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A novel tumor 
immunotherapy‑related signature 
for risk stratification, prognosis 
prediction, and immune status 
in hepatocellular carcinoma
Jianping Sun , Lefeng Xi , Dechen Zhang , Feipei Gao , Liqin Wang  & Guangying Yang *

Immunotherapy as a strategy to deal with cancer is increasingly being used clinically, especially in 
hepatocellular carcinoma (HCC). We aim to create an immunotherapy‑related signature that can 
play a role in predicting HCC patients’ survival and therapeutic outcomes. Immunotherapy‑related 
genes were discovered first. Clinical information and gene expression data were extracted from 
GSE140901. By a series of bioinformatics methods to analyze, overlapping genes were used to build 
an immunotherapy‑related signature that could contribute to predict both the prognosis of people 
with hepatocellular carcinoma and responder to immune checkpoint blockade therapy of them in 
TCGA database. Differences of the two groups in immune cell subpopulations were then compared. 
Furthermore, A nomogram was constructed, based on the immunotherapy‑related signature and 
clinicopathological features, and proved to be highly predictive. Finally, immunohistochemistry 
assays were performed in HCC tissue and normal tissue adjacent tumors to verify the differences 
of the four genes expression. As a result of this study, a prognostic protein profile associated 
with immunotherapy had been created, which could be applied to predict patients’ response to 
immunotherapy and may provide a new perspective as clinicians focus on non‑apoptotic treatment for 
patients with HCC.

Abbreviations
HCC  Hepatocellular carcinoma
ICB  Immune checkpoint blockade
IHC  Immunohistochemistry
WGCNA  Weighted correlation network analysis
LASSO  Least absolute shrinkage and selection operator
GSEA  Gene set enrichment analysis
ICIs  Immune checkpoint inhibitors
ENG  Endoglin
FCER1G  Function of the high-affinity IgE receptor
IgE  Immunoglobulin E
KC  Kupffer cells
PSEN1  Presenilin 1
FAD  Familial Alzheimer’s disease
SLAM  Signaling lymphocyte activating molecule

Among the various solid tumors in humans, liver cancer is one of the tumors that has attracted much attention, 
and one of the world’s deadliest cancers. This disease is often at an advanced stage when diagnosed, which is 
the main cause for its high  mortality1. Thus, further research is needed to identify key molecules in the progres-
sion of hepatocellular carcinoma and guide clinicians in making accurate diagnosis and treatment decisions. 
Immunotherapy was used in many disease areas with impressive results and revolutionized cancer  treatment2. 
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Such as lung  cancer3, pancreatic  cancer4,  medulloblastoma5, and etc. it had emerged as an invaluable treatment 
option for many patients with  HCC6,7. However, they were not successful in all patients. Despite these advances 
in the understanding of treatment strategy, the key molecules that influence the efficacy of HCC immunotherapy 
need to be further clarified.

Proteins are the basic functional units of the human body, and different proteins have their unique roles, for 
example, as enzymes, antibodies,  messengers8,9, etc. For the treatment of tumors, they are often present as targets, 
such as PD-L1 is an important immune  checkpoint10. In the present study, a new prognosis-related risk model 
about immunotherapy-related proteins was developed, it can be a potential target for individual immunotherapy 
as well as a prognostic indicator for HCC.

Materials and methods
Collect public data and identify immunotherapy‑related genes
We downloaded the microarray data of HCC patients after PD-1/PD-L1 immunotherapy from the GSE140901 
database in NCBI (https:// www. ncbi. nlm. nih. gov/ geo/)11. Other RNA sequencing data (RNA-seq) and clinicopa-
thology features data used in the paper were gained from three free and publicly available datasets: TCGA-LIHC 
(https:// xena. ucsc. edu), ICGC (LIRI-JP) (https:// dcc. icgc. org). We obtained some images in public databases, 
protein expression in HPA (http:// www. prote inatl as. org) and cell line expression in CCLE (http:// www. ccle. org)12. 
Table S1 shows the general clinical characteristics of HCC patients from the database and the author’s hospital.

