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Daily flow prediction 
of the Huayuankou 
hydrometeorological station 
based on the coupled 
CEEMDAN–SE–BiLSTM model
Haiyang Li 1, Xianqi Zhang 1,2,3*, Shifeng Sun 1, Yihao Wen 1 & Qiuwen Yin 1

Enhancing flood forecasting accuracy, promoting rational water resource utilization and 
management, and mitigating river disasters all hinge on the crucial role of improving the accuracy 
of daily flow prediction. The coupled model of Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise (CEEMDAN), Sample Entropy (SE), and Bidirectional Long Short-Term Memory 
(BiLSTM) demonstrates higher stability when faced with nonlinear and non-stationary data, stronger 
adaptability to various types and lengths of time series data by utilizing sample entropy, and 
significant advantages in processing sequential data through the BiLSTM network. In this study, in 
the context of predicting daily flow at the Huayuankou Hydrological Station in the lower reaches of 
the Yellow River, a coupled CEEMDAN–SE–BiLSTM model was developed and utilized. The results 
showed that the CEEMDAN–SE–BiLSTM coupled model achieved the utmost accuracy in prediction 
and optimal fitting performance. Compared with the CEEMDAN–SE–LSTM, CEEMDAN–BiLSTM, and 
BiLSTM coupled models, the root mean square error (RMSE) of this model is reduced by 42.77, 182.02, 
and 193.71, respectively; the mean absolute error (MAE) is reduced by 37.62, 118.60, and 126.67, 
respectively; and the coefficient of determination  (R2) is increased by 0.0208, 0.1265, 0.1381.

In the presence of multiple climate factors and the dual influence of human activities, the prediction of river flow 
faces high levels of randomness, ambiguity, and uncertainty. Establishing a highly accurate flow prediction model 
plays a vital role in enhancing the optimization of water resource allocation within a watershed, improving the 
accuracy of flood forecasting, and mitigating disaster risks. Currently, the development of higher-precision flow 
prediction models has become a major research topic.

