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Azarshahr travertine compression 
strength prediction based 
on point‑load index  (Is) data using 
multilayer perceptron
Yimin Mao 1*, Zhu Licai 2, Li Feng 3, Yaser A. Nanehkaran 2* & Maosheng Zhang 3*

Azarshahr County in the northwest of Iran is predominantly covered by Azarshahr travertine, a 
prevailing sedimentary rock. This geological composition has led to extensive open‑pit mining 
activities, particularly in the western and southwestern parts of the county. The rock’s drillability and 
resistance to excavation play a pivotal role in determining its overall durability and hardness, crucial 
factors that influence the mining process. These attributes are intimately tied to the compressive 
strength of the rock. Accurate assessment of rock strength is vital for devising reliable excavation 
methodologies at mining sites. However, conventional approaches for analyzing rock strength have 
limitations that undermine the precision of strength estimations. In response, this study endeavors 
to leverage artificial intelligence techniques, specifically the Multilayer Perceptron (MLP), to enhance 
the prediction of travertine’s compressive strength. To formulate a robust model, a comprehensive 
database containing data from 150 point‑load index  (Is) tests on Azarshahr travertine was compiled. 
This dataset serves as the foundation for the development of the MLP‑based predictive model, which 
proves instrumental in projecting rock compressive strength. The model’s accuracy and efficacy were 
rigorously assessed using the Receiver Operating Characteristic (ROC) curve, employing both training 
and testing datasets. The modeling outcomes reveal impressive results. The estimated R‑squared 
coefficient attained an impressive value of 0.975 for axial strength and 0.975 for diametral strength. 
The overall accuracy, as indicated by the Area Under the Curve (AUC) metric, stands at an impressive 
0.968. These exceptional performance metrics underscore the efficacy of the MLP model in accurately 
predicting compressive strength based on the point‑load index of samples. The implications of 
this study are substantial. The predictive model, empowered by the MLP approach, has profound 
implications for excavation planning and drillability assessment within the studied region’s travertine 
deposits. By facilitating accurate forecasts of rock strength, this model equips mining endeavors with 
valuable insights for effective planning and execution.

Travertine, classified as a type of sedimentary rock, emerges through the precipitation of calcium carbonate from 
water, commonly occurring within limestone caves or hot springs. Its composition primarily comprises minerals 
such as calcite, aragonite, and diverse forms of calcium carbonate, occasionally accompanied by trace amounts 
of organic  matter1. Notably porous in texture, travertine generally exhibits a light hue, spanning from white to 
beige. Its versatile attributes render travertine a sought-after building material, serving numerous applications 
both indoors and outdoors. It finds use in flooring, wall cladding, countertops, as well as ornamental elements 
like columns, sculptures, and fountains. Its historical significance traces back to ancient Roman times, where it 
garnered favour due to its resilience and resistance against  weathering2. Beyond durability, travertine’s appeal lies 
in its distinct aesthetic allure. While classified as a form of limestone, travertine distinguishes itself by forming 
through mineral precipitation from groundwater rather than the accumulation of organic matter. Its presence 
extends across various nations, including Italy, Turkey, Mexico, and the United States, often located in proxim-
ity to mineral-rich water sources and hot  springs1. The rock’s unique colour variations, veining patterns, and 
textures stem from the diverse geological conditions under which it is  created2. Travertine’s durability stands 
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as a key advantage in the realm of construction. It can endure elevated temperatures, heavy foot traffic, and the 
effects of weathering. Yet, its porous nature necessitates regular sealing to safeguard against moisture-induced 
damage and staining. However, travertine’s utility extends beyond construction purposes. It contributes to the 
production of lime and cement, serves as an agricultural soil conditioner, and adds an ornamental touch to 
landscaping  endeavours3.

From a geotechnical perspective, travertine exhibits remarkable resilience against a broad spectrum of weather 
conditions and environmental elements. Its enduring nature makes it a prime choice for an extensive array 
of indoor and outdoor applications, encompassing flooring, countertops, wall cladding, and exterior  paving3. 
Despite its exceptional durability, however, travertine retains its porous nature, rendering it susceptible to the 
absorption of liquids and various substances. Failure to adequately seal and maintain the rock can result in 
stains and damage. Regular cleansing and the application of a sealant are imperative to safeguard travertine 
from moisture and other environmental factors, preserving its  longevity4. In essence, when properly cared for, 
travertine stands as a markedly durable and enduring natural stone, capable of elevating the aesthetics and 
value of any structure or  residence3. Consequently, travertine finds utility in construction materials, ground 
modification, architectural stones, and  more5. Nevertheless, regardless of these advantages, drillability and rock 
resistance during excavation are of paramount significance in open-pit mining endeavours. This determination 
shapes effective excavation strategies for extracting travertine blocks. Drillability, specifically, pertains to the ease 
or difficulty of drilling through a particular rock type utilizing drilling tools. The drillability of rock hinges on 
numerous factors, encompassing rock type, hardness, porosity, fractures, and the nature of the drilling apparatus 
 employed6. In various industries such as mining, construction, and geotechnical engineering, rock drillability 
significantly affects both drilling efficiency and costs. For instance, a rock that permits easy drilling may expedite 
mineral extraction or tunnel construction, while a dense and hard rock could necessitate specialized tools and 
 techniques7,8. Evaluating rock drillability involves the drillability index, a metric gauging drilling rate and energy 
required for penetrating a rock sample under controlled  conditions6. Additional factors influencing this index 
include fracture orientation, spacing, groundwater presence, temperature, and pressure. Accurate estimation of 
rock compressive strength proves invaluable in devising dependable excavation methodologies at mining sites.

The estimation of rock compressive strength typically involves various geotechnical in-situ or laboratory 
tests, including the uniaxial compressive strength (UCS)  test9, Schmidt hammer  test10, point-load  test11, beam 
bending  test12, ring shear  test13, and triaxial compression  test14. Among these, both UCS and point-load tests 
play a pivotal role in ore crusher design and the evaluation of rock strength for mining purposes. Notably, the 
advantages inherent in the point-load test make it a more appealing method compared to the UCS approach. Its 
efficacy in estimating rock compressive strength is particularly prominent when applied in both field and labo-
ratory  settings15. The point-load test, a widely used method for measuring rock strength, entails the application 
of a specific load to a small cylindrical rock sample through a device known as a point-load  tester16. The testing 
procedure involves positioning the rock sample between two pointed platens. A load is directed onto one of these 
platens, in accordance with the guidelines outlined by the American Society for Testing Materials (ASTM)11 and 
the International Society of Rock Mechanics (ISRM). As the load gradually increases, the force needed to fracture 
the sample is measured until the rock sample ultimately breaks. The point-load strength index  (Is), serving as an 
indicator of the rock’s strength, is then determined by considering the force necessary for fracturing the sample. 
For visual clarification, refer to Fig. 1, which presents an illustration of the point-load  test17.

