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Multispectral multibeam 
backscatter response 
of heterogeneous rhodolith beds
Pedro S. Menandro 1, Benjamin Misiuk 2, Craig J. Brown 2 & Alex C. Bastos 1*

Acoustic backscatter has been used as a tool to map the seafloor in greater detail and plays an 
increasingly important role in seafloor mapping to meet multiple ocean management needs. An 
outstanding challenge to the use of backscatter for seafloor mapping is the distinction between 
acoustically similar substrates, such as mixed sediments from rhodoliths. Rhodolith beds are a 
biogenic substrate that provides important ecological services, and are typically classified as a 
single categorical substrate type—though nodules coverage may be spatially variable. Recently, 
multispectral acoustic backscatter has demonstrated great potential to improve thematic seafloor 
mapping compared to single-frequency systems. This work employs multispectral multibeam 
backscatter and underwater imagery to characterize and map rhodolith beds in the Costa das Algas 
Marine Protected Area (Brazil). A support vector machine classifier was used to classify multifrequency 
backscatter mosaics according to rhodolith classes identified from underwater imagery. Results 
suggest that multispectral backscatter is effective both in providing information for mapping different 
proportions of rhodolith coverage and in predicting the presence or absence of these nodules. The 
backscatter of the lowest frequency was the most useful for distinguishing variable proportions of 
rhodolith coverage, and the two higher frequencies were better predictors of presence and absence.

Backscatter has assumed an increasingly important role in seabed mapping and is commonly used as a variable 
for mapping seabed  substrata1,2 and for habitat classification  models3,4. Detailed understanding of marine habitats 
is required to meet multiple ocean management needs, and enhanced habitat classification based on backscatter 
has enabled fine-scale characterization of the seabed, such as mapping seasonal changes in benthic community 
 composition5, mapping marine benthic carbon  stocks6, seagrass habitat  mapping7, mapping of rhodolith  beds8, 
and distributions of manganese nodule  abundance9.

Although technological and methodological advances have enabled a high level of detail and accuracy in 
seabed classification, some gaps remain to be investigated. One challenge is the difficulty in distinguishing 
acoustically similar marine  substrates10, such as Posidonia oceanica beds from gravelly  sands11, mixed sediments 
from  rhodoliths12, and coarse sediments from mixed  sediments1.

Rhodolith beds are a biogenic substrate that serves several important ecological functions. Rhodoliths are 
free-living calcareous nodules composed of coralline  algae13,14. They can cover extensive areas forming beds, 
which provide important biogenic calcareous habitat for fauna and  flora14. They provide several ecosystem 
 services15,16 for example, providing three-dimensional structure to a range of recruitment processes, and serving 
as a source of CaCO3 production (i.e., a CaCO3 bio-factory)17. Moreover, rhodolith beds may be heterogeneous 
in structure, and the size and concentration of nodules may differ from one area to  another8,18. This has ecologi-
cal relevance and is also an important mapping consideration since rhodolith beds are typically classified in two 
binary categories (i.e., presence/absence), even though the coverage and density of the nodules can be spatially 
variable. Although these beds have a global distribution, the scientific research on rhodoliths is still relatively 
limited compared to other coastal vegetated habitats such as seagrass and  kelp19. Research related to rhodolith 
mapping is even more limited.

One of the recent advances with great potential to enhance seafloor differentiation and more detailed charac-
terization of rhodolith beds is multispectral acoustic backscatter. Despite a modest literature, some advantages 
in terms of the power of seabed distinguishment by applying the multi-frequency mapping approach have been 
demonstrated over a variety of other seafloor sediment  types20–24.
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In general, several techniques may be used to explore backscatter data, including the use of features from 
image-based analysis through backscatter mosaics, and angular range analysis (ARA) in which the full angular 
response is detailed at the cost of spatial resolution. The large amount of information from these different analysis 
approaches can be effectively utilized using a range of seabed classification  tools25–28. These commonly include 
machine-learning techniques such as Artificial Neural  Networks29,30, Support Vector Machines (SVM)31,32, and 
Random  Forest33. SVM is well suited for raster input (single and multiple bands) and has demonstrated good 
performance in remote sensing image  analysis34–36. Additionally, SVM have advantages over other classification 
methods due to their ability to generalize well even with a limited number or size of training sites, unbalanced 
number of samples, non-linear distribution, and high feature  dimensions32,34.