WGCNA and co‑expression modules analysis
After all genes were included in the Weighted correlation network analysis (WGCNA) process, power values were 
filtered out as each module was built. In the gradient method, each module had a different power value (ranging 
from 1 to 20) was tested for independence and average connectivity. It was subsequently found that the power 
value reached most appropriate when the degree of independence was close to 0.85. To make the results highly 
reliable, we extracted the gene information corresponding to each module, and 50 was the minimum number of 
genes we set. "Heatmap 3" further determined the interaction of co-expression modules.

Creation of an immunotherapy‑related signature
Univariate Cox regression with p < 0.05 was our method used to filter out genes related to patient’s prognosis 
after immunotherapy. The screened prognostic genes were then screened for the most valuable genes using least 
absolute shrinkage and selection operator (LASSO) Cox regression, random forest algorithm and stepwise COX 
regression models, and overlapping genes were further incorporated into a multivariate Cox regression model 
to establish an immunotherapy-associated signature. The multivariate Cox relapse coefficient (β) was applied to 
build a risk score found on directly mixing the equation below with genes expression levels. Risk score = ∑iCoef-
ficient (genes)*Expression (genes). In the GSE140901 dataset, the ROC (receiver operating characteristic curve) 
curve was used to assess the diagnostic accuracy of this signature. Furthermore, in the Metascape database 
(https:// metas cape. org), gene set enrichment analysis (GSEA) was performed to separate the altogether cau-
tious GO and KEGG items based on different  scores13. At last, a nomogram model was established to study the 
predictive accuracy of the signature in TCGA database.

Immune infiltrate and genetic alterations analysis
To obtain the abundance ratio of infiltrating immune cells in the tumor immune microenvironment, we used 
 TIMER14,  CIBERSORT15 and  xCELL16 databases. Mutation data were acquired from TCGA, and genetic varia-
tion in different subgroups was assessed using the R package "maftools".

IHC assays for protein levels of genes within the immunotherapy‑associated signature
Four antibodies were bought back from Thermo Fisher Scientific. Immunohistochemistry was used to detect 
40 HCC tumor tissues and 40 adjacent normal tissues from YIHE Hospital. After informing all patients of the 
purpose of our study, all patients signed a written informed consent form for the organization’s donation. These 
tissues were first fixed with formalin, then embedded with paraffin, and finally made into 3 μm thick sections by a 
sectioning mechanism for later use. After antigen repair, the sections were incubated overnight at 4 °C with either 
ENG (PA5-79203; 1:200 dilution), FCER1G (PA5-28832; 1:500 dilution), PSEN1 (PA5-98093; 1:100 dilution), 
SLAMF6 (MA5-29572; 1:500 dilution), and binding was detected using the avidin–biotin–peroxidase method. 
Block slides after hematoxylin counterstaining. It was subsequently referred to two experienced pathologists for 
an independent, double-blind evaluation. The immunohistochemical positive intensity score criteria were graded 
as 0, 1, 2, and 3 for no, weak, moderate, and strong staining, respectively. Scores of 0 and 1 were considered low 
expressions, while scores of 2 and 3 were high expressions.

Statistical analysis
An independent-sample t-test was used to analyze quantitative variables. With R software (version 4.0.3), ROC 
curve analysis and Kaplan–Meier survival analysis were used to evaluate the accuracy of predicting survival 
outcomes. Cox proportional models were used to examine the relationship between prognostic classifiers and 
survival outcomes, as well as other clinical parameters. The results were considered statistically significant when 
the P-value was less than 0.05.

https://www.ncbi.nlm.nih.gov/geo/
https://xena.ucsc.edu
https://dcc.icgc.org
http://www.proteinatlas.org
http://www.ccle.org
https://metascape.org
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Ethics approval and consent to participate
This study was supported by the Ethics Committees of YIHE University. Written informed consent was obtained 
from all patients. All methods were performed following the relevant guidelines and regulations. The Ethics 
Number: YH-LL-KY00101.