The point load test is a foundational geotechnical evaluation technique employed to assess the mechanical 
strength of rocks. This method involves subjecting a rock sample to a concentrated load at a specific point on its 
surface, measuring the force required to induce fracture, and calculating the resulting point load index  (Is). This 
index serves as an indicator of the rock’s strength and plays a crucial role in various engineering and mining 

Figure 1.  A scheme of a point-load  test17.
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applications. Point load tests are particularly advantageous due to their simplicity, speed, and  versatility17. They 
offer rapid results and can be conducted in both field and laboratory settings, making them suitable for a wide 
array of scenarios. Furthermore, point load tests provide localized insights into a rock’s strength under specific 
stress conditions, serving as a preliminary assessment that aids in determining the need for further, more com-
plex testing. However, point load tests have inherent limitations. They offer a focused assessment and may not 
fully capture the intricate variability or anisotropic nature of certain rock formations. The results are sensitive to 
specimen dimensions and geometries, necessitating careful  consideration16. In spite of these constraints, point 
load tests remain a cost-effective and efficient tool for promptly obtaining indicative information about rock 
mechanics, facilitating informed decisions across engineering and mining sectors.

The point-load test is generally regarded as a valuable tool in geotechnical investigations due to its capacity 
for on-site application, as well as its relative simplicity, speed, and cost-effectiveness16. Drawing upon a compre-
hensive review of relevant literature, as summarized in Table 1, the background of the point-load test reveals sig-
nificant insights. Broch and  Franklin18 pioneered the development of the inaugural point-load strength formula 
through damage model analysis of cylindrical specimens.  Bieniawski19 affirmed a direct correlation between rock 
compressive strength and the point load index  (Is), suggesting empirical methods for its estimation. Tsiambaos 
and  Sabatakakis20 delved into  Is variations within sedimentary rock, culminating in specific relationships tailored 
to this category of rock materials. Addressing anisotropic rocks, Basu and  Kamran21 established an empirical link 
to assess rock strength through estimated  Is values. Analyzing the contents of Table 1 underscores the extensive 
utilization of  Is and point load results for the estimation of rock compressive strength. Consequently, the for-
mulation of accurate relationships can significantly contribute to an enhanced comprehension of the strength 
attributes of rock materials.

The point load test on rocks presents several advantages. Firstly, it offers a swift and uncomplicated method, 
suitable for both field and laboratory settings, to assess rock strength. This enables preliminary evaluations of 
rocks’ suitability for construction or mining activities. The non-destructive nature of the test allows for repeated 
measurements on the same sample, aiding in data collection efficiency. Additionally, the direct correlation 

Table 1.  A summary of several works on UCS and  Is empirical relationship.

Relation Rock type Method Scholar(s)/year Reference

UCS = 15.3  Is(50) + 16.3 General Empirical D’andrea et al./1965 22

UCS = 20.7  Is(50) + 29.6 General Empirical Deer and Miller /1966 23

UCS = 23.7  Is(50) General Empirical Broch and Franklin/1972 24

UCS = 23.9  Is(50) Sedimentary Empirical Bieniawski/1975 25

UCS = 29  Is(50) Sedimentary Empirical Hassani et al./1980 26

UCS = 20  Is(50) Sedimentary Empirical Read et al./1980 27

UCS = 18.7  Is(50)—13.2 General Empirical Singh /1981 28

UCS = 14  Is(50) General Empirical Forster/1983 29

UCS = 16.5  Is(50) + 51.0 General Empirical Gunsallus and Kulhawy/1984 30

UCS = 20–25  Is(50) General Empirical ISRM/1985 31

UCS = 12.6–18  Is(50) Sedimentary Empirical Das/1985 32

UCS = 24.8–26.5  Is(50) Sedimentary Empirical Hawkins and Olver /1986 33

UCS = 30  Is(50) Sedimentary Empirical O’Rourke/1988 34

UCS = 12.6  Is(50) Igneous Empirical Vallejo et al./1989 35

UCS = 14–82  Is(50) General Empirical Cargill and Shakoor/1990 36

UCS = 16  Is(50) Igneous Empirical Ghosh and Srivastava/1991 37

UCS = 9.30  Is(50) + 20.04 General Empirical Grasso et al./1992 38

UCS = 19  Is(50) + 12.7 Sedimentary Empirical Ulusay et al./1994 39

UCS = 8.41  Is(50) + 9.51 General Empirical Kahraman/2001 40

UCS = 3.86  [Is(50)]2 + 5.65  Is(50) Volcanic Empirical Quane and Russell/2003 41

UCS = 7.3  [Is(50)]1.71 Sedimentary Empirical Tsiambaos et al./2004 20

UCS = 9.08  Is(50) + 39.32 General Empirical Fener et al./2005 42

UCS = 8  Is(50) Sedimentary Empirical Sabatakakis et al./2008 43

UCS = 16.45  e0.39Is(50) Metamorphic Empirical Diamantis et al./2009 44

UCS = 11.103  Is(50) + 37.66 Igneous Empirical Basu et al./2010 21

UCS = 5.57  Is(50) + 21.92 Gypsum Empirical Heidari et al./2012 45

UCS = 7.73  [Is(50)]1.25 Volcanic Empirical Kahraman/2014 46

UCS = -0.66  [Is(50)]2 + 21.15  Is(50) Igneous Empirical Zhang et al./2015 47

UCS = 18.897  Is(50) Volcanic Empirical Wong et al./2017 48

UCS = 22.72–26.24  [Is(50)]m Sedimentary Empirical Chen and Wei/2018 49

UCS = 21.28  Is(50) Metamorphic Empirical Li et al./2019 50

UCS = 24.3–2.48  Is(50) + 6.4 ~ 8.05 Sedimentary Empirical The authors This study
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between applied load and strength index simplifies interpretation, and the test serves well for comparative analy-
ses between different rock types. The point load test also has limitations to consider. While the test’s speediness 
is an asset, it provides localized strength values that might not accurately reflect the overall rock mass strength. 
Variability can arise due to specimen characteristics, such as shape and texture. Anisotropic properties of rocks 
are not accounted for, and the test’s focus on compressive strength neglects other vital mechanical attributes. 
The presence of fractures or weak planes can influence results, potentially leading to inaccuracies. Thus, while 
the point load test offers valuable insights, its interpretation should acknowledge these limitations, and it should 
complement more comprehensive testing methods for precise engineering  applications20,21,42–50.

