 
location and it is represented using Eq. (22).

In the above encircling mechanism, if the steps of hawk bird is not incremental then hawk encircle prey sud-
denly by attacking it and represented as Eq. (23) (Fig. 1).

(15)
f (x) = β1 ∗ Rescost + β2 ∗ms(tai)+ β3 ∗ faulttol + β4 ∗ avail

(

vj
)

+ β5 ∗ sucrate
(

vj
)

+ β6∗turneff
(

vj
)

(16)Z(T + 1) =

{

R ≥ 0.5 ZRAND(T)− r1
∣

∣ZRAND(T)− 2r2Z(T)
∣

∣

R < 0.5
(

ZRAB(T)− Zm(T)
)

− r3
(

LowB+ r4
(

UpperB− LowB
))

(17)Zm(T) =
1

y

∑y

a=1
Zm
a (T)

(18)ENER = 2ENER0

(

1−
T

Y

)

(19)Z(T + 1) = µZ(T)− ENER | BZRAB(T)− Z(T) |

(20)µZ(T) = ZRAB(T)− Z(T)

(21)Z(T + 1) = ZRAB(T)− ENER | µZ(T)|

(22)X = ZRAB(T)− ENER | BZRAB(T)− Z(T) |

(23)Z0 = X + b0 ∗ Levyflight(dim)

(24)where Levyflight(X) = 0.01 ∗
τ ∗ n

| ρ|
1
F
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Soft incremental encircling with incremental steps are represented by Eq. (26).

X,Z0 calculated using Eqs. (22, 23). Hard encircling with incremental steps are represented by Eq. (27).

In above equations Z0,X are calculated in Eqs. (22,27) respectively.

Zm(T) is calculated from Eq. (17).

Reinforcement Learning based DQN model
This subsection clearly discusses about DQN(Deep Q- network) model which is a reinforcement based learning 
strategy used as a methodology in our research. This DQN model basically works on Q-learning model. This 
Q-learning39 works based on two tuples in Q-table. They are action space, state space. This is a reinforcement 
based strategy and therefore it doesn’t need any prior knowledge to generate output. For every iteration of model, 
this DQN model check for each state with respect to state space and then how it takes action against that cor-
responding state. A Q-learning function is to be represented using Eq. (29).

For every iteration reinforcement agent looks for Q-learning table keeping in mind that for which state which 
action to be generated evaluating from Reward function. The outcome of that reward function generates either 
positive or negative reward based on the input supplied at state space and action space tuples in Q-table but as 
it is a reinforcement learning based agent it learns from the previous action and improves the generated output 
accordingly. In Eq. (29). � represents rate of learning for the model, ω represents discount factor. statetai repre-
sents state space of considered tasks in the model, Acttai represents action space of considered tasks in model, 
state(ta+1)i represents state space of next iteration of considered tasks in the model, Actta+1 represents action space 
of next iteration of considered tasks in the model. In this research, while training the agent we used 100 neurons 
are added as hidden layers in DQN model. Scheduling time for agent to generate a decision is kept as 10 Ms. 
Replay memory which is used to store states is represented as rm . Iterations runs for different number of times 
and all these values are stored in replay memory and iterations ran as batches. Agent learning time represented 
as agenttime.Reward function for this model is represented using Eq. (30).

From the above equation, we evaluate rewards for each of the parameter whether they have improved or not 
for every iteration we ran in the model. Tables 2 and 3 display the notations and simulation using FTTHDRL 
system architecture.

(25)n =
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(26)Z(T + 1) =
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Table 2.  Notations used in FTTHDRL system architecture.

Notation Meaning

loadvj Running tasks on j VMs

loadpnk Running tasks on k physical nodes

totalprovmj
Total processing capacity of all j VMs

taleni Length of i  tasks

ta
pri
i

Priorities of i  tasks

v
pri
j

Priorities of j VMs

Rescost Resource cost in cloud environment

ms(tai) Makespan of i  tasks

Failrate Fault tolerance or rate of failures of i  tasks

avail
(

vj
)

Availability of j VMs

sucrate
(

vj
)

Success rate of j VMs

turneff
(

vj
)

Turn around efficiency of j VMs

trstcp Trust on Cloud provider

statetai State space of considered i  tasks

Acttai Action space of considered i  tasks

Rewfn Reward function

� Rate of learning

ω Discount factor

rm Replay memory

Table 3.  Simulation settings used in FTTHDRL.