Here, we apply SVM to map rhodolith beds using a multi-frequency composite band backscatter mosaic for 
the first time. Underwater images were used to designate seabed classes based on rhodolith coverage, which 
served as a reference for detailing and understanding the variation of backscatter. The goals of this study have 
the potential to produce an enhanced detection of the variable rhodolith coverage on the seafloor, informing the 
conservation of these ecosystems, and providing results that assist the definition of priority areas for monitor-
ing. The objectives were defined as follows: (i) to explore the benefits of multifrequency backscatter compared 
to a single frequency for supervised classification of rhodolith beds; (ii) to analyze the difference between three 
acoustic frequencies (170 kHz, 280 kHz, and 400 kHz) regarding rhodolith presence/absence and rhodolith 
coverage; (iii) to generate a rhodolith map at the study site.

Methodology
This work is based on a dataset comprising multibeam bathymetry, multispectral backscatter, and drop camera 
images collected on the offshore portion of the Costa das Algas marine protected area (MPA). This MPA is located 
along the continental shelf of Espírito Santo, Southeastern Brazil (Fig. 1), which is known for its morphological 
heterogeneity, incised valleys, and extensive occurrence of rhodolith  beds37–39.

The study was conducted in three distinct areas in the MPA defined by the polygons shown in Fig. 1. The selec-
tion of the three polygons was based on the variability of substrate type and seafloor morphology, encompassing 
sand, gravel, and rhodoliths, ranging from flat to irregular beds, and also the availability of ground truth data. 
Depths in this area range from 43 to 200 m.

The methodological framework for this work is based on three main steps: (a) backscatter data acquisition 
and processing; (b) acquisition and processing of drop camera images; (c) support vector machine classification 
of rhodoliths using the backscatter mosaics.

Figure 1.  Map of the study area highlighting the three locations investigated. The map was generated in ArcGIS 
Pro 3.1.0.
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Backscatter acquisition and processing
The multispectral dataset was acquired using an R2Sonic 2024 multibeam echosounder system (MBES), with 
the sonar head deployed through a moon pool on the survey vessel. The acquisition was configured to maximize 
the frequency range at which the equipment is capable of operating, including 170, 280, and 400 kHz signals. 
Acquisition parameters such as power, pulse length (80 µs), gain, and spreading were not changed during the 
survey. A 90° angular sector and 256 beams were used for all frequencies. The echosounder was not calibrated 
in the field prior to the survey, yielding backscatter values on a relative scale for each frequency.

The MBES system was paired with a POS MV Wave Master Inertial Navigation System (INS), with differential 
positioning. Sound velocity profiler casts were deployed every three hours using a Valeport Mini configured 
to collect sound velocity, salinity, temperature, and pressure. These data are essential to the application of the 
absorption coefficient, which was the only radiometric correction applied during the data acquisition—all other 
corrections were applied in post-processing. All systems were synchronized using QPS QINSy 8.18.3 for data 
acquisition. The bathymetric dataset was assessed during the survey to ensure data quality using QPS Qimera 
2.0, and post-processing was carried out using QPS Qimera and FMGT 7.9.5 (Fledermaus Geocoder Toolbox).

Although there is still no unified standard for processing backscatter, the multispectral data were processed 
following recommendations  in40,41. The main steps involved the frequency filtering and correction of acquisi-
tion parameters for each frequency (gain, transmit power, pulse length, beam width). Backscatter mosaics were 
exported at a 0.5 m horizontal resolution. The three mosaics (one for each frequency) were combined into one 
multiband RGB raster, and all of them serve as input for SVM classification. Additionally, angular information 
was explored through angular response curves (ARC) graphically sampled for each established class to provide 
further descriptive acoustic information.

Ground truth acquisition and processing
Underwater images from 33 sampling stations were used as ground truth. The locations of the stations were 
selected to address the distribution and variation of seabed  habitat39. Images were collected using a metal frame 
on which two high-resolution cameras (GoPro HERO7) and lights are coupled to the frame, one with a view 
towards the bottom, and one with a side/panoramic view of the seascape.

The bottom view images (60 cm × 60 cm quadrats) were individually processed using the freeware ImageJ. 
Processing included four steps: (i) image enhancement (tuning brightness and contrast); (ii) setting the image size 
(60 cm × 60 cm); (iii) hand-delineating the rhodoliths; (iv) calculation of the rhodolith coverage area. The results 
of the last step have provided a reference for establishing the seabed classes and training the classification model.