In recent times, the evolution of technology has prompted a notable interest in the adoption of more intricate 
approaches, including artificial intelligence (AI) and computational methods. The integration of AI-based tech-
niques in predicting rock strength through the analysis of diverse geological data has yielded expedited, reliable, 
and highly accurate  outcomes51. Employing machine learning algorithms, AI techniques offer the capability 
to process vast geological datasets and forecast rock strength. These algorithms have the capacity to assimilate 
historical data from rock samples, encompassing the rock’s physical characteristics and mineral composition. 
Subsequently, they can predict the strength of new rock samples by recognizing patterns extracted from the 
amassed  data52. The recent advancements in this domain underscore the potential of AI as a potent tool for 
prognosticating rock strength, carrying significant implications across geotechnical engineering, mining, and 
related  fields51. The predictive potential of AI bestows several advantages over traditional methodologies, includ-
ing heightened precision and accuracy, expedited results, cost-effectiveness, non-destructiveness, and adaptability 
to diverse types of rock  materials52.

In essence, the fundamental aim of AI and machine learning models is to offer heightened accuracy in 
results while simultaneously striving to reduce process costs. Traditional methodologies for predicting rock 
strength often entail physical testing, a procedure that can be both time-consuming and financially burden-
some. In contrast, intelligent models hold the potential to swiftly forecast rock strength while also curtailing 
examination expenditures. Machine learning models exhibit a cost-effectiveness that frequently surpasses that 
of conventional testing methods, especially when considering the expenses associated with equipment, time, and 
personnel required for physical testing. This efficiency opens the door to rock strength predictions on a broader 
scale, enabling extensive surveys and the execution of a significant volume of tests. Furthermore, traditional rock 
strength testing typically demands destructive examinations involving bore-holing, coring, sampling, and rigor-
ous testing procedures. In contrast, predictive models can yield results with minimal invasiveness, contributing 
to reduced expectations. Notably, AI-based models operate independently of specific databases, rendering them 
versatile and unaffected by shifts in material types. This adaptability positions them as viable tools for a range 
of geo-materials51.

The application of AI techniques to predict point load strength in rocks offers a multitude of advantages. 
Firstly, AI models leverage sophisticated algorithms to provide highly accurate predictions by discerning intri-
cate relationships within complex rock datasets. This capability enables a more comprehensive understanding of 
rock behavior, particularly when dealing with nonlinear patterns and interdependencies among rock properties. 
Moreover, AI models adapt to new data, ensuring continuous enhancement in prediction accuracy and reliability 
over time. This adaptability translates into reduced testing costs and quicker decision-making by minimizing 
the need for extensive laboratory testing of rock samples. The time efficiency of AI-driven predictions is a valu-
able asset, particularly for real-time scenarios and time-sensitive projects. Additionally, AI’s versatility extends 
to various rock types and geological conditions, making it an adaptable tool for geotechnical engineering and 
exploration activities. Furthermore, AI’s data-driven insights provide a deeper understanding of factors influenc-
ing point load strength, facilitating better resource allocation and optimized operations in drilling, mining, and 
construction endeavors. Lastly, the objective nature of AI algorithms mitigates human bias, leading to impartial 
and reliable prediction outcomes. Incorporating AI into point load rock prediction thus enables geotechnical 
professionals to make informed decisions, streamline operations, and gain valuable insights into rock mechanics, 
contributing to safer and more efficient engineering projects.

The present study embarks on a novel approach, harnessing the power of the Multilayer Perceptron (MLP) 
network, a distinguished artificial neural network (ANN) technique renowned for its predictive, classification, 
and regression capabilities. This methodology not only introduces a fresh perspective but also holds substan-
tial advantages in terms of accuracy and efficiency. The innovative aspect lies in its application to forecast the 
compressive strength of sedimentary rocks, with a specific focus on travertine. This unique application of the 
MLP model to predict rock strength based on the point-load index  (Is) data from the Azarshahr region in the 
northwest of Iran demonstrates the study’s pioneering nature. By employing this advanced technique, the study 
aims to achieve more accurate and rapid predictions compared to traditional methods. The utilization of MLP 
has the potential to capture intricate patterns within the data, thus enhancing the precision of the compressive 
strength forecasts. This approach stands as a testament to the study’s cutting-edge methodology and its potential 
to yield valuable insights for geotechnical and mining applications.

Methods and materials
Point‑load test basics
The act of applying an axial load to a precise point or region on the rock’s surface is known as point-loading, form-
ing the fundamental principle of the point-load test. This loading procedure endures until the rock experiences 
failure or the sample is compromised. By closely monitoring this progression, the compressive strength of the 
rock can be determined through empirical correlations. Among the concentrated loading techniques, diametral 
and axial point load strength is the most prevalent. These approaches are developed based on the analysis of rock 
 conditions31, a recommendation stipulated by the International Society for Rock Mechanics (ISRM). Notably, 
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the ISRM provides the relationship for the strength index denoted as  Is(50) for a 50 mm diameter, facilitating the 
calculation process:

In this context, Is symbolizes the point-load index, while De stands for the equivalent sample diameter (mm), 
as stipulated by ISRM guidelines, and P signifies the applied loading. However, it’s worth noting that access to 
the precise diameter value can sometimes be constrained. In recognition of this, the ISRM has introduced a 
corrective factor, rendering  Is(50) = αIs, as elucidated in Eq. (2).