Name Quantity

No of tasks used in simulation 100–500–1000

Length of tasks used in simulation 100,000

RAM used in VMs 4096 MB

Network bandwidth of VMs 20 Mbps

Processing elements considered for simulation 1800 MIPS

Physical node Memory used for simulation 64 GB

Physical node hard disk capacity for simulation 1 TB

Network Bandwidth of Physical node 200 Mbps

Type of Hypervisor used in simulation Monolithic

Hypervisor used for simulation Xen

Operating system of Physical node used in simulation MAC

Operating System of VM used in simulation Ubuntu Linux

No. of Datacentres used in multi cloud environment 50
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Proposed FTTHDRL task scheduler in multi cloud environment

The above Fig. 2. shows the flow of our proposed FTTHDRL scheduler which is modelled by hybridization 
of Harris Hawk algorithm, DQN model which is based on reinforcement learning. Initially, hawk population 
generated randomly. After that calculation of priorities of tasks, VMs are using by eqns.6, 7. In next step, fitness 
function calculation using Eq. (15). Algorithm evaluates problem space in two stages by checking a condition 
|ENER| ≥ 1 if it is true then it is in exploitation stage or it is in exploration stage. After this in exploitation if 
prob ≥ 0.5&&|ENER| ≥ 0.5 is true then it takes soft encircling on prey otherwise it takes hard encircling. In 
another step, if prob ≤ 0.5&&|ENER| ≥ 0.5 is true it will go into a stage i.e. Incremental soft encircling otherwise 
it will be in incremental hard circling. After this step, Assess the parameters and input them to DQN model to 
generate schedules and evaluate parameters using reward function using Eq. (30) for optimizing parameters. 
In the next step, assess the SLA based trust parameters. If trust is increased update trust value to existing trust 
value of cloud provider otherwise trust will be decreased and this process will be continued until all iterations 
completed. Fig. 1 indicates the physical proposed FTTHDRL system architecture.

Simulation and results
This section discusses about extensive simulations carried out on Cloudsim  tool40 for proposed FTTHDRL (Fault 
tolerant trust based task scheduler using Harris Hawk and deep reinforcement learning). Proposed FTTHDRL 
simulation performed by giving input parallel worklogs of  HPC2N41,  NASA42. Both of these parallel worklogs 
consists of lengthy, medium, small worklogs. In this research, initially while evaluating and for simulating the 
algorithm, we fabricated the datasets manually with different statistical distributions which are uniform dis-
tributed consists of all tasks are equally distributed. Normal distribution which consists of tasks more medium 
number of tasks, less number of large, small number of tasks. Left skewed distribution which consists of more 
large, medium tasks, less number of small tasks. Right skewed presents less number of large, medium, more 
number of small tasks. Thus, proposed FTTHDRL evaluated in two phases by fabricating workload manually 
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and using real time workload from  HPC2N41,  NASA42. In this work we represented Uniform, Normal, Left, 
right distributions as U01, N02, L03, R04, H05, NA06 respectively. The below Section “Configuration settings 
used in FTTHDRL for simulation” presents configuration settings of simulation which are used in simulation.

Configuration settings used in FTTHDRL for simulation
This Section “Configuration settings used in FTTHDRL for simulation” discusses simulation settings used in 
proposed FTTHDRL and we captured standard simulation settings from 43. We have installed Cloudsim  tool40 in 
our environment. It was installed in MAC operating system, 64 GB RAM, 8-core CPU with M1 chip resided in it.

Evaluation of makespan for FTTHDRL
In this Section “Evaluation of makespan for FTTHDRL”, we carefully evaluated makespan of our proposed 
FTTHDRL by giving input workload from various fabricated workloads from U01, N02, L03, R04 and real 
time parallel worklogs from H05, NA06. Proposed FTTHDRL compared over existing RATS-HM, MOABCQ, 
AINN-BPSO approaches. Table 4 represents generated makespan of 100, 500, 1000 tasks. Figures 3, 4, 5, 6, 7, 
8 represents makespan of U01, N02, L03, R04, H05, NA06 respectively. After observing results generated from 
makespan FTTHDRL improves makespan greatly over state of art algorithms.