In recent years, several machine learning models, such as artificial neural networks (ANN), support vec-
tor machines (SVM), extreme learning machines (ELM)1, and Gaussian process (GP) regression, have been 
adopted, and models such as generalized regression neural networks (GRNN), random forest (RF) regression, 
and random tree (RT) based  models2, have been widely used to predict flow in order to achieve better fitting 
performance. Başakin and Özger, the prediction of flow was accomplished by combining Fuzzy Time Series (FTS) 
with Continuous Wavelet Transform (CWT), and the findings indicated that the Wavelet Fuzzy Time Series 
(WFTS) method demonstrated considerably improved prediction accuracy in comparison to traditional fuzzy 
time series  methods3. The improved Muskingum method was used to estimate peak flow during complete chan-
nel opening, and experimental results showed that this method had good predictive performance for flood flow 
evolution during the flood  season4. Jin Baoming constructed a Backpropagation Neural Network (BPNN) model 
for flood prediction in a river basin, which was applied to the prediction of flow in the Shili’an section of the 
Minjiang  River5. Khodakhah, Aghelpour and Hamedi, conducted a comparative analysis of various data-driven 
models for the prediction of monthly flow, the models considered in this study include Seasonal Autoregressive 
Integrated Moving Average (SARIMA), as well as machine learning models such as Least Squares Support Vec-
tor Machine (LSSVM), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Group Method of Data Handling 
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(GMDH). The study found that the SARIMA stochastic model performed well in predicting river flow under 
drought  conditions6. Mehedi a Long Short-Term Memory (LSTM) neural network regression model was trained 
using a dataset spanning more than 80 years of daily data for univariate prediction analysis and suggested its use 
for real-time river discharge  forecasting7. Hussain and Khan investigated the potential of data-driven machine 
learning methods, such as Multilayer Perceptron (MLP), Support Vector Regression (SVR), and Random Forest 
(RF), to forecast the river flow of Huzrah River in Pakistan. The analysis employed an in-situ dataset spanning the 
period from 1962 to 2008, enriching the machine learning algorithms and  models8. By leveraging artificial intel-
ligence (AI) techniques, specifically the Cascaded Correlation Neural Network (CCNN) and Random Forest (RF) 
models, accurate daily predictions were made for reach and river flow in two Australian river systems—the Dul-
hunty River and Herbert River. Based on performance accuracy, after comprehensive analysis, the CCNN model 
emerged as the preferred data intelligence tool for accurately predicting river stage and river  flow9. A water flow 
model leveraging the Long Short-Term Memory (LSTM) architecture was developed improved by integrating the 
latest discharge measurements through Data Integration (DI). Despite certain limitations, deep learning-based 
forecasting models hold great potential due to their performance, automation, efficiency, and  flexibility10. Liu to 
ensure reliability in predicting catastrophic flood years and providing long-term continuous rolling forecasts, the 
Empirical Mode Decomposition (EMD) algorithm was combined with the Encoder-Decoder Long Short-Term 
Memory (En-De-LSTM)  architecture11. Through the comparison of Long Short-Term Memory (LSTM), Gated 
Recurrent Unit (GRU), and Artificial Neural Network (ANN) models, Gao Shuai suggests that GRU could be 
considered as the preferred approach for short-term runoff  prediction12. The CEEMDAN–VMD–HHO–LSSVM 
model was constructed to predict the monthly runoff data from Manwan and Hongjiadu hydropower stations in 
China, which showed that the quadratic decomposition could successfully extract the complex runoff sequence 
information and thus significantly improve the prediction accuracy of the hybrid model (Xu et al.13). However, 
empirical modal decomposition (EMD) and variational modal decomposition (VMD) as sequence decomposi-
tion techniques cannot produce convincing forecasting models because additional information about the future 
flow to be predicted is introduced into the explanatory variables of the samples (Fang et al.14); an adaptive EEMD-
ANN (AEEMD-ANN) model is proposed, which, unlike hindcasting tests, it does not use any future information; 
unlike traditional forecasting tests, its decomposition and forecasting model adaptively adjusts whenever new 
runoff information is added. It has a high forecast accuracy during flood season (Tan et al.15); Developed Wavelet 
Data-Driven Forecasting Framework (WDDFF) is a useful tool for forecasting real-world hydrologic and water 
resource processes, which overcomes the limitations of many earlier wavelet-based forecasting methods (Quilty 
and  Adamowski16); Proposed a two-stage Disaggregated Prediction (TSDP) framework, which improves the 
prediction performance of watersheds lacking meteorological observations, and is more advantageous than the 
baseline model (Zuo et al.17).In summary, traditional methods for river flow prediction mainly include statisti-
cal methods and hydrological models. These methods have achieved some success to a certain extent, but due 
to the limitations of model assumptions, data availability, and computational power, there is still significant 
uncertainty in complex river flow prediction tasks. In recent years, with the significant improvement in data 
collection techniques and computing power, data-driven prediction methods have made significant progress in 
various fields. However, due to the significant spatiotemporal variability of daily flow, significant opportunities 
for further advancements remain in the field of daily flow prediction research.

In this study, the robustness of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 
(CEEMDAN) in handling nonlinear data was utilized, the strong adaptability of Sample Entropy (SE), moreover, 
the effectiveness of Bidirectional Long Short-Term Memory (BiLSTM) neural networks in terms of efficiency 
was also considered, we will construct a CEEMDAN–SE–BiLSTM coupled model using the “decomposition-
reconstruction-ensemble” approach. Firstly, the data will be decomposed using the CEEMDAN method, which 
fully integrates empirical mode decomposition and adaptive noise. Then, the reconstructed river flow data will 
be quantified in terms of time series complexity using Sample Entropy (SE). Finally, the actual river flow data 
measured at the Huayuankou Water Station will be used to train and validate the BiLSTM model. The model 
employs a multilevel feature fusion that integrates CEEMDAN, SE features and BiLSTM networks. This multi-
level fusion makes full use of the information at different levels, thus improving the performance of the model. 
By comparing with other deep learning models, the proposed coupled model in this study demonstrates higher 
accuracy and better stability.