where F is correction index, which is typically desired to be between 0.40 to 0.45, or based on the value of com-
parable rocks to determine experience. Presented study used lab equivalent core diameter (D) were calculated as

where D is loading point spacing, W is the average width across the two loading points for the smallest section 
 ([W1 +  W2]/2). Regarding the estimation of UCS, the  ISRM31 was used. The results of the predictive models are 
setup based on ISRM regulations as well. That mean all experimental tests for estimation of input parameters 
such as UCS and  Is are controlled and verified based on ISRM instructions. These parameters have been shown 
in Fig. 2. The diameter of a rock sample is a critical factor in the determination of the  Is during point load tests. 
The impact of rock sample diameter on  Is is multifaceted and must be carefully considered for accurate and 
meaningful test results. When the diameter is increased, the load applied during the test is distributed over a 
larger surface area of the rock specimen. This distribution can lead to reduced stress concentration at the load-
ing point, potentially resulting in a lower force required to cause fracture. Consequently, the calculated  Is may 
be lower for larger diameter samples even if the rock’s inherent strength remains  constant26. Moreover, the scale 
effect comes into play when evaluating different sample diameters. Smaller diameter samples might not capture 
the full complexity of the rock’s structural characteristics, potentially yielding higher apparent strength due to 
the presence of fewer defects or fractures. On the other hand, larger diameter samples have a greater likelihood of 
representing the rock’s bulk properties and inherent heterogeneity more accurately. However, this also introduces 
the challenge of effectively dealing with the anisotropic and heterogeneous nature of larger samples. The sample 
diameter’s influence on  Is is also intertwined with the representative nature of the testing and its practical impli-
cations. Smaller samples might be easier to handle and test, but their results might not reflect the behaviour of 
larger rock  masses33–37. Conversely, larger samples can offer insights into the broader mechanical behaviour of the 
rock, but they may require specialized testing equipment and adjustments to ensure accurate results. Ultimately, 
the choice of sample diameter should be aligned with the specific goals of the testing, the scale of the geologi-
cal feature under study, and the balance between capturing realistic behaviour and practical  implementation53.

Rock sampling and data preparation
To establish a comprehensive relationship between the  Is index and rock strength, an extensive set of 150 point-
load tests were meticulously executed on samples extracted from Azarshahr travertine mines. These specimens, 
sourced from surface samples, were subjected to examination using a point load strength tester device. A geo-
graphical overview of the study area can be found in Fig. 3, pinpointing the location context. The original rock 
samples underwent a transition to the geotechnical laboratory setting. The estimation of  Is was undertaken fol-
lowing the guidelines set forth by  ASTM11 and  ISRM31. All samples underwent a process of coring and meticulous 
preparation in alignment with the necessary prerequisites for test conduction, as stipulated by the  standards11. The 
samples designated for testing post-coring were maintained in a dry environment within the laboratory, ensuring 
dry conditions. Subsequently, the tests were executed under room temperature conditions. The dryness of the 
samples was ensured through rigorous control measures, attesting to the precision of the experimental condi-
tions. The focal point of the analysis revolves around Azarshahr travertine, a distinct type of sedimentary rock 
categorized as calcium carbonate, specifically limestone. Upon transfer to the laboratory, the procured specimens 
were carefully drilled and standardized, resulting in cylindrical samples with a diameter of 10 × 5 cm, adhering 
to the regulations laid out by ISRM. The test procedure meticulously followed the instructions delineated by 
ISRM guidelines. Notably, each initial sample was subjected to testing on three separate occasions, a process 
undertaken with utmost precision and care. The resultant outcomes were tabulated and subjected to thorough 
analysis, with the average values across these tests being considered as representative results.

In the context of this study aimed at predicting the point-load strength index  (Is) for rock samples, the absence 
of activation functions within the neural network architecture would have undermined the core objective. The 
goal was to establish a predictive model capable of capturing complex relationships between  Is and rock compres-
sive strength (UCS) using an MLP. Activation functions played a pivotal role in enabling the model to learn and 
represent these intricate dependencies within the dataset, aligning perfectly with the research aim of constructing 
an accurate predictive model. The number of input features in an MLP model for point-load testing is a pivotal 
factor. The choice of relevant features significantly influences the model’s performance and predictive accuracy. 
Selecting an inadequate number of input features may lead to an incomplete representation of the data, resulting 
in suboptimal predictions. Conversely, an excessive number of features could introduce noise and hinder the 
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model’s ability to generalize. Careful feature selection and dimensionality reduction techniques are essential to 
strike the right balance and ensure the MLP effectively captures the relevant information needed for accurate 
point-load predictions. The  Is value and UCS are the main features that we considered in this study.

Regarding the number of input features, the study’s aim was to create an efficient predictive model for point-
load tests, emphasizing the importance of selecting relevant input features for optimal predictions. The model’s 
performance was closely tied to the choice of input features and their ability to represent critical information. The 
results showcased the effectiveness of the carefully chosen input features in achieving commendable accuracy 
and reliability in predicting  Is and UCS values. Therefore, within the context of this research, the presence of 
appropriate activation functions and the selection of relevant input features were pivotal in attaining the desired 
predictive outcomes.

Machine learning model basics
An artificial neural network (ANN) variant called the multilayer perceptron (MLP) consists of several layers of 
nodes, each representing a straightforward mathematical function. These nodes are interconnected with weighted 
connections, where the outputs from one layer become inputs for the next. An MLP generally comprises an input 
layer, one or more hidden layers, and an output  layer51. The input layer accepts input data, which then undergo 

Figure 2.  The geometry and dimension of various samples of rock: (a) diametral, (b) axial, (c) blocky (adapted 
from  ISRM31  and53).
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processing through the hidden layers’ nodes before ultimately being emitted through the output layer. Within 
the hidden layers, every node applies a mathematical function to its input before transmitting the output to the 
subsequent layer. A distinguishing hallmark of the MLP is that the connections’ weights are refined through a 
process known as training. In this training phase, the network is provided with sets of input–output pairs, and 
the weights are adjusted to minimize the discrepancy between predicted and actual outputs. This adaptation 
typically involves employing optimization techniques like gradient  descent52. The MLP stands as a robust tool 
for capturing intricate relationships between input and output, capable of being trained to perform tasks beyond 
the scope of traditional  methods51.

A Multilayer Perceptron (MLP) is a fundamental type of artificial neural network (ANN) that consists of 
multiple layers of interconnected nodes, each performing computations on input data. The architecture typically 
includes an input layer, one or more hidden layers, and an output layer which is presented in Fig. 454. MLPs are 
widely used for various machine learning tasks, such as classification, regression, and pattern recognition. Each 
node in the network is associated with a weight that modulates the influence of its input. The outputs of nodes 
are transformed using activation functions, which introduce non-linearity and enable the network to capture 
complex relationships in data. The formulation of an MLP involves the weighted sum of inputs at each node, 
followed by the application of an activation  function51. This process propagates the signal through the network, 

Figure 3.  Location of the studied area in Iran.

Figure 4.  The ideal architecture of MLP  network54.
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transforming it as it passes through each layer. The weights of the connections are learned during the training 
phase by minimizing a chosen loss function, which measures the difference between predicted and actual out-
puts. Gradient descent algorithms, like the backpropagation algorithm, iteratively adjust the weights to minimize 
the loss function and improve the network’s performance. The architecture of an MLP, including the number of 
layers, nodes in each layer, and activation functions, can be tailored to suit the specific task and dataset. More 
complex architectures, with additional hidden layers and nodes, allow the network to capture intricate patterns in 
data. Activation functions like ReLU introduce non-linearity, enhancing the network’s ability to model complex 
relationships. However, designing an optimal architecture involves striking a balance between model complexity 
and overfitting. Hyperparameter tuning and experimentation play a crucial role in finding the right architecture 
for the given problem domain and  dataset52.