Results
WGCNA and identification of immunotherapy‑related genes
Using cluster analysis, we checked the quality of the data from 24 samples, and one sample in the cohort was 
removed from our survey (Fig. S1A). Then, a network was constructed based on clinical data from 23 samples 
of HCC using the WGCNA. After setting the soft threshold power β to 9, we constructed a scale-free network, 
and the independence degree was 0.85. (Supplementary Fig. S1B).

Modules of immunotherapy-related genes with similar expression patterns clustered together, and modules 
with a cut height difference of < 0.25 were merged. This process results in three co-expression modules: blue, 
turquoise, and grey (Fig. 1A, B). The blue module was the only one to strongly correlate positively with immu-
notherapy efficacy. MM and GS scores were strongly correlated in the blue module (Fig. 1C). Therefore, in the 
blue module, 207 genes were analyzed for hub genes. KEGG analysis showed that genes were principally enriched 
in the following signaling pathways: cytokine signaling in the immune system, cytokine receptor interaction, 
Natural killer cell-mediated cytotoxicity and adaptive immune system. GO analysis showed that genes were 
principally enriched in the following biological processes: immune cell activation, humoral immune response, 
and immune response regulation (Fig. 1D).

Create and verify immunotherapy‑related signatures
A total of 28 candidate genes with a P < 0.05 were determined to be related to patient prognosis (Fig. 2A), further 
screening by LASSO-Cox regression model (Fig. 2B), Random forests model (Fig. 2C), and Stepwise COX regres-
sion model. Then, the overlapped genes were gained by the Veen model, and a four-genes signature was finally 
created (Fig. 2D). To assess the potential value for diagnosing of the four-genes, the ROC curve had been used, 
and had a good predictive power, and the AUCs were 0.859, 0.745, 0.694, and 0.852 in the datasets GSE140901, 
respectively (Fig. 2E). The results from database showed that only the PSEN1’s expression level was different in 
tumor and normal tissues (Fig. 3A), although all the four genes were closely associated with patient’s prognosis 
(Fig. 3B), according to the results of GEPIA database (http:// gepia. cancer- pku. cn)17. The expression profiles of 
ENG, FCER1G, PSEN1, SLAMF6 from HPA (http:// www. prote inatl as. org) shown that, ENG, FCER1G, SLAMF6 
were not expressed or lowly expressed in tumor and normal tissues; PSEN1 was unexpressed or underexpressed 
in normal tissues and highly expressed in tumor tissues (Fig. 3C). We obtained the expression levels of 4 genes 
in HCC cell lines from the CCLE database (http:// www. ccle. org), shown in Fig. 3D.

Establishment of an immunotherapy‑related genes signature in TCGA 
These four genes were placed into multivariate Cox-regression model, then, a 4-gene signa-
ture related to HCC prognostic was identified. Risk score = PSEN1*0.7484834-ENG*0.2827324-
SLAMF6*0.4829894 + FCER1G*0.6202788. After calculating the risk score of TCGA liver cancer patients using 
the above formula, patients were divided into two risk subgroups based on the optimal risk score threshold 
(Fig. 4A). Kaplan–Meier survival analysis showed that the prognosis was better when the score was lower, while 
those with higher scores had the opposite outcomes (Fig. 4B), and ROC analysis found that this signature got 
an ideal predictive function for patient prognosis with AUCs at 1-, 2-, 3-year of 0.770, 0.741, 0.767(Fig. 4C). As 
shown as Fig. S2, differential gene enrichment in the high- and low-risk subgroups in immune-related biological 
processes. Our following job reveals that living patients had lower risk scores than dead patients. Even more, 
patients in the advanced clinical stage (Fig. 4D) always had a higher risk score. This information suggests that 
patients with low-risk score have a better outcome.