The class break values of rhodolith coverage are not well standardized in the scientific literature, often being 
treated as presence or absence.  In42, high coverage is categorized as more than 40%, and low coverage is defined 
as less than 30% of rhodolith coverage; different coverage ranges were considered  by8—low coverage correspond-
ing to less than 25%, a moderate class with coverage between 25 and 35%, and high-coverage class indicating 
more than 35% of rhodolith coverage. In this work, we defined four classes based on the percentage coverage 
of rhodoliths (see section “Multispectral backscatter mapping”) in order to detail the lower coverage classes to 
better distinguish between mixed bottoms (e.g., carbonate gravels/fragments from sparce rhodoliths), and also 
considering the values proposed by the Jenks natural breaks (14.16% and 29.16% adjusted to 15% and 35%, 
respectively). The final classes were: no rhodolith, percentage coverage of rhodolith up to 15%, percentage cover-
age of rhodolith between 15 and 35%, and percentage cover greater than 35%.

Support vector machine (SVM) classification
SVM is a powerful supervised machine-learning technique used for a wide range of tasks and has been increas-
ingly used in image classification for benthic habitat  mapping27,32,35,43. This technique does not require an estima-
tion of the statistical distribution of classes to perform the classification and has been producing high classifica-
tion accuracy even when using a limited amount of training  data34,44. Further descriptions of SVM algorithms 
and method concepts are given  by34,45,46.

Here, we handled rasters files and trained an SVM using R (packages terra47, e107148, and caret49) to produce 
a classification map based on each individual frequency of the backscatter separately and using all the frequen-
cies together. The approach accepts both single-band (backscatter mosaics of each frequency) and multiband 
(RGB mosaic) imagery and performs the SVM classification based on the input training samples. Herein, only 
backscatter-related variables served as input to the classifier model. Trials including other morphometric vari-
ables such as depth and roughness were performed but did not improve model performance (see Supplementary 
Information). We note that fine-scale depth is not known to define rhodolith coverage and nodule size, and the 
relationship among these variables is complex and may vary across continental  shelves50.

The backscatter mosaics were stacked and converted to matrices in R. Before performing classification on 
the backscatter rasters, it is necessary to train the classifier to assign backscatter values to an established class 
using training samples. The 0.5 m backscatter resolution was unnecessarily high for the purposes of modelling; 
backscatter rasters were aggregated to 5 m prior to comparison with ground truth data. The boat did not have 
dynamic positioning, was not anchored during imagery acquisition, and lacked an underwater positioning sys-
tem. Given the positional uncertainty during ground truth acquisition and the use of lateral/panoramic images 
for seascape overview, the average backscatter within 50 m radius was assigned to each sampling station. The 
SVM was configured testing the cost and kernel parameters; a radial basis kernel was ultimately selected with a 
cost parameter of 3. Defaults for all other parameters were retained (type C-classification, gamma = 1; parameters 
such as cachesize and tolerance were omitted, following specific package  guidelines48). The confusion matrix 
and accuracy statistics (overall accuracy, balanced accuracy, sensitivity, and specificity) were then calculated to 
assess classification accuracy and reliability through leave-one-out cross-validation. Using this approach, each 
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data point is withheld in turn to evaluate predictions produced using a model trained on all other data points. 
Results are tabulated so that the map predictions are evaluated at each data point. The prediction results were 
outputted as rasters and plotted in ArcGIS Pro.

Results
Underwater images
Underwater image were classified into four classes according to rhodolith coverage: Class 1) No rhodolith; Class 
2) < 15%; Class 3) 15–35%; Class 4) > 35%. Figure 2 presents the map with the distribution of the classified sam-
pling stations (Fig. 2a), as well as some examples obtained from drop camera images (Fig. 2b).

Overall, most of the samples labeled as Class 1 are in the Southern area, while the majority of Class 2 sam-
ples are located in the Central area. Classes 3 and 4, with higher rhodolith coverage, appear dominantly in the 
Northern area.