Utilizing Multilayer Perceptron (MLP) for predicting Point Load Test Index  (Is) in rocks provides distinct 
advantages within the realm of geotechnical engineering. MLP’s adeptness at capturing intricate and non-linear 
relationships is particularly advantageous for understanding the complex interplay of factors influencing rock 
strength, as measured by Point Load Test Index. By automatically extracting relevant features from input data, 
MLPs enhance predictive accuracy, considering variables such as mineral composition, porosity, and sample 
diameter. This adaptability to diverse datasets ensures that the model can generalize well to various rock types, 
making it a versatile tool in geological contexts. Furthermore, MLP’s data-driven approach leverages historical 
data to uncover nuanced dependencies that might elude traditional analytical methods. The improved accuracy 
resulting from MLP’s pattern recognition capabilities contributes to more informed decision-making in geo-
technical projects. Notably, the reduced need for resource-intensive physical testing through MLP predictions 
streamlines the testing process and enhances efficiency. Additionally, the model’s ability to continuously learn 
and update with new data ensures its relevance in evolving geological conditions. In essence, the integration 
of MLP into Point Load Test Index prediction augments accuracy, efficiency, and adaptability in geotechnical 
assessments, offering valuable insights into the relationship between rock properties and strength.

Despite the advantages of utilizing Multilayer Perceptron (MLP) for predicting Point Load Test Index  (Is) 
in rocks, there are certain limitations that need to be considered. One primary limitation is the reliance on a 
substantial amount of high-quality labeled data for training the model effectively. Insufficient or biased training 
data could lead to inaccurate predictions and compromise the model’s reliability. Moreover, MLP’s black-box 
nature can make it challenging to interpret the underlying reasons behind the model’s predictions. This lack of 
interpretability might hinder the model’s adoption in situations where clear explanations for the predictions are 
necessary for decision-making and analysis. Additionally, MLP’s performance heavily depends on appropriate 
hyperparameter tuning, such as the number of hidden layers, nodes, and activation functions. Inadequate tuning 
might lead to overfitting or underfitting the model, affecting its generalization capability to unseen data. Another 
limitation arises from the assumption of stationarity in the data distribution; if the geological conditions or rock 
properties change significantly over time, the model’s predictive performance might degrade. Furthermore, 
MLP’s training and deployment require computational resources, which can be a concern in resource-limited 
environments. While MLPs offer valuable insights into the relationships between Point Load Test Index and rock 
properties, understanding these limitations is crucial for ensuring accurate and reliable predictions. Combining 
the strengths of MLPs with complementary approaches can help overcome these challenges and provide a more 
comprehensive understanding of rock behavior and strength.

The versatility of the multilayer perceptron (MLP) extends to both classification and regression tasks. In 
classification, the MLP is trained to categorize input data into predefined classes, while in regression, it is tasked 
with predicting continuous output variables based on one or more input  variables52. A pivotal aspect of MLP lies 
in the selection of activation functions for its nodes. These functions introduce nonlinearity into the network, 
mapping a node’s input to its corresponding output, thus empowering the network to capture intricate relation-
ships between inputs and outputs. A range of activation functions holds sway within MLP’s architecture. Notably, 
the sigmoid, hyperbolic tangent, Softmax, and rectified linear unit (ReLU) functions are recurrent choices, each 
contributing to the network’s ability to process and interpret  data51. These activation functions play a crucial 
role in endowing the MLP with its capacity to model complex patterns and nonlinear connections, rendering it 
a powerful tool in various data analysis tasks.

Rectified Linear Unit (ReLU) is an activation function commonly used in artificial neural networks, including 
the multilayer perceptron (MLP). It introduces nonlinearity by allowing the passage of positive values unchanged, 
while zeroing out negative inputs. Mathematically, ReLU(x) = max(0, x). This simplicity and computational 
efficiency have contributed to its popularity. ReLU addresses the vanishing gradient problem encountered with 
other activation functions like sigmoid and tanh, enabling faster convergence during training. However, ReLU 
can suffer from the "dying ReLU" problem, where some neurons get stuck and never activate. Variants like Leaky 
ReLU and Parametric ReLU have been introduced to mitigate this issue. The Softmax function, often used in the 
output layer of neural networks, is specifically employed for multiclass classification problems. It takes a vector 
of raw scores and converts them into a probability distribution, with each score representing the likelihood of 
an input belonging to a certain class. The Softmax function calculates the exponential of each score and then 
normalizes these values to sum up to 1. This ensures that the outputs can be interpreted as class probabilities. The 
class with the highest probability is the predicted class. Softmax enables the model to make decisions based on 
multiple classes and is commonly used in scenarios such as image classification and natural language processing 
tasks within the context of the MLP and other neural network architectures.

The integration of activation functions like ReLU and Softmax within the framework of neural networks, 
such as the MLP, is driven by their distinct advantages in addressing crucial challenges. ReLU, known for its 
computational efficiency and ability to introduce nonlinearity, proves essential in capturing complex relation-
ships in data while mitigating the vanishing gradient problem. This accelerates learning in deep networks and 
promotes convergence. However, caution is exercised to counter the "dying ReLU" issue through variants like 
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Leaky ReLU and Parametric ReLU. Meanwhile, Softmax assumes significance in multiclass classification, ena-
bling the transformation of raw scores into interpretable probabilities. By facilitating informed decision-making 
among various classes and ensuring the output sums up to 1, Softmax greatly enhances the MLP’s capability to 
make accurate predictions, especially in scenarios involving multiple classes like image classification and natural 
language processing.

MLP model implementation
The construction of the MLP model was realized using the Keras framework. The input layer was fashioned to 
encapsulate the  Is information derived from a comprehensive main database encompassing 150 data entries. The 
model’s outcome materialized in the output layer, visualizing either the rock’s compressive strength or its UCS 
values. Within the MLP architecture, Dense layers were incorporated, wherein the initial layer comprised 64 
hidden units, followed by a subsequent layer with 32 hidden units. To determine the behaviour of each layer, the 
activation parameter played a pivotal role, specifying the activation function applied at every stage. The ultimate 
layer was distinguished by the employment of the Softmax activation function, a fitting choice for multi-class 
classification challenges, all coded in the Python high-level programming language. For the optimization of 
model accuracy, the categorical cross-entropy loss function was adopted in conjunction with the Adam opti-
mizer, a renowned technique adjusting the learning rate throughout the training process. This framework was 
employed to accommodate the specificities of multi-class classification tasks. Subsequently, the ’fit method’ was 
employed, ushering the model through training iterations over a specified number of epochs (100 in this case) 
and employing a batch size of 32. To monitor the model’s efficacy, the validation data parameter was introduced, 
facilitating the utilization of a distinct validation dataset during training.