Verification of the signature in the ICGC 
For validating the signature, ICGC datasets were token into use as validation cohort. The same formula was 
used to calculate a patient’s risk score. In the ICGC, patients were divided into high-risk and low-risk subgroups 
(Fig. S3A) in the ICGC dataset, we found that surviving patients with hepatocellular carcinoma (Fig. S3B) or in 
the early stage of TNM were accompanied by lower scores (Fig. S3C). The results of the Kaplan–Meier survival 
analysis showed that in the ICGC cohort, the higher the risk score, the lower the OS rate, and the two were sig-
nificantly negatively correlated (Fig. S3D). ROC analysis showed that the prognosis prediction of this signature 
was also very good in the ICGC cohort, with AUC of 0.659, 0.634, and 0.656 at 1, 2, and 3 years, respectively 
(Fig. S3E).

Immune infiltrate and genetic alterations analysis
Significant difference in ImmuneScore was observed between the two groups. The high-score group had lower 
scores, Stromalscore and ESTIMATEscore observed same results (Fig. 5A). After using TIMER, CIBERSORT, and 
xCELL databases to determine the abundance ratio of infiltrating immune cells in the immune microenvironment 
of HCC tissues, a heat map of all the different immune cells was made. In the TIMER database, we found that the 
infiltration level of  CD8+ T cells was remarkably reduced in the high-risk group. The results we obtained from 
CIBERSORT revealed that the infiltration levels of  CD8+ T cells,  CD4+ T cells, Macrophage.M1 cells, Macrophage.
M2 cells were significantly lower in the high-risk score group. The results we obtained from xCELL showed that 
the infiltration levels of Myeloid dendritic cell activated cells, CD8 + naïve T cells, Common lymphoid progenitor 
cells, CD8 + central memory T cells, Endothelial cells, Hematopoietic stem cells, Macrophage cells, Macrophage.

http://gepia.cancer-pku.cn
http://www.proteinatlas.org
http://www.ccle.org
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M2 cells, Plasmacytoid dendritic cells,  CD4+ Th1 T cells,  CD4+ Th2 T cells were significantly lower in the high-
risk score group (Fig. 5B). All these results revealed that a decrease infiltration levels of  CD8+ T cells in tumors. 
Analysis of genetic variation showed that the mutation rates of the top 10 genes with the most significant muta-
tions differed significantly between two subgroups (Fig. 6A). Subsequently, the results of the TMB assessment for 
each patient showed a positive correlation between risk score and TMB (Fig. 6B, C). Next, higher levels of PD-L1 
expression were detected in tumor tissue from high-risk group patients, suggesting that patients would benefit 
more from immune checkpoint inhibitors (ICIs) treatment in this group, even with lower PD1 expression levels 
(Fig. 6D). These suggest that the higher the risk score in our model, the worse the response to immunotherapy 
is likely to be. Furthermore, we used the TIDE scoring system to demonstrate this. As shown in Fig. 7A–B, in 

Figure 1.  Identification of genes related to immunotherapy treatment. (A) As a result, two non-grey modules 
are filtered out. (B) The blue module was significantly associated with immunotherapy efficacy. (C) The scatter 
plot for genes in the blue module of GS score and MM. (D) Enrichment analysis of Immunotherapy-related 
genes from the blue module.
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our model, the higher-risk group has a higher TIDE score, tumor cells are more prone to immune escape, and 
the outcome of the response to immunotherapy may be worse.

Establish a nomogram model in TCGA 
In TCGA, a nomogram model was developed to examine the coefficient prediction efficiency of this signature. 
Results indicated that the nomogram(C-index = 0.739) provided an accurate quantitative prediction method for 
predicting 1-to-3-year survival rate (Fig. 7C). From the overlap of predicted probability and actual probability 
of 1-to-3-year survival rate in the calibration curve, it showed great agreement (Fig. 7D). The AUC (area under 
the curve) values from these curves show that our model has good predictive potential (Fig. 7E).