Multispectral backscatter mapping
Backscatter mosaics for each frequency and each area (North area, Central area, and South area) are shown in 
Fig. 3. Visually, the Central and Northern areas show higher backscatter strength when compared to the South-
ern area. This is also indicated by the RGB composite multispectral mosaic. The RGB mosaic was additionally 
useful for visualizing changes in multifrequency backscatter in areas where backscatter differences were visually 
difficult to detect in the single-frequency mosaics.

Differences in backscatter observed in the valley bottoms (visible from bathymetry—Fig. 1) of the Northern 
and Southern areas are noteworthy (profiles in Fig. 4). In the Northern area, the higher frequencies recorded 
high relative backscatter values, while the lower frequency (170 kHz) returned lower values. Conversely, in the 
Southern area, all frequencies returned low backscatter values at the bottom of the channel observed.

Angular response curves were extracted at four sample stations (Fig. 5) to explore acoustic properties at 
representant stations from each class. The underwater images of these sample stations are presented in Fig. 2.

Considering the higher frequencies (280 and 400 kHz), the greatest decrease in backscatter with increasing 
incidence angles occurred in Class 1 (no rhodolith); yet in this seabed type, a decrease in backscatter strength 
at far nadir angles was also strongly observed for the 170 kHz angular response curve. For the other classes, the 
flatness of angular curve shapes at higher frequencies showed similar results, with low backscatter level loss due 
to angular incidence. The 170 kHz signal showed an increasing backscatter level loss according to the rhodolith 
coverage—in other words, a low decrease in backscatter across the swath for Class 2, and higher backscatter 
decreasing in angular range for Classes 3 and 4.

SVM classification
The four rhodolith classes were predicted over the extent of the three study area polygons using the SVM mod-
els. Four classification maps were produced, three of them with only one frequency as input (Fig. 6b), and the 
final (Fig. 6c) based on multispectral backscatter. In addition, SVM classification was also applied to predict the 
presence or absence of rhodoliths (Fig. 6a).

Figure 2.  (a) Map with classified underwater image sample stations; (b) examples of drop camera images where 
angular response curves were extracted (see Section “Multispectral backscatter mapping”; Fig. 5); (c) graph 
showing the different rhodolith coverage for the entire image dataset.
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The average backscatter value of each frequency was extracted for each class (Table 1). In general, Class 2 
presented the highest average backscatter values for all frequencies, and 170 kHz resulted in lower backscatter 
values for all classes. It is also important to note that the standard deviation (SD) values for Class 1 were the 
largest for all frequencies, which was expected since this class encompasses a range of seafloor types.

The four-class model based on the 170 kHz mosaic (Fig. 6b) achieved the highest accuracy (Table 2) and was 
best able to differentiate rhodolith classes in the Northern area compared to the other single frequency models. 
However, Class 1 (no rhodolith) scarcely appeared on the map (Fig. 6b); moreover, this lower frequency achieved 
the weakest result considering the prediction of rhodolith presence or absence (Fig. 6a and Table 2). The 280 kHz 
and 400 kHz models (Fig. 6a and b) were visually similar and presented very close statistics results (Table 2), 
and were able to distinguish the North and Central areas from the South area, better predicting the presence or 
absence of rhodoliths (see confusion matrix in Table 3). The SVM model based on the 400 kHz mosaic displayed 
the worst result considering the recognition of different percentage coverage of rhodolith, as demonstrated by 
lower values of accuracy, and the absence of Class 4 in the mapped predictions.

The multispectral SVM model (Fig. 6c) seems to have balanced advantages of each frequency, achieving good 
overall accuracy and balanced accuracy values for both prediction models (Table 2). Although the single 170 kHz 
model has shown a slightly higher accuracy than the multispectral model for predicting different classes based 
on rhodolith coverage, the confusion matrices (Table 3) indicate that the errors were quantitatively less severe 

Figure 3.  Backscatter mosaics for each frequency and multispectral mosaic (RGB-composed bands).
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for the multispectral output if the proximity or similarity between the rhodolith classes would be considered; 
for example, in a region that should have been classified as Class 4, one station was predicted as Class 3 by the 
multispectral model, while one station was predicted as Class 1 by the 170 kHz model. Presence/absence results 
were very similar between multispectral and 280/400 kHz classifiers.

Discussion
The methods applied to the acoustic data provide an approach to classify the presence and abundance of rhodolith 
beds to meet the objectives of the study. Contrasted with unsupervised approaches, the images collected here 
were not used solely as conventional ground truth to validate an interpretation, but rather as training data for 
supervised classification. Results demonstrate relevance for both the analysis of multispectral backscatter, and 
for differentiating rhodolith bed characteristics, providing information to support management policies for a 
high conservation target habitat.