Research methodology
Complete ensemble empirical mode decomposition with adaptive noise
CEEMDAN is a further improvement on EMD and  EEMD18. Unlike CEEMD, which adds positive and negative 
white noise, CEEMDAN introduces adaptive white  noise19. In each stage, the IMF is calculated and then aver-
aged to obtain the final IMF sequences. Compared to the EMD and EEMD algorithms, CEEMDAN not only 
effectively addresses the issue of mode mixing in daily river flow, but also significantly reduces the problem of 
residual white noise in daily  flow20. Additionally, this approach mitigates the challenge of alignment discrepan-
cies in the final ensemble average that may arise due to variations in the decomposition results of each group of 
Intrinsic Mode Functions (IMF) within  CEEMD21. The decomposition process of daily flow is shown in Fig. 1.

Sample entropy
SE is an improved method based on approximate entropy utilized for assessing the complexity of non-stationary 
time  series22. It indicates the likelihood of new information emerging in the daily flow time series. The more 
complex the daily flow time series, the larger the corresponding SE. Compared to approximate entropy, SE has 
advantages such as data length independence, better consistency, and simplicity of  computation23. By using the 
SE algorithm to calculate the entropy values of each IMF component obtained from the decomposition of the 
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daily flow series, it becomes feasible to quantitatively evaluate the randomness of each component. Drawing 
upon this information, the components of the daily flow can be merged and reconstructed, resulting in high-
frequency components, low-frequency components, and trend components, as a result, this reduces the number 
of components and enhances computational efficiency.

The calculation steps for SE for the IMF component time series {IMF(t)} = {IMF(1), IMF(2), …, IMF(n)} of 
daily flow with a time length of n are as follows:

(1) Arrange the sequence according to the sequence number into a vector sequence with a dimension of m, 
 Xm(1), …,  Xm(n − m + 1), Among them:

these vector sequences represent the values of m consecutive IMF components starting from the i-th point.
(2) The distance between vectors  Xm(i) and  Xm(j) is determined by calculating the absolute value of the maxi-

mum difference between the corresponding elements of the two vectors. That is:

(3) For a given  Xm(i), count the number of  Xm(j) (1 ≤ j ≤ n−m, j ≠ i) where the distance between  Xm(i) and  Xm(j) 
is less than or equal to r, and denote it as  Bi. For 1 ≤ i ≤ n−m, define:

  Based on this, define:

(1)Xm(i) = {IMF(i), IMF(i + 1), · · · , IMF(i +m− 1)}, 1 ≤ i ≤ n−m+ 1

(2)d
[
Xm(i),Xm(j)

]
= max

0≤k≤m−1

∣∣IMF(i + k)− IMF(j + k)
∣∣

(3)Bmi (r) =
1

n−m− 1
Bi

(4)Bm(r) =
1

n−m

n−m∑

i=1

Bmi (r)

Figure 1.  the flow chart of CEEMDAN.
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(4) Increase the dimension to m + 1, count the number of  Xm+1(i) and  Xm+1(j) (1 ≤ j ≤ n −m, j ≠ i) with a distance 
less than or equal to r, and denote it as  Ai. Define Am

i (r) as follows:

  Based on this, define:

  Thus,  Bm(r) represents the probability of matching m points between two sequences under a similarity 
tolerance of r, while  Am(r) represents the probability of matching m + 1 points between the two sequences 
under a similarity tolerance of r.

(5) SE (Sample Entropy) is defined as follows:

When n is finite, the estimated sample entropy of the IMF component time series is given by:

Calculate the SE for all IMF components of the daily flow using the aforementioned steps, and then merge 
and reconstruct the IMF components based on their respective SE values.