IHC assay in clinical samples
As demonstrated in Fig. 8, there was no difference in the expression level of ENG in tumor and normal tissue 
adjacent tumors, and the expression of FCER1G was lower in tumor tissue, PSEN1 was higher in tumor tissue, 
and SLAMF6 was lower in tumor tissue, with Fisher’s precision probability test results at (p = 0.084, p < 0.001, 
p < 0.001, and p < 0.001), respectively.

Comparison with the previous signature
We tried to compare the predictive potential of several genetic signatures to help researchers better understand 
the prognostic significance. As shown in Fig. S4A–B, our signature showed better predictive power when using 
fewer genes than other previously published signatures.

Discussion
Hepatocellular carcinoma was the second most common lethal tumor worldwide and had a high mortality rate. 
Compared with other types of liver cancer, HCC accounted for 90% of primary liver  malignancies1. At present, 
in addition to liver transplantation, there are many options for treatment, mainly radical hepatectomy, local abla-
tion, chemoembolization, transcatheter therapy, targeted therapy, etc.18,19 In the beginning, immune checkpoint 
inhibitor to be clinically studied in HCC was Tremelimumab, which targets CTLA-420. Subsequently, it was 
confirmed in multiple research reports that immunotherapy was effective for liver cancer, and the immunosup-
pressive combination therapy developed immediately after that further improved the prognosis of  patients21–24. 
Clinicians wishing to learn more about immunology were also working to tailor treatments to individual patients 

Figure 2.  Identification of genes related to immunotherapy treatment. (A) Immunotherapy-related genes by 
univariate Cox regression. (B) Immunotherapy-related genes screened by the LASSO-Cox regression model. 
(C) Immunotherapy-related genes screened by the Random forests model. (D) Four overlapping genes were 
considered Immunotherapy-related genes. (E) Validation of the diagnostic value of immunotherapy Efficacy in 
the dataset GSE140901.
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based on predictive biomarkers and etiology, potentially reshaping many previous treatment options and guide-
lines for the benefit of patients with advanced disease. Moreover, these strategies had been applied to the treat-
ment of various cancers, such as melanoma, lung cancer, glioblastoma, etc. However, to date, few patients have 
received long-term remission, and only 20–40% of patients have responded to immunotherapy. How to select 
appropriate detection and prognostic biomarkers and screen the most beneficial patient population are both 
opportunities and challenges.

Figure 3.  Expression and prognostic significance of the 4 genes. (A) Expression difference in the tumor and 
normal tissues. (B) Prognostic value analysis. (C) Protein’s expression levels in the tumor and normal tissues. 
(D) Gene’s expression levels in the cell lions.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18709  | https://doi.org/10.1038/s41598-023-46252-3

www.nature.com/scientificreports/

Now, we constructed a new 4-gene prognostic risk model found on immunotherapy, which had high accu-
racy in predicting prognosis of HCC patients in the TCGA and ICGC sets. What is more, study had shown that 
this signature significantly affected the immune microenvironment as well as response to immune checkpoint 

Figure 4.  Construction of Immunotherapy-related genes signature in TCGA. (A) Risk score distribution, 
OS status and expression profile of four genes. (B) In the TCGA cohort, survival outcomes were significantly 
decreased in patients with higher risk scores. (C) ROC analysis predicts the prognostic value of 1-, 2-, and 
3-year OS rates. (D) Higher risk scores were linked to different survival status, such as grade, recurrence status, 
TNM stage, T stage, and vascular invasion.
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inhibitors in HCC. In the subsequent mutation gene analysis, we found that TP53, CTNNB1 and TTN gene 
mutations were predominant in patients in the high-risk group, while the mutation rates of these three genes 
were lower in the low-risk group. Mutations in TP53 and CTNNB1 genes are common oncogenic factors and 
are usually associated with poor tumor prognosis. A higher proportion of these genes’ mutation in the high-risk 
group also predicts a worse prognosis for tumor patients. In addition, LRP1B, OBSCN and ABCA13 high-fre-
quency mutated genes were also present in the high-risk group, while APOB, FLG and HMCN1 high-frequency 
mutated genes were alone in the low-risk group, and the two groups had significantly different gene mutation 
patterns. patients with high-risk scores were accompanied by high TMB and higher levels of PDL-1 expres-
sion, suggesting an immune microenvironment of HCC could be affected by four-gene, and having shown 
that immunotherapy would be more effective in the high-risk score subgroup. By using TIMER, CIBERSORT 
and xCELL, we obtained results that  CD8+ expression levels were lower in the high-risk group, which may be 
associated with T cell exhaustion in advanced  tumors25. T cells were in constant contact with tumor antigens 
and become blunted in their reactivity. When tumor immune escape occurs, it often indicates that the body’s 
defense ability to the tumor is reduced, resulting in a worse prognosis. Our analysis showed that the high-risk 