The classification suggested a trend toward greater presence of rhodoliths in the Northern area–consistent 
with previous mapping in the  region39. It is evident from the output of the SVM using all frequencies (Fig. 6c) 
that the differences from the backscatter profile crossing the shelf valleys in the Northern and Southern areas 
(Fig. 4) have been effectively utilized. In the valley of the Northern area, the higher frequencies have greater 
backscatter values and were classified as Class 4 (with more than 35% rhodolith), while the lower frequency had 
lower backscatter values suggesting that the roughness of the rhodolith beds has more influence for wavelengths 
of the 280 kHz and 400 kHz frequencies. The valley located in the Northern polygon was also differentiated  by39, 
although they used single-frequency backscatter and another classification technique based on bathymetry and 
geomorphology. In the Southern area, all frequencies showed lower backscatter values crossing the channel 
region and were classified as Class 1 (no rhodolith).

Figure 4.  Backscatter profiles crossing two different valleys.

Figure 5.  Angular response curves extracted for each frequency at four ground truth stations (Class 1—APA 
95, Class 2—APA 05, Class 3—APA 07, Class 4—APA 23).
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Advantages of multispectral backscatter
This analysis corroborates the use of MBES backscatter as a valuable proxy for benthic habitat and substrate 
mapping. Multispectral backscatter appears to be effective both at providing information for mapping different 
concentrations of rhodoliths and predicting the presence or absence of these nodules.

The SVM classifier was able to capitalize on the benefits afforded by multispectral backscatter for seafloor 
differentiation compared to the use of single-frequency data (Fig. 6c). Other works have explored the potential 
of multispectral data on muddy and sandy  bottoms22,24,51, but this is explored for the first time on rhodolith beds 
here by applying the same classification settings for single-frequency and multi-frequency backscatter. The two 
higher frequencies, when applied separately as input, indicated good discrimination of rhodolith presence or 
absence. The 170 kHz frequency was essential for modeling different densities of rhodoliths. Achieving both 
forms of classification would be far less feasible using a single-frequency system.

The angular range curves provide additional information about the acoustic response of each frequency across 
the different classes, complementing the image-based classification approach, in line with previous  studies22,52. 
The RGB mosaic serves as an effective tool for visualizing backscatter differences across multiple frequencies. 
Angular response curves suggested that the lowest frequency was crucial to differentiate the percentage coverage 
of rhodoliths between classes, since the angular response at higher frequencies was very similar for the different 
proportions of rhodolith cover, while the 170 kHz angular response was better at differentiating mainly Class 2 
from Classes 3 and 4 (higher decrease in backscatter across the swath in classes with more rhodoliths).

Figure 6.  SVM model predictions based on (a) presence/absence of rhodoliths; (b) four classes according to 
percentage coverage of rhodoliths for every single frequency; (c) four classes according to percentage coverage 
of rhodolith for multispectral input.

Table 1.  Mean backscatter value and standard deviation (SD) extracted from each SVM class for each 
frequency.

Backscatter

170 kHz 280 kHz 400 kHz

Class 1  − 24.30 dB (SD = 3.56 dB)  − 17.30 dB (SD = 3.11 dB)  − 19.44 dB (SD = 3.17 dB)

Class 2  − 20.51 dB (SD = 1.96 dB)  − 13.67 dB (SD = 2.02 dB)  − 16.53 dB (SD = 2.02 dB)

Class 3  − 22.69 dB (SD = 1.82 dB)  − 15.75 dB (SD = 1.98 dB)  − 18.21 dB (SD = 1.94 dB)

Class 4  − 24.55 dB (SD = 2.06 dB)  − 14.42 dB (SD = 2.06 dB)  − 17.07 dB (SD = 2.10 dB)
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The caveat to a multispectral mapping approach is that the large volume of information generated by multiple 
frequencies must be supported by equally intensive ground truth sampling. This is likely the greatest limiting 
factor to multispectral MBES thematic mapping–the utility of such data is constrained by the amount and quality 
of ground truth data. Relatedly, inaccurate positioning will reduce the capacity to relate substrate observations 
to the multi-dimensional high-resolution acoustic data. Limited ground truth data and inaccurate position are 
likely to compound and substantially limit the detail that may be resolved through multispectral data; this is 
likely the greatest shortcoming of the work presented here.