The bedrock of this study comprised a principal database encompassing 150 distinct rock samples derived 
from Azarshahr travertine. This corpus was randomly partitioned, dedicating 70% for training and reserving the 
remaining 30% for testing. Consequently, the training dataset was enriched with 105 samples, while the testing 
dataset encapsulated the details of the remaining samples. The comprehensive depiction of the implemented MLP 
model’s architecture and workflow is further illustrated as part of this endeavour. The process involves several 
crucial steps for implementing the MLP and evaluating its predictive prowess:

• Input data definition: commencing with the foundation, the input data for the MLP is established using a 
dataset encompassing 150 distinct rock samples from the primary database.

• Training and testing set separation: the division of data into training and testing sets is pivotal. The training 
set, containing 105 data entries, serves as the basis for training the model, while the testing set, comprised 
of the remaining 45 samples, functions as the means to assess the model’s predictive performance.

• MLP architecture setup: the architecture configuration for the MLP on the training set is initiated. This 
encompasses determining the number of layers, nodes within these layers, and activation functions for opti-
mal training. Additionally, criteria for evaluating the model’s efficacy are defined, and a specific optimization 
algorithm, such as the Adam optimizer, is specified.

• Optimization algorithm definition: to guide the model’s learning process, the loss function is meticulously 
defined. In this case, the cross-entropy loss function is selected. Simultaneously, the choice of the optimiza-
tion algorithm, Adam optimizer, is made to facilitate the training process.

• Model validation on testing set: once the MLP completes its training, validation is conducted on the testing 
set, which comprises 45 remaining sample data points. The testing data is processed through the trained MLP, 
allowing a comparison between its predictions and the true labels, thereby gauging its predictive accuracy.

• Confusion matrix calculation: to assess the model’s performance comprehensively, a confusion matrix is 
computed. This matrix serves as a comprehensive representation of the model’s predictive capabilities, encom-
passing accuracy; precision, recall, and F1 score metrics, providing insights into its proficiency.

• Softmax activation for probabilities: lastly, the MLP’s output is refined using the Softmax activation function. 
This function transforms the MLP’s output into a set of probabilities, offering a nuanced interpretation of its 
predictions as a probability distribution across the various rock types.

By adhering to this systematic workflow, the MLP’s potential as a predictive tool can be harnessed and evalu-
ated effectively.

The training set is the larger portion of the data, comprising 70% of the total dataset. It is used exclusively 
for training your machine learning model. During the training process, the model learns to recognize patterns, 
relationships, and features within this dataset. A larger training set allows your model to better understand the 
underlying data distribution and adapt its parameters (weights and biases) accordingly. However, it is important 
to note that a large training set can also make the training process computationally more intensive. Also, the 
test set constitutes the remaining 30% of the dataset and is kept entirely separate from the training data. It is not 
used in any way during the model training process. Instead, the test set is reserved for evaluating the model’s 
performance after training. Once your model is trained on the training set, you apply it to the test set to assess 
its ability to make accurate predictions on new, unseen data. The test set serves as an independent benchmark to 
measure how well your model generalizes to real-world scenarios, helping you gauge its effectiveness. The 70%-
30% split is a common choice for dividing data into training and test sets. It strikes a balance between providing 
the model with enough data for learning and preserving a sufficiently large and independent set for evaluation. 
This separation ensures that the model’s performance evaluation on the test set reflects its ability to handle new, 
unseen data, making it a crucial step in the machine learning workflow for estimating model performance and 
generalization.
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The subsequent phase involves the systematic partitioning of the dataset into distinct subsets earmarked 
for training, validation, and testing. The training subset assumes a pivotal role in facilitating weight optimiza-
tion during the iterative training process. The validation subset serves as a crucible for hyperparameter tuning 
and the prevention of overfitting. The testing subset, in turn, enables a robust evaluation of the trained DMLP 
model. Augmentation techniques, encompassing data augmentation, may be judiciously invoked to diversify 
the training dataset and enhance the model’s generalization prowess. The applied hyperparameters in this study 
is provided in Table 2.

Hyperparameters represent crucial configuration settings within machine learning algorithms, exerting a 
substantial influence over a model’s performance and  behaviour52. Unlike internal parameters acquired through 
training data, hyperparameters are predetermined by practitioners and guide the learning process. They control 
key aspects such as model complexity, regularization strength, and optimization  strategies51. Skillful calibration 
of hyperparameters enables practitioners to strike a delicate equilibrium between a model’s aptitude for discern-
ing intricate data patterns and its ability to steer clear of overfitting or underfitting pitfalls. For instance, in deep 
neural networks, hyperparameters like layer count, neuron quantity within layers, and learning rate govern the 
network’s depth, capacity, and convergence rate. Similarly, algorithms like decision trees involve hyperparameters 
such as maximum depth and minimum samples per leaf, influencing the tree’s size and  intricacy52. By judiciously 
tuning these hyperparameters, practitioners can tailor a model’s behaviour to harmonize with specific problem 
nuances and dataset attributes, ultimately yielding optimal performance and enhanced generalization to previ-
ously unseen  data55.

In this study, the MLP was employed as the primary machine learning technique for model training and 
predictive modelling. It is noteworthy that in traditional machine learning practices, the dataset is typically 
partitioned into three distinct subsets: the training set, validation set, and testing set. The training set is uti-
lized for the actual model training, the validation set is essential for hyperparameter tuning and monitoring 
the model’s performance during training and the testing set serves as an independent benchmark to assess the 
model’s generalization capabilities to previously unseen data. However, one notable aspect in this study is the 
absence of explicit details regarding the specific allocation of data to the training and validation sets. To ensure 
transparency, reproducibility, and clarity in the methodology employed, it is imperative that the author specifies 
the size or proportion of the dataset assigned to the validation set. This precision is critical for comprehending 
the model development process, facilitating readers’ understanding of dataset utilization, and allowing for the 
replication of experiments. Therefore, while the paper effectively introduces the utilization of MLP in predictive 
modelling, enhancing the manuscript with explicit information regarding the dataset split between the training 
and validation sets would substantially augment the study’s methodological rigor and transparency, aligning it 
with established academic practices.