Figure 5.  Immune infiltrate analysis. (A) Risk score was significantly correlated with immune score, interstitial 
score, and estimation score. (B) A heatmap of all substantially different immune cells between the high- and 
low- score subgroups.
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Figure 6.  Genetic alterations, TMB, and immune infiltrate analysis. (A) Top 10 genes with the highest mutation 
rates in the high-, and low-risk score subgroups. (B) Correlation, and differential (C) analysis of risk scores and 
TMB. (D) Analysis of differences between risk scores and PD1, PDL-1 expression.

Figure 7.  Validation of the predictive significance of immunotherapy-related gene signatures in nomogram 
model. (A) Nomogram combining the 4 genes signatures. (B) Calibration plots of 1-, 2-, and 3-year survival 
probabilities.
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group had higher TIDE scores, higher T-cell Exclusion scores, and higher tumor immune dysfunction scores, 
which reduced the response rate to immunotherapy in this group and resulted in poorer outcomes. Finally, the 
nomogram model validated our risk model, which did have good predictive performance. Therefore, the use of 
the four-gene model we developed in clinical work related to immunotherapy can accurately predict the survival 
outcome and guide the selection of treatment.

According to the statistical results of the TCGA transcriptome, FCER1G and PSEN1 were negatively corre-
lated with patient prognosis, while ENG and SLAMF6 were positively, and we performed further experimental 
verification. Endoglin (ENG) encodes homodimeric transmembrane proteins, as the main glycoprotein in the 
vascular endothelium, which is a component of transforming growth factor receptor complexes. This protein 
has a high affinity for BETA1 and BETA3 peptides and is involved in the regulation of angiogenesis. It is not 
only essential for the integrity and normal structure of the adult vasculature, but also regulates the migration 
of vascular endothelial cells. Work in recent years has shown that Endoglin may be a reliable disease biomarker 
and therapeutic target, which has brought it a lot of  attention26–28. Our findings showed no significant difference 
in ENG expression levels in normal tissues from tumors and adjacent tumors. This result was consistent with 
those obtained in the TCGA database, but inconsistent with the results of some studies. Chen et al.29 showed 
that ENG is directly regulated by miR-370 and promote the occurrence and development of endometrioid 
carcinoma. HCC tumor tissue contains abundant microvessels, and tumor cells might express ENG protein to 
promote intertumoral angiogenesis, which will promote intrahepatic and extrahepatic metastasis of the tumor 
and presumably bring a worse prognosis, but further trials are needed. Function of the high-affinity IgE receptor 
(FCER1G) is associated with anaphylaxis. It is a tetramer consisting of 1 α, 1 β, and 2 γ chains. γ chain is also a 
subunit of other Fc receptors. It is a component of the high affinity immunoglobulin E (IgE) receptor involved 
in the transduction of allergic inflammatory signals in mast cells. It had been proved that it was expressed in 
monocytes/macrophages of tumor  microenvironment30,31. Studies had shown that the subgroup with higher 
myeloma expression level had better prognosis. However, for gliomas of the central nervous system, the results 
were  reversed32. The  results33,34 of two pan-cancer studies suggest that FCER1G is involved in the immune infil-
tration process of tumors and may be a potential immunotherapeutic target. Our experiment confirmed that it 
was highly expressed in the sinuses of normal tissue adjacent tumor, while the expression of tumors was reduced. 
Kupffer Cells (KC) were widely present in normal liver tissues and were a key mediator of the inflammatory 
response that occurs within liver tissue cells. Several studies had demonstrated that KC was lowly expressed in 