Multispectral acoustic response of rhodoliths
The acoustic characterization of rhodoliths is very important both for the study of the relationships between 
backscatter and geodiversity, but also for biodiversity, since rhodolith beds are an ecologically important biogenic 
substrate. Rhodoliths can form banks over the underlying sediments and are considered bioengineers, adding 
complexity to the  seafloor15,53. The SVM classification applied to map different densities of rhodoliths highlights 
the utility of backscatter for seabed classification and suggests its possible use as an “essential geodiversity vari-
able” (EGV)54,55—an important proxy for the study of geo- and biodiversity. Ref.56 additionally demonstrated 
backscatter variations in rhodolith beds when associated with different seafloor types, and Ref.8 interpreted 
variations in backscatter and nodule density driven by morphology. Although the role of inorganic carbon in 
the overall carbon sequestration is not well  understood57, these findings are relevant to better mapping and 
quantifying marine carbon stores, or even contribute to the study of blue  carbon6, CaCO3  production17,57, and 
also to the seasonal context related to algal  cover5 in rhodolith bottoms.

Although it is visually difficult to detect the difference between rhodolith Classes 3 and 4 based on either 
the mosaic or the ARC, the backscatter values increase slightly for the higher frequencies from Class 3 to 4. In 
other words, the higher concentration of rhodoliths resulted in an increased backscatter strength for the higher 
frequencies, which can be understood as a higher scattering recorded at the shorter wavelengths due to the 
roughness of the rhodolith nodules. Conversely, a decrease in average backscatter from Class 3 to 4 (− 22.6 and 
− 24.5 dB, respectively) was observed in the lower frequency response. Class 2, on the other hand, showed the 

Table 2.  Accuracy assessments for each classification model.

SVM Classification Model Accuracy assessment 170 kHz 280 kHz 400 kHz Multispectral

Presence/absence predictions

Accuracy 0.78 0.84 0.84 0.84

Balanced accuracy 0.7 0.8 0.8 0.77

Sensitivity 0.5 0.7 0.7 0.6

Specificity 0.9 0.9 0.9 0.95

Percentage coverage of rhodolith (4 classes)

Accuracy 0.75 0.56 0.5 0.71

Balanced accuracy 0.76 0.52 0.46 0.73

Sensitivity

Class 1: 0.70 Class 1: 0.70 Class 1: 0.70 Class 1: 0.60

Class 2: 0.66 Class 2: 0.55 Class 2: 0.44 Class 2: 0.66

Class 3: 0.85 Class 3: 0.85 Class 3: 0.71 Class 3: 0.85

Class 4: 0.83 Class 4: 0.0 Class 4: 0.0 Class 4: 0.83

Specificity

Class 1: 0.86 Class 1: 0.90 Class 1: 0.90 Class 1: 0.86

Class 2: 1.0 Class 2: 0.82 Class 2: 0.60 Class 2: 0.91

Class 3: 0.92 Class 3: 0.84 Class 3: 0.92 Class 3: 0.84

Class 4: 0.88 Class 4: 0.84 Class 4: 0.88 Class 4: 1.0

Table 3.  Confusion matrices from a) presence/absence predictions; b) four-class model based on 170 kHz 
(highest accuracy) and multispectral input.

a)

170 kHz 280 and 400 kHz Multispectral

Absence Presence Absence Presence Absence Presence

Absence 5 2 7 2 6 1

Presence 5 20 3 20 4 21

b)