Model validation and verification
To ascertain the predictive model’s susceptibility to overfitting or underfitting, it becomes imperative to evaluate 
its performance on data that hasn’t been encountered during its training phase. In this context, the presented 
study leveraged two distinct validation approaches: the train/test split method and cross-validation techniques. 
In the train/test split approach, the primary database was randomly divided into training and testing subsets, 
enabling the assessment of the confusion matrix for both sets. On the other hand, the cross-validation procedure 
involved the application of receiver operating characteristic (ROC) curve analysis on the datasets, fostering a 
comprehensive comparison of  outcomes51. The ROC curve graphically illustrates the performance of a binary 
classification model across varying classification thresholds, showcasing the trade-off between True Positive Rate 
(TPR) and False Positive Rate (FPR). The topical ROC curve was illustrated in Fig. 5. In this figure, the ROC curve 
illustrates a comparison between two curves, one dashed and one solid. The dashed curve entirely lies above the 
solid curve, indicating a superior test with a larger area under the curve. The left-upper corner of the ROC curve, 
represented by the solid line, moves along it. The maximum area of the shaded rectangular region occurs when 

Table 2.  A list of main hyperparameters that used in this study.

Algorithm Hyperparameters Values

MLP

Learning rate (learning_rate) 0.001

Number of hidden layers (num_layers) 5 layer

Number of neurons each Hidden Layer (hidden_units) 64

Activation functions

 ReLU ReLU(x) = max(0, x)

 Sigmoid Sigmoid(x) = 1/(1 + exp(− x))

Batch size (batch_size) 32

Dropout rate (dropout_rate) 0.2

L2 regularization parameter (weight_decay) λ = 0.001

Epochs 1000

Optimizer Adam
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the sides of the rectangle, denoted as sensitivity (Se) and specificity (Sp), are equal. Sensitivity refers to the ability 
to correctly identify positive cases, while specificity pertains to the capacity to correctly identify negative  cases56.

In the realm of ROC analysis, the binary classification entails two classes, commonly termed positive (1) and 
negative (0). For each class, the classifier generates probability predictions, with a decision threshold dictating 
sample classification as positive or negative. Plotting TPR against FPR at different threshold values yields the 
ROC curve, providing insights into the model’s behaviour. TPR represents the proportion of correctly identified 
positive samples, while FPR signifies the proportion of incorrectly identified negative samples. Widely employed 
in medical diagnosis, fraud detection, and credit scoring, the ROC curve is pivotal for assessing binary classi-
fier performance across diverse thresholds. The curve associated with a perfect classifier aligns with the top-left 
corner, whereas a random classifier’s curve follows the diagonal line. The area under the ROC curve (AUC) serves 
as a common metric to gauge a binary classifier’s overall performance, ranging from 0.5 (random classifier) to 
1 (perfect classifier)52. Employing these rigorous validation methods effectively equips the implementation of 
predictive models, mitigating the risks of overfitting or underfitting phenomena.

To ascertain the consistency between prediction and measurement outcomes within the primary database, 
the analysis employed the coefficient of determination, commonly referred to as R-squared  (R2). This statistical 
parameter serves as a pivotal tool for cross-validation, quantifying the proportion of variability in the dependent 
variable elucidated by the independent variables in a given regression model. In essence,  R2 gauges the efficacy 
of the regression model in aligning with the observed data, effectively measuring the degree of fit between the 
model and the dataset under  scrutiny51.

Model justifications
In evaluating the performance of the presented predictive model, a comparative analysis was conducted. In this 
context, traditional machine learning approaches, including random forests (RF), decision trees (DT), logistic 
regression (LR), support-vector machines (SVM), and k-nearest neighbours (k-NN), were considered for com-
parison. RF is an ensemble learning method that combines multiple decision trees to make predictions. It works 
by creating a multitude of decision trees during training and then averaging their predictions during testing. This 
ensemble approach tends to reduce overfitting and improve accuracy, making it particularly useful for classifica-
tion and regression tasks. DT is a simple yet powerful machine learning algorithm used for both classification 
and regression tasks. They partition the data into subsets based on feature values, creating a tree-like structure. 
Each internal node represents a decision based on a feature, and each leaf node represents the predicted class 
or value. Decision Trees are interpretable and can handle both categorical and numerical data. LR is a widely 
used classification algorithm. It models the probability that a given input belongs to a particular class using 
the logistic function. Despite its name, logistic regression is used for classification, not regression. It’s simple, 
interpretable, and works well for binary and multiclass classification problems. SVM is a powerful classification 
algorithm that aims to find a hyperplane that best separates data into different classes. It works by finding the 
maximum-margin hyperplane, which maximizes the margin between the closest data points of different classes. 
SVMs can handle linear and non-linear classification problems and are effective for both binary and multiclass 
tasks. k-NN is a straightforward classification algorithm that classifies a data point based on the majority class 
among its k-nearest neighbors in the feature space. It’s a non-parametric and instance-based algorithm, meaning 

Figure 5.  The topical ROC curve for analysis (adapted  from56).



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20807  | https://doi.org/10.1038/s41598-023-46219-4

www.nature.com/scientificreports/

it doesn’t make strong assumptions about the underlying data distribution. However, it can be sensitive to the 
choice of k and may not perform well with high-dimensional  data51,52.

In the context of this study, the inclusion of traditional machine learning classifiers, including RF, DT, LR, 
SVM, and k-NN, stands as a critical component of a rigorous comparative analysis. This methodological approach 
allows for a comprehensive evaluation of diverse machine learning algorithms, facilitating an informed selec-
tion process for the most apt modelling technique tailored to the specific predictive task at hand. It serves as a 
benchmarking exercise, permitting a thorough assessment of the efficacy and appropriateness of the MLP-based 
predictive model relative to well-established, conventional methodologies. The comparative analysis undertaken 
herein is instrumental in elucidating several pivotal aspects. Firstly, it offers insights into the intricacies of model 
complexity, as various algorithms encompass a spectrum ranging from simplicity, exemplified by DT and LR, 
to heightened complexity embodied by RF and MLPs. This assessment aids in addressing paramount questions 
concerning the necessity of employing a complex model like MLP in relation to simpler alternatives. Moreover, 
the comparative approach affords a comprehensive exploration of model robustness and generalization capabili-
ties, shedding light on the resilience of each classifier to data anomalies and their ability to extrapolate effectively 
to unseen data. Furthermore, it provides an opportunity to strike a balance between model interpretability, vital 
in certain applications, and predictive performance. Finally, this approach facilitates the discernment of how 
each classifier copes with distinct data characteristics, aiding in the selection of the most suitable model based 
on factors such as feature space dimensionality and non-linear relationships within the dataset. In summation, 
the inclusion of traditional classifiers in this study is integral to making informed decisions pertaining to the 
optimal modelling approach, underpinning the study’s scientific rigor and depth of analysis.