Evaluation of rate of failures for FTTHDRL
In this Section “Evaluation of rate of failures for FTTHDRL”, we evaluated Rate of failures of our proposed FTTH-
DRL by giving input workload from various fabricated workloads from U01, N02, L03, R04 and real time parallel 
worklogs from H05, NA06. Proposed FTTHDRL compared over existing RATS-HM, MOABCQ, AINN-BPSO 
approaches. Table 5 represents Rate of failures for 100, 500, 1000 tasks. Figures 9, 10, 11, 12, 13, 14 represents 
rate of failures of U01, N02, L03, R04, H05, NA06 respectively. After observing results generated rate of failures 
for FTTHDRL minimizes rate of failures greatly over state of art algorithms.

Evaluation of availability for FTTHDRL
In this Section “Evaluation of availability for FTTHDRL”, we evaluated Availability of VMs of our proposed 
FTTHDRL by giving input workload from various fabricated workloads from U01, N02, L03, R04 and real 
time parallel worklogs from H05, NA06. Proposed FTTHDRL compared over existing RATS-HM, MOABCQ, 
AINN-BPSO approaches. Table 6 represents availability of VMs for 100, 500, 1000 tasks. Figures 15, 16, 17, 18, 
19, 20 represents availability of VMs for U01, N02, L03, R04, H05, NA06 respectively. After observing results 
generated availability for FTTHDRL improves availability greatly over state of art algorithms.

Figure 1.  Proposed FTTHDRL system architecture.
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Evaluation of success rate for FTTHDRL
In this Section “Evaluation of success rate for FTTHDRL”, we evaluated Success rate of VMs of our proposed 
FTTHDRL by giving input workload from various fabricated workloads from U01, N02, L03, R04 and real 
time parallel worklogs from H05, NA06. Proposed FTTHDRL compared over existing RATS-HM, MOABCQ, 
AINN-BPSO approaches. Table 7 represents Success rate of VMs for 100, 500, 1000 tasks. Figures 21, 22, 23, 24, 
25, 26 represents success rate of VMs for U01, N02, L03, R04, H05, NA06 respectively. After observing results 
generated Success rate for FTTHDRL improves availability greatly over state of art algorithms.

Figure 2.  Flow of proposed FTTHDRL scheduler.
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Evaluation of Turnaround efficiency for FTTHDRL
In this Section “Evaluation of Turnaround efficiency for FTTHDRL”, we evaluated Turnaround efficiency of 
VMs of our proposed FTTHDRL by giving input workload from various fabricated workloads from U01, N02, 
L03, R04 and real time parallel worklogs from H05, NA06. Proposed FTTHDRL compared over existing RATS-
HM, MOABCQ, AINN-BPSO approaches. Table 8 represents Turnaround efficiency for 100, 500, 1000 tasks. 
Figures 27, 28, 29, 30, 31, 32 represents Turnaround efficiency for U01, N02, L03, R04, H05, NA06 respectively. 
After observing results generated Turnaround efficiency for FTTHDRL improves Turnaround efficiency greatly 
over state of art algorithms.

Evaluation of resource cost for FTTHDRL
In this Section “Evaluation of resource cost for FTTHDRL”, we evaluated Resource cost for our proposed FTTH-
DRL by giving input workload from various fabricated workloads from U01, N02, L03, R04 and real time parallel 
worklogs from H05, NA06. Proposed FTTHDRL compared over existing RATS-HM, MOABCQ, AINN-BPSO 
approaches. Table 9 represents Resource cost for 100, 500, 1000 tasks. Figures 33, 34, 35, 36, 37, 38 represents 
Resource cost for U01, N02, L03, R04, H05, NA06 respectively. After observing results generated Resource cost 
for FTTHDRL minimizes Resource cost greatly over state of art algorithms.

Table 4.  Evaluation of makespan for FTTHDRL.