Bidirectional long short-term memory
The Bidirectional Long Short-Term Memory network (BiLSTM) is an enhanced version derived from the Long 
Short-Term Memory (LSTM)  network24, LSTM network, in itself, belongs to the category of Recurrent Neural 
Networks (RNN)25. Compared to traditional Backpropagation (BP) neural networks, RNNs can utilize temporal 
information. However, recurrent Neural Networks (RNNs) frequently encounter challenges such as the vanish-
ing or exploding gradient problem when dealing with long-range dependencies between distant nodes. LSTM 
networks, on the other hand, can better preserve information from distant nodes and exhibit improved perfor-
mance on longer temporal  data26. Every LSTM unit comprises three gate structures: the forget gate, input gate, 
and output  gate27. The formulas for the gate structures, hidden layer outputs, and cell state transition process in 
an LSTM unit are as follows:

In the equations, xt represents the input time series data of daily streamflow. ft , it , and ot represent the outputs 
of the forget gate, input gate, and output gate, respectively. Wf  , Wi , and Wo are the weight matrices corresponding 
to the three gates, while bf  , bi , and bo are the respective bias units. σ represents the sigmoid function, and tanh 
represents the hyperbolic tangent function. The symbol “*” denotes the inner product operation. C̃t represents 
the candidate vector created through the tanh layer, while Wc and bc correspond to the weight matrix and bias 
unit of that layer. Ct represents the cell state, and ht represents the hidden state.

However, LSTM only takes into account the information from the forward sequence when predicting the 
results in a neural network, making it difficult to capture the content of backward  data28. The emergence of Bidi-
rectional Long Short-Term Memory (BiLSTM) addresses this issue of lacking attention to backward information. 
The term "bidirectional" means that BiLSTM consists of both an LSTM unit is divided into a forward LSTM unit 
and a backward LSTM  unit29, with each LSTM unit being consistent with the LSTM structure mentioned earlier. 
The forward and backward units operate independently of each  other30. Figure 2 illustrates the architecture of 
the BiLSTM network. Existing research indicates that BiLSTM outperforms LSTM in predicting results on time 
series data.

(5)Am
i (r) =

1

n−m− 1
Ai

(6)Am(r) =
1

n−m

n−m∑

i=1

Am
i (r)

(7)SE(m, r) = lim
n→∞

{
− ln

[
Am(r)

Bm(r)

]}

(8)SE(m, r, n) = − ln

[
Am(r)

Bm(r)

]

(9)ft = σ
(
Wf · [ht−1, xt]+ bf

)

(10)it = σ(Wi · [ht−1, xt]+ bi)

(11)C̃t = tanh (Wc · [ht−1, xt]+ bc)

(12)Ct = ft ∗ Ct−1 + it ∗ C̃t

(13)ot = σ(Wo[ht−1, xt]+ bo)

(14)ht = ot ∗ tanh(Ct)
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The CEEMDAN–SE–BiLSTM coupled model
Model construction
To address the non-stationarity of daily streamflow time series, a coupled CEEMDAN–SE–BiLSTM model was 
established, and its workflow is illustrated in Fig. 3. The specific modeling steps are outlined below:

(1) CEEMDAN Decomposition The original daily streamflow data is decomposed using CEEMDAN, resulting 
in IMF components of the time series.

(2) The IMF components obtained from the decomposition of CEEMDAN are integrated and reconstructed 
using the SE algorithm, resulting in high-frequency, mid-frequency, and low-frequency IMF components.

(3) Data Division for Training and Prediction The IMF components corresponding to the first 90% of the daily 
streamflow data are utilized as training data for the BiLSTM neural network, while the IMF components 
associated with the last 10% of the daily streamflow data are employed as prediction data for the BiLSTM 
neural network.

(4) Data Normalization To mitigate the influence of significant variations in input data on prediction accuracy, 
both the training data and prediction data are normalized within the range of [0, 1]. The normalization 
formula employed is as follows:

Figure 2.  BiLSTM structure diagram.

Figure 3.  CEEMDAN–SE–BiLSTM flowchart.
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  In the formula, x represents the original value at time t;  xmin represents the minimum value of the 
sequence;  xmax represents the maximum value of the sequence; y represents the normalized value at time t.