170 kHz Multispectral

Class 1 Class 2 Class 3 Class 4 Class 1 Class 2 Class 3 Class 4

Class 1 7 1 1 1 6 2 1 0

Class 2 0 6 0 0 2 6 0 0

Class 3 1 1 6 0 2 1 6 1

Class 4 2 1 0 5 0 0 0 5
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highest mean backscatter values extracted from the mosaics despite the lower concentration of rhodoliths. This 
response can also be observed in the flatness of the ARC shape of the lowest frequency for Class 2. To better 
understand these findings, several factors could be further explored, such as the relationship between substrate 
type and depth (for example, Classes 3 and 4 tend to be in slightly deeper environments than Class 2), the acoustic 
influence of epiflora attached to the surface of the nodules on the seafloor with higher rhodolith concentration, 
and even the potential effect of the underlying sediment. In the absence of a more detailed granulometric analy-
sis of this latter effect, we can only infer the influence of the higher presence of carbonate fragments/gravel in 
Class 2 than in Classes 3 and 4. Moreover, it is relevant to emphasize that the comparisons carried out between 
frequencies were done in a relative way, in other words, comparing the shape of the ARCs and the spatial trends 
visible in the backscatter mosaics, excluding the possible effects due to the lack of acoustic calibration on the 
absolute values of backscatter (dB), which is topic of active  research58 that is likely to contribute further to seabed 
classification by enabling backscatter intercomparison for different bottom types and different systems.

A synthesis of case studies on acoustic mapping of rhodoliths is shown in Table 4. None of these studies 
applied multispectral backscatter, nor did they apply both image-based and ARA analysis approaches. Overall, 
the authors identify that rhodolith beds are generally associated with higher backscatter intensity, corresponding 
with results presented here on the higher frequencies that achieved higher accuracy considering the presence or 
absence model (even Class 1 encompassing a range of seafloor types–mixed, sand, and bioclast). Comparable 
results indicating elevated backscatter values for higher concentrations of polymetallic nodules has also been 
 observed9. Capacity to successfully distinguish mixed bottoms from rhodolith beds (including different rhodolith 
cover patterns) is an important finding here, which was enabled by the use of multiple frequencies, overcoming 
difficulties in distinguishing similar bottom  types12,59.

Conclusions
Backscatter data and underwater images were used to train a model and generate a seabed rhodolith classifica-
tion. The results show the potential for distinguishing distinct classes of rhodolith coverage, and emphasize 
the importance of multispectral backscatter as a proxy for biogenic substrate and seafloor types. New acoustic 
information about these carbonate nodules was explored, and an SVM analysis using MBES multifrequency data 
was developed enabling rhodolith mapping across the Costa das Algas marine protected area.

Multispectral backscatter data were successfully classified, achieving good cross-validation accuracy and 
confirming the potential to enhance seafloor discrimination. The 170 kHz frequency was the most important 
for distinguishing variable rhodolith coverage. The other two higher frequencies were better predictors of pres-
ence and absence. Additionally, the angular range analyses provided further descriptive information on the 
acoustic signatures of each frequency for the rhodolith beds, for example, showing different and unexpected 
patterns of decreasing backscatter strength with an increasing incident angle in rhodolith beds, mainly for the 
lower frequency.

Results from this study indicate that heterogeneous rhodolith beds may be mapped and differentiated using 
multispectral backscatter data classified by SVM, as well as the possibility to predict the presence or absence of 
nodules. This result is an important achievement for high-resolution rhodolith mapping, demonstrating that 
rhodolith bed structure can be accurately mapped using multi-frequency acoustic remote sensing.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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Table 4.  Findings and approaches from rhodolith-related studies.

Reference Approach Findings

Parnum and  Gavrilov12 Mosaics and angular dependence based on single frequency dataset
High backscatter level at rhodolith beds; angular response of rhodolith 
well defined; the main misclassification area is located along the boundary 
between sand and rhodolith

Micallef et al.58 Single frequency, uncorrected for angular dependence
Homogeneous pattern of high backscatter at rhodolith beds; difficulty in 
discriminating between coarse sand and gravel from maërl associated with 
sand and gravel

Innangi et al.56 Single frequency, some acoustic facies not extensively sampled Intermediate and medium/low backscatter at rhodolith beds

Chimienti et al.60
Combination of sampling, visual surveys, and acoustic dataset for the analy-
sis of spatial patterns; rhodolith beds comprising all seafloor with > 10% 
rhodolith/maërl coverage

Higher cover of rhodoliths identified by a higher backscatter

Rocha et al.8
Segmentation using maximum likelihood classification based on single-
frequency data; backscatter not calibrated and uncorrected for angular 
dependence

Moderate backscatter intensity for low rhodolith coverage; high backscatter 
intensity for high rhodolith coverage

Menandro et al.39
Classification based on single-frequency (bathymetric attributes and 
backscatter) using RSOBIA tool; backscatter uncalibrated for angular 
dependence

Presence of rhodolith in regions with − 22 dB a − 24 dB (values higher than 
unconsolidated non-rhodolith bed)
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