No. of Tasks RATS-HM MOABCQ AINN-BPSO FTTHDRL

100(U01) 724.87 787.17 698.65 608.19

500(U01) 938.29 1374.54 1238.24 703.17

1000(U01) 1465.15 1587.21 1783.14 889.56

100(N02) 976.29 909.15 847.24 718.84

500(N02) 1384.36 1298.78 1457.39 987.45

1000(N02) 1543.15 1623.51 1737.11 1248.21

100(L03) 843.18 712.99 809.26 647.75

500(L03) 908.14 1312.78 1105.17 789.11

1000(L03) 1427.53 1536.12 1347.02 945.57

100(R04) 658.37 736.77 657.11 543.21

500(R04) 784.22 856.16 798.17 625.87

1000(R04) 1437.42 1524.77 1402.11 1254.11

100(H05) 1489.36 1524.87 1899.28 856.18

500(H05) 1798.18 2786.32 2924.58 1438.76

1000(H05) 2745.12 3564.12 2987.67 1932.17

100(NA06) 956.37 758.93 696.74 618.17

500(NA06) 957.12 1123.12 1202.13 1098.15

1000(NA06) 1587.09 1873.29 1984.21 1124.11

Figure 3.  Makespan evaluation by U01.
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Simulation analysis and discussion of results
Section “Simulation analysis and discussion of results” discusses generated result analysis and discussion about 
how they have improved over existing approaches. Initially, we fabricated different datasets indicated as U01, 
N02, L03, R04, H05, NA06. Generated results for proposed FTTHDRL evaluated over state of art approaches 
RATS-HM, MOABCQ, AINN-BPSO to check efficacy of our proposed algorithm. The below Table 10 represents 
makespan improvement for FTTHDRL, Table 11 represents improvement of rate of failures for FTTHDRL, 
Table 12 represents improvement of availability of VMs for FTTHDRL, Table 13 represents improvement of 
success rate of VMs for FTTHDRL, Table 14 represents improvement of turnaround efficiency of VMs for 
FTTHDRL, Table 15 represents minimization of resource cost for FTTHDRL. From these results, we can clearly 
observe that our proposed FTTHDRL dominates all state of art approaches for above specified parameters.

Figure 4.  Makespan evaluation by N02.

Figure 5.  Makespan evaluation by L03.
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Conclusion and future works
Task scheduling is a crucial aspect in cloud computing paradigm as tasks arised from various resources and 
coming to cloud console need different processing capacities of virtual resources. In order to match task capaci-
ties with virtual resources an effective scheduler needed for cloud provider. Ineffective task scheduler leads to 
failures of tasks on VMs which doesn’t match task capacities to VM effectively. Thus, in this research to mini-
mized failures of tasks and to match tasks appropriately to VMs we proposed a Fault tolerant trust aware task 
scheduler using Harris Hawk and Deep reinforcement based approach (FTTHDRL) in multi cloud environ-
ment. Initially we captured task, VM priorities to carefully map tasks to appropriate VMs. These priorities are 
fed to scheduler which is integrated with Harris Hawk optimization and DQN model which is a reinforcement 
learning approach which is a hybridized methodology used in our model. It generates schedules initially using 
Harris hawk algorithm and these generated schedules are optimized by DQN model to optimize parameters. 
Simulations are conducted on Cloudsim. For evaluating FTTHDRL, we used fabricated workload indicated as 
U01,N02, L03,R04. After this, we used realtime worklogs H05, NA06 used in simulation to evaluate FTTHDRL. 
Proposed FTTHDRL is evaluated over state of art approaches RATS-HM, AINN-BPSO, MOABCQ. From the 
observed results, FTTHDRL dominates existing algorithms by minimizing makespan, resource cost, rate of 
failures while improving trust based parameters. Shortcomings observed in our proposed research are it is not 
able to predict upcoming tasks thus, in future, we integrate a prediction module in the scheduler to predict tasks 
by using model to effectively schedule tasks in cloud paradigm.

Figure 6.  Makespan evaluation by R04.

Figure 7.  Makespan evaluation by H05.
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Figure 8.  Makespan evaluation by NA06.

Table 5.  Evaluation of rate of failures for FTTHDRL.

Tasks RATS-HM MOABCQ AINN-BPSO FTTHDRL

100(U01) 57.25 53.57 52.98 19.24

500(U01) 64.36 61.87 58.66 21.09

1000(U01) 42.87 49.65 43.12 16.12

100(N02) 50.32 49.11 44.35 20.14

500(N02) 62.43 59.21 30.08 15.57

1000(N02) 50.16 40.78 45.47 18.42

100(L03) 60.33 53.16 30.37 18.11

500(L03) 42.07 49.29 29.15 20.07

1000(L03) 58.91 37.15 22.08 12.36

100(R04) 48.36 67.46 74.68 14.06

500(R04) 30.16 55.77 62.41 25.76

1000(R04) 30.04 47.37 38.82 19.14

100(H05) 75.26 66.43 61.21 23.86

500(H05) 73.11 74.54 68.35 19.14

1000(H05) 74.66 79.63 64.19 20.09

100(NA06) 50.17 62.06 51.10 21.37

500(NA06) 61.03 54.24 60.06 17.29

1000(NA06) 72.15 60.17 69.46 13.27
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Figure 9.  Rate of Failures using U01.