(5) Training the BiLSTM Neural Network By fine-tuning the network parameters of the BiLSTM neural network, 
the training performance on the training data is enhanced, thereby improving the prediction accuracy of 
the BiLSTM neural network for the IMF components of the daily flow.

(6) BiLSTM Neural Network Prediction The optimized BiLSTM neural network is utilized for predicting the 
IMF components corresponding to the first 90% of the daily flow.

(7) Prediction Data Reconstruction The predicted IMF components are subjected to inverse normalization, and 
the reconstructed values of the last 10% of the daily flow are obtained.

Model accuracy evaluation criteria
To better reflect the predictive performance of the CEEMDAN–SEBiLSTM coupled model on daily streamflow, 
three classic statistical metrics were selected for evaluation in this study. The quantitative evaluation criteria 
employed in this study are Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of 
Determination  (R2). The calculation formulas for these metrics are as follows:

Among them, Qi represents the measured daily flow data, Q∗
i  represents the predicted daily flow data, and n 

represents the number of time series.

Case study analysis
Data source
The Huayuankou Hydrological Station assumes significant responsibilities, including water resource management 
in the lower reaches of the Yellow River, regional water resource development, and analysis of hydrological and 
water resource dynamics. The hydrological data at the station are well-preserved. For this study, daily measured 
flow data from the Huayuankou Hydrological Station for the years 2016–2022 were used as the research object. 
The variation curve is shown in Fig. 4.

(15)y =
x − xmin

xmax − xmin

(16)RMSE =

√√√√ 1

n

n∑

i=1

(Qi − Q∗
i )

2

(17)MAE =
1

n

n∑

i=1

∣∣Qi − Q∗
i

∣∣

(18)R2 = 1−

n∑
i=1

(Qi − Q∗
i )

2

n∑
i=1

(Qi − Q)2

Figure 4.  Daily flow sequence of Huayuankou from 2016 to 2022.
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Model validation and comparative analysis
It can be observed that the daily flow at Huayuankou Hydrological Station exhibits highly nonlinear and non-
stationary characteristics. The extreme values of daily flow primarily manifest during the flood season, exhibit-
ing notable temporal variation and intricate complexity. Following the steps of CEEMDAN decomposition 
mentioned earlier, the daily flow data from 2016 to 2022 at Huayuankou station was subjected to CEEMDAN 
decomposition.

By examining Fig. 5, it is evident that the flow sequence is decomposed into 10 Intrinsic Mode Function 
(IMF) components along with a corresponding residue. Among these components, the initial IMF components 
demonstrate the highest volatility and frequency, and shortest wavelength, while the amplitudes, frequencies, 
and wavelengths gradually decrease in the subsequent IMF components.

Subsequently, the obtained IMF components are integrated and reconstructed using the SE algorithm, result-
ing in three new IMF components: high-frequency, mid-frequency, and low-frequency. The new IMF component 
plots are shown in Fig. 6.

As depicted in the figure, the IMF components after integration and reconstruction using the SE algorithm 
exhibit reduced fluctuations. Moreover, this approach not only substantially decreases the computational com-
plexity of the prediction but also enhances the accuracy and stability of the model.

Daily flow prediction
When predicting the daily flow of Huayuankou using the BiLSTM network, it is essential to partition the data 
into training and testing samples. The training sample consists of the initial 90% of the IMF data, whereas the 
testing sample comprises the remaining 10% of the IMF data.

At the same time, the parameters set for the BiLSTM network model have a significant impact on the accuracy 
of the combined prediction model. The purpose of adjusting these parameters is to improve the accuracy of the 
prediction model. In this study, the BiLSTM network employed the tanh activation function, the Adam optimizer, 
and the RMSE loss function. The Dropout method was used to prevent overfitting. The model’s hyperparameters 
that require adjustment encompass the number of input, output, and hidden layer nodes, training iterations, 
and Dropout rate. In this study, a series of trial-and-error experiments were performed to identify the optimal 
hyperparameters. Trial-and-error experiments involve fixing the values of other hyperparameters and conduct-
ing multiple iterations to compare the predicted values with the actual values, resulting in the determination of 
the hyperparameters as shown in Table 1.