Results and discussion
Upon completion of the point-load tests in accordance with the guidelines laid out by the ISRM  regulations11 as 
stipulated  in31, all relevant features were meticulously measured and documented. The tabulated data, delineated 
in Tables 3, forms the basis for ensuing statistical analysis. To facilitate the subsequent utilization of this data in 
MLP modeling, a crucial normalization step was executed. This entailed scaling the data within the range of 0 
to 1, thereby ensuring equitable consideration for every variable during the training phase of the model. For this 
study, a linear transformation approach was adopted for feature scaling, effectuating the alignment of feature 
values within a consistent range. This meticulous process of feature scaling holds particular significance within 
machine learning models, especially those reliant on distance computations or gradient descent algorithms. 
As encapsulated by Eq. (4), this preprocessing step plays an indispensable role in enabling models to perform 
optimally by maintaining commensurate scales for input and output features.

where ŷ is standardised value for each feature at y set,  yi is extracted recorded value at point i,  ymax and  ymin are 
maximum and Minimum values in y set.

As depicted in Table 3, an index statistical analysis has been conducted on the prepared database, encom-
passing various input and target variables for this specific task. The database’s evaluated variables have under-
gone a thorough statistical analysis, encompassing key metrics such as maximum, minimum, mean, standard 
deviation, kurtosis, and skewness. These statistical functions provide valuable insights into the distribution and 
characteristics of the dataset. The statistical analysis conducted on the evaluated variables within the database 
encompassed several key metrics. These metrics included the maximum, minimum, mean (average), standard 
deviation, kurtosis, and skewness. The maximum represented the highest observed value, while the minimum 
denoted the lowest. The mean, or average, portrayed the central tendency of the dataset by calculating the sum 
of all values divided by the total count. Standard deviation provided insight into the spread or variability of data 
points around the mean. Additionally, kurtosis indicated whether the data distribution had heavier or lighter tails 
compared to a normal distribution, and skewness revealed the dataset’s asymmetry. These statistical measures 
played a crucial role in characterizing the dataset’s properties and understanding its distribution patterns. Based 
on the information presented in the table, we can observe the range of variation among different input data attrib-
utes such as density (kN/m3),  Is, and UCS (MPa) which exhibit variability within the dataset. The recorded values 
span from a minimum of 25.26 for density, 1.13 for  Is, and 34.5 for UCS, to a maximum of 25.47 for density, 2.43 
for  Is, and 65.5 for UCS. On average, the dataset demonstrates typical values of approximately 25.30 for density, 
1.82 for  Is, and 51.73 for UCS. These statistics provide a clear overview of the dataset’s range, central tendency, 
and dispersion, which are crucial for understanding the underlying patterns and characteristics of the data.

(4)
⌢

y =

yi − ymin

ymax − ymin

Table 3.  A summary of statistics analysis for datasets. St.Dv. standard deviation.

Parameter Max Min Mean St.Dv. Kurtosis Skewness

Density (kN/m3) 25.47 25.16 25.30 0.0823 − 1.426 0.0137

Is (axial) 2.36 1.13 1.829 0.3520 − 1.010 − 0.2860

Is (diametral) 2.43 1.14 1.79 0.3461 − 1.001 − 0.2509

UCSaxial 65.2 34.5 51.73 8.7504 − 0.985 − 0.3113

UCSdiametral 65.0 34.5 50.28 8.5544 − 1.011 − 0.2584
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Statistical analysis is pivotal for our work due to several key reasons. Firstly, it enables a comprehensive 
understanding of data distribution, shedding light on the behavior and patterns within various input attributes 
like density,  Is (both axial and diametral), and UCS (both axial and diametral). Secondly, it serves as a robust tool 
for data validation, crucial for identifying outliers or inconsistencies that might affect result reliability. Moreover, 
statistical analysis aids in the selection of relevant features, guiding us to focus on the attributes with the most 
significant impact on our target variable, UCS. Additionally, it provides a means to assess the performance of 
predictive models by employing metrics like R-squared  (R2) to gauge model fit and effectiveness. Lastly, this 
analysis can unearth valuable insights or correlations within the data, offering potential directions for further 
research and a deeper understanding of variable relationships. In summary, statistical analysis is foundational in 
our data-driven research, ensuring data quality, aiding in modeling, and facilitating informed decision-making. 
R-squared  (R2) holds significant importance in our research, where we aim to predict the unconfined compressive 
strength (UCS) of rock samples using the  Is.  R2 serves as a critical metric for assessing the quality and effective-
ness of our predictive models. Essentially, it quantifies how well our models fit the observed data. A high  R2 
value indicates that our models successfully capture the variability in UCS based on the  Is values, suggesting a 
strong and accurate relationship. Moreover,  R2 assists us in model selection and configuration. By comparing  R2 
values among different model variations, architectures, or hyperparameters, we can pinpoint the model setup 
that best suits our dataset. This ensures that our predictive models are optimized to provide the most accurate 
UCS estimates. Furthermore,  R2 plays a pivotal role in evaluating the models’ ability to generalize beyond the 
training data. Achieving a high  R2 on the training dataset is just the first step. To ensure practical applicabil-
ity, we must also attain a high  R2 on the testing dataset, demonstrating that our models can make reliable UCS 
predictions for new, unseen rock samples.

Prior to the integration of the MLP model for forecasting UCS values based on the  Is parameter, a fundamen-
tal step entailed estimating the empirical relation tailored to Azarshahr travertine. This endeavor involved the 
application of linear regression analysis, coupled with the assessment of the  R2 coefficient. This coefficient serves 
as a quantifiable indicator of the model’s explanatory power. The empirical relation was strategically deduced for 
both axial and diametral point-load strength indexes. The outcome of this analytical process is vividly depicted 
in Fig. 6, where the empirical relation curated for the meticulously compiled database is visually showcased. The 
insights derived from this graphical representation yield an estimated  R2 coefficient of 0.9231 for axial strength 
and an even more impressive 0.9728 for diametral strength in relation to UCS values. This substantiates the 
alignment of the empirical relation with the observed data and underscores its potential utility in predictive 
UCS modeling