Figure 10.  Rate of Failures using N02.

Figure 11.  Rate of Failures using L03.
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Figure 12.  Rate of Failures using R04.

Figure 13.  Rate of Failures using H05.

Figure 14.  Rate of Failures using NA06.
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Table 6.  Evaluation of availability of VMs for FTTHDRL.

Tasks RATS-HM MOABCQ AINN-BPSO FTTHDRL

100(U01) 62.13 66.74 69.37 87.28

500(U01) 72.24 65.88 71.91 84.87

1000(U01) 79.18 70.19 68.54 86.28

100(N02) 66.53 69.27 70.18 84.35

500(N02) 70.68 57.51 62.38 87.36

1000(N02) 62.38 59.48 61.35 89.67

100(L03) 79.48 56.38 62.12 86.37

500(L03) 68.01 64.26 71.08 90.14

1000(L03) 71.91 75.48 63.28 94.18

100(R04) 69.42 75.17 79.35 83.72

500(R04) 70.17 78.43 67.86 92.74

1000(R04) 74.51 70.24 75.74 90.18

100(H05) 54.87 57.25 59.19 79.27

500(H05) 68.04 63.27 66.76 85.42

1000(H05) 71.77 69.31 62.18 92.10

100(NA06) 44.86 57.19 65.86 89.63

500(NA06) 58.76 65.77 74.27 92.63

1000(NA06) 68.17 62.07 71.44 95.12

Figure 15.  Availability of VMs using U01.
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Figure 16.  Availability of VMs using N02.

Figure 17.  Availability of VMs using L03.

Figure 18.  Availability of VMs using R04.
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Figure 19.  Availability of VMs using H05.

Figure 20.  Availability of VMs using NA06.

Table 7.  Evaluation of success rate of VMs for FTTHDRL.

Tasks RATS-HM MOABCQ AINN-BPSO FTTHDRL

100(U01) 74.56 65.46 73.76 83.24

500(U01) 68.13 73.28 65.85 94.76

1000(U01) 50.28 77.45 63.32 92.06

100(N02) 55.84 61.28 70.14 84.87

500(N02) 63.49 67.04 82.46 89.16

1000(N02) 71.67 78.52 85.61 92.38

100(L03) 62.15 57.26 70.88 84.26

500(L03) 74.78 60.27 79.05 91.32

1000(L03) 67.28 72.09 80.03 93.19

100(R04) 59.43 60.26 71.36 85.28

500(R04) 66.21 71.27 78.87 94.67

1000(R04) 74.22 77.17 68.21 95.28

100(H05) 49.67 70.37 60.25 92.46

500(H05) 58.11 74.52 69.66 95.19

1000(H05) 69.87 79.63 64.18 96.38

100(NA06) 49.57 53.87 68.15 89.87

500(NA06) 59.11 68.22 79.24 91.22

1000(NA06) 68.47 72.18 65.62 95.35
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Figure 21.  Success rate of VMs using U01.

Figure 22.  Success rate of VMs using N02.

Figure 23.  Success rate of VMs using L03.
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Figure 24.  Success rate of VMs using R04.

Figure 25.  Success rate of VMs using H05.

Figure 26.  Success rate of VMs using NA06.
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Table 8.  Evaluation of Turnaround efficiency of VMs for FTTHDRL.

Tasks RATS-HM MOABCQ AINN-BPSO FTTHDRL

100(U01) 66.87 52.36 54.67 89.28

500(U01) 70.28 65.76 68.32 92.67

1000(U01) 53.58 69.38 62.28 96.39

100(N02) 50.82 57.10 63.27 87.42

500(N02) 65.68 63.75 73.44 92.56

1000(N02) 68.19 75.61 79.11 94.58

100(L03) 60.26 59.86 64.56 89.63

500(L03) 68.08 62.45 74.78 96.19

1000(L03) 70.31 77.41 68.08 98.72

100(R04) 58.49 61.46 75.78 88.72

500(R04) 65.98 68.73 84.43 94.56

1000(R04) 78.32 70.27 81.17 96.99

100(H05) 46.36 62.27 58.85 92.37

500(H05) 59.21 66.88 69.12 97.18

1000(H05) 67.36 72.78 78.12 96.75

100(NA06) 58.43 59.57 71.34 92.87

500(NA06) 66.56 69.17 73.57 95.22

1000(NA06) 71.26 74.62 80.41 97.48

Figure 27.  Turnaround efficiency of VMs using U01.
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Figure 28.  Turnaround efficiency of VMs using N02.