Utilizing the preceding steps, the BiLSTM network is employed to forecast the three IMF components 
 (IMFHigh,  IMFMid,  IMFLow) of the Huayuankou Station. The initial 90% of the IMF data serves as training samples, 
while the remaining 10% is designated as testing samples. Specifically, the first 2300 data points are allocated 
for training, followed by the subsequent 255 data points for prediction. The prediction outcomes are illustrated 
in Figs. 7, 8 and 9.

From the above figures, upon observation, it can be noted that the prediction performance of the IMFHigh 
component exhibits a slight decline, indicating a higher level of non-stationarity in the  IMFHigh component. 
Conversely, the prediction performance of the IMFMid and IMFLow components demonstrates improvement, 
indicating a lower level of non-stationarity in these components.

Figure 5.  Huayuankou daily traffic data CEENDAN decomposition from 2016 to 2022.
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Figure 6.  High, mid and low frequency IMF component diagram.

Table 1.  BiLSTM network hyperparameters.

Parameter Name Parameter size

Number of layers in the hidden layer 2

Number of nodes in the hidden layer 64

Batch-size 128

Dropout 0.1

Training times 250

Figure 7.  IMFHigh forecast chart.
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By integrating and reconstructing the above prediction results, the final prediction outcome for the Huayu-
ankou Station is obtained, as shown in Fig. 10.

From Figs. 7, 8, 9, and 10, by observing the results, it becomes evident that the daily streamflow predictions 
of the coupled CEEMDAN–SE–BiLSTM model exhibit a commendable alignment with the actual values, indi-
cating a high level of model fit. According to Table 2, the  IMFHigh component exhibits larger errors, suggesting 
that the  IMFHigh data still possesses significant non-stationarity. On the other hand, the errors for the  IMFMid 
and  IMFLow components are very small, showing a good alignment with the original data. Overall, the errors 
remain within a reasonable range.

Discussion
The daily streamflow data of the Huayuankou hydrological station from 2016 to 2022 was decomposed using 
CEEMDAN, and the decomposition results are illustrated in Fig. 5. It can be observed that IMF1 of the Huayu-
ankou station has the highest frequency, largest amplitude, shortest wavelength, and the smallest periodicity. 
The stability of IMF2 to IMF7 gradually increases, while IMF8 to IMF10 exhibit relatively stable fluctuations. 
Next, based on the SE algorithm, the IMF components are integrated and reconstructed to obtain three new IMF 
components:  IMFHigh,  IMFMid, and  IMFLow. The new IMF component plot is shown in Fig. 6. It can be seen that 
after the integration and reconstruction using the SE algorithm, the three IMF components,  IMFHigh,  IMFMid, and 
 IMFLow, exhibit reduced fluctuations. This not only significantly reduces the computational burden for predictions 
but also improves the accuracy and stability of the model.

Using BiLSTM, the decomposed and integrated data from CEEMDAN for the three components of the 
Huayuankou hydrological station were simulated and predicted. The predicted results were summed to obtain 
the daily streamflow forecast for the Huayuankou station. The training set consisted of a total of 2300 data points 

Figure 8.  IMFMid forecast chart.

Figure 9.  IMFLow forecast chart.
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from January 2016 to March 2022, while the prediction set comprised 255 data points from April to December 
2022. The obtained results are depicted in Fig. 10.

In order to verify the finiteness, accuracy and robustness of the CEEMDAN–SE–BiLSTM coupled model for 
the prediction of daily runoff, the prediction results of the CEEMDAN–SE–BiLSTM coupled model were com-
pared with those of the CEEMDAN–SE–LSTM, CEEMDAN–BiLSTM, and BiLSTM coupled models as shown 
in Fig. 11, and the error analyses of the individual models are shown in Table 3.