Figure 8.  Protein’s expression in validation test cases. (A) Number of high and low expression cases in normal 
tissue adjacent tumor and tumor. (B) Protein’s expression levels in validation cases.
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hepatocellular carcinoma  tissues35, while FCER1G protein was expressed in monocytes/macrophages, which 
was consistent with our study. Presenilin 1 (PSEN1) was an intramembrane protease, the active subunit of the 
γ-secretase complex. Presenilin-1 (PSEN1) and presenilin-2 (PSEN2) are two genes associated with several dis-
eases, and early studies have focused on their association with familial Alzheimer’s disease (FAD), which often 
leads to early onset of the  disease36–38. Many recent studies had proved that PNEN1 was involved in the initiation 
and development of tumors and was always accompanied by bad  effects39,40. KEGG showed that PNEN1, as an 
upstream protein, positively regulated the process of β- catenin protein entering the nucleus, which promoted 
the occurrence of  tumors41,42. The histology of β-catenin activated hepatocellular adenoma might have moder-
ate cytological and structural abnormalities, which is difficult to differentiate from highly differentiated HCC. 
This adenoma also has a higher malignancy rate, too. Many studies had proved that the continuous activation of 
Wnt/β-catenin signaling pathway make malignant tumor cells have the characteristics of continuous self-renewal 
and growth, which will also reduce the efficacy of HCC  immunotherapy43,44. In studies focused on treatment, Ma 
et al.45 showed that high expression of PSEN1 increased the radiation resistance and chemotherapy tolerance of 
hepatocellular carcinoma cells. SLAM family member 6(SLAM6) belongs to the Signaling lymphocyte Activat-
ing molecule (SLAM) family. Its receptors regulate innate and adaptive immune responses and trigger cytolytic 
activity in some natural killer cells (NK)46,47. Our experiments found that SLAM6 protein expression levels were 
decreased in HCC. Study has shown that SLAMF6 promotes the development of liver cancer by promoting mac-
rophage M2  polarization48. Other studies have shown that  CD8+ T cell responses during chronic viral infections 
are sustained by interleukin-21 (IL-21) from  CD4+ T cells, which are composed of three transcriptionally and 
epigenetically distinct populations: Cxcr5 + Tfh cells, Slamf6 + Memory-like (Tml) subsets, Cxcr6 + Th1  cells49. 
The positive correlation between Slamf6 and  CD8+ T cell may explain the poor prognosis when the expression 
is decreased. In short, the four genes in the prognostic model are involved in the immune activity of the human 
body, further studying its mechanisms helps to provide new ideas for treatment.

Compared with other prognostic models, such as Fourteen-gene, Twelve-gene, Ten-gene, and Six-gene50–53. 
Our prediction model achieves more accurate predictions and higher C-index scores with fewer genes. Inevitably, 
individual studies had some limitations. The validity of this signature needs to be verified by more HCC samples. 
The mechanism of how each gene affects the immune efficacy needs more study. In addition, in vivo and in vitro 
assays will be added in future studies to further investigate the expression of these four genes at the protein level 
and prognostic relevance, including their roles in HCC progression.

Conclusions
In summary, our study constructed an immunotherapy-related risk model for predicting prognosis and indi-
vidualized immunotherapy for HCC patients, which was effective in classifying those patients.

Data availability
The datasets used and/or analyzed during the current study (TCGA-LIHC, ICGC-LIRI-JP, and GSE140901co-
horts) are available from the corresponding author upon reasonable request.
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