Figure 29.  Turnaround efficiency of VMs using L03.

Figure 30.  Turnaround efficiency of VMs using R04.
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Figure 31.  Turnaround efficiency of VMs using H05.

Figure 32.  Turnaround efficiency of VMs using NA06.
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Table 9.  Evaluation of resource cost for FTTHDRL.

Tasks RATS-HM MOABCQ AINN-BPSO FTTHDRL

100(U01) 5.92 6.76 4.97 4.05

500(U01) 7.14 7.12 6.57 3.92

1000(U01) 8.26 6.49 7.05 4.02

100(N02) 5.85 4.88 5.87 3.28

500(N02) 6.23 8.49 6.21 2.99

1000(N02) 7.02 7.32 5.33 2.09

100(L03) 6.13 5.97 5.87 3.48

500(L03) 5.92 6.14 7.02 4.28

1000(L03) 7.22 7.38 6.34 2.44

100(R04) 8.37 6.21 6.17 3.57

500(R04) 6.22 4.15 4.88 2.21

1000(R04) 7.28 5.18 5.25 2.87

100(H05) 7.21 6.73 7.98 3.26

500(H05) 9.03 7.32 9.25 4.17

1000(H05) 7.44 8.42 10.43 7.35

100(NA06) 8.33 5.78 6.88 4.12

500(NA06) 7.58 6.78 5.98 3.82

1000(NA06) 8.11 7.57 7.37 2.77

Figure 33.  Resource cost using U01.

Figure 34.  Resource cost using N02.
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Figure 35.  Resource cost using L03.

Figure 36.  Resource cost using R04.

Figure 37.  Resource cost using H05.
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Figure 38.  Resource cost using NA06.

Table 10.  makespan improvement for FTTHDRL over state of art algorithms.

Dataset RATS-HM MOABCQ AINN-BPSO

U01 23.48 36.27 32.12

N02 24.76 26.88 28.08

L03 30.21 37.98 22.57

R04 16.88 25.22 11.98

H05 30.7 47.43 42.76

NA06 21.26 39.21 28.09

Table 11.  Rate of failures improvement for FTTHDRL over state of art algorithms.

Dataset RATS-HM MOABCQ AINN-BPSO

U01 62.76 64.57 54.75

N02 66.27 60.78 57.83

L03 68.47 61.24 32.57

R04 52.54 66.32 66.14

H05 71.53 71.29 69.31

NA06 72.11 74.53 71.12

Table 12.  Availability of VMs improvement for FTTHDRL over state of art algorithms.

Dataset RATS-HM MOABCQ AINN-BPSO

U01 23.48 32.17 26.78

N02 27.97 42.59 29.86

L03 18.78 39.67 25.87

R04 27.87 18.95 27.88

H05 37.25 39.78 43.08

NA06 72.06 46.32 34.38
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Table 13.  success rate of VMs improvement for FTTHDRL over state of art algorithms.

Dataset RATS-HM MOABCQ AINN-BPSO

U01 47.24 24.73 40.54

N02 44.32 37.24 15.87

L03 39.67 49.36 16.88

R04 45.25 39.87 34.08

H05 71.16 33.17 40.76

NA06 64.54 42.12 71.44

Table 14.  Turnaround efficiency of VMs improvement for FTTATS over state of art algorithms.

Dataset RATS-HM MOABCQ AINN-BPSO

U01 42.76 51.21 50.08

N02 40.46 42.35 32.78

L03 41.28 34.21 30.13

R04 32.87 32.67 19.27

H05 68.56 48.12 40.34

NA06 38.57 40.12 20.36

Table 15.  Resource cost improvement for FTTHDRL over state of art algorithms.

Dataset RATS-HM MOABCQ AINN-BPSO

U01 20.24 31.54 30.65

N02 22.12 23.76 24.99

L03 31.08 32.67 23.21

R04 18.92 19.48 15.73

H05 21.03 19.08 17.45

NA06 20.04 22.17 25.18
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