Figure 11 reveals that the CEEMDAN–SE–BiLSTM coupled model showcases the closest alignment with the 
true values, displaying the most favorable fitting performance. The other models have lower accuracy compared 
to the model used in this study, with the following order of performance: CEEMDAN–SE–LSTM > CEEM-
DAN–BiLSTM > BiLSTM. According to Table 3, the CEEMDAN–SE–BiLSTM coupled model demonstrates 
smaller values for both root mean square error and mean absolute error compared to other coupled models, and 
the coefficient of determination is 0.9706, higher than that of other coupled models, approaching 1. This indicates 
that the CEEMDAN–SE–BiLSTM coupled model achieves the best fitting performance. This is attributed to the 

Figure 10.  Huayuankou final traffic forecast.

Table 2.  Error analysis of individual components.

Error type IMFHigh IMFMid IMFLow

RMSE 149.71 17.62 3.11

MAE 88.58 13.72 2.49

R2 0.4217 0.9982 0.9999

Figure 11.  Comparison chart of accuracy of individual models.
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better stability of CEEMDAN in handling nonlinear data, the better adaptability of SE, and the efficiency and 
accuracy of BiLSTM, which significantly reduce the prediction errors and improve the data fitting capability. 
Therefore, the CEEMDAN–SE–BiLSTM coupled model can accurately simulate the complex and multi-frequency 
variations of streamflow during flood periods. The model and method can provide reference for hydrological 
prediction and related forecasting studies.

From the above comparative analysis of the prediction results, it can be concluded that the streamflow series 
is a non-stationary sequence, and using a single machine learning method cannot accurately capture the complex 
characteristics of streamflow. The CEEMDAN–SE–BiLSTM coupled model can effectively decompose complex 
time series, facilitate the extraction of underlying feature indicators, and enhance the learning and prediction of 
the BiLSTM model. This approach significantly improves the accuracy of streamflow prediction.

Conclusion
To address the challenges posed by the nonlinear and non-stationary characteristics of daily streamflow time 
series, this study proposes a novel model, the CEEMDAN–SE–BiLSTM coupled model, based on the “decom-
position-reconstruction-ensemble” concept. The effectiveness of this coupled model in daily streamflow predic-
tion was evaluated using data from the Huayuankou Hydrological Station in the lower reaches of the Yellow 
River. Comparative analysis was performed against the prediction results of the CEEMDAN–SE–LSTM, CEEM-
DAN–BiLSTM, and BiLSTM coupled models, leading to the following conclusions:

(1) The results of daily flow prediction at the Huayuankou Hydrological Station on the lower reaches of the 
Yellow River show that the coupled CEEMDAN–SE–BiLSTM model proposed in this paper has good accu-
racy and robustness. The decision coefficient of this model is 0.9706, which is the highest among the four 
models, and its RMSE and MAE are 139.73  m3/s and 87.67  m3/s, respectively, which are reduced compared 
with other models. This indicates that the CEEMDAN–SE–BiLSTM coupled model for daily flow predic-
tion is feasible and can be effectively used for time series analysis in hydrology and related fields to guide 
the rational development and improved utilization of water resources.

(2) The CEEMDAN–SE–BiLSTM coupled model proposed in this study, with its systematic approach involving 
data preprocessing, decomposition, reconstruction, ensemble, and prediction, offers significant benefits 
in terms of reducing prediction errors, enhancing data fitting capacity, and improving model stability. It 
can be regarded as a valuable method for enhancing and expanding short- to medium-term streamflow 
prediction capabilities.

(3) Despite the promising applications of the CEEMDAN–SE–BiLSTM coupled model, which benefits from 
its effective decomposition algorithm, stable and efficient integration and reconstruction capability, and 
reliable prediction performance, it also has inherent limitations. One such limitation is the inability to 
incorporate the lag effect of physical mechanisms, such as precipitation, on streamflow, as the model solely 
relies on the streamflow time series as input. This aspect highlights the need for future research to address 
this limitation and explore ways to incorporate additional variables to enhance the model’s predictive 
capabilities.

Data availability
Data and materials are available from the corresponding author upon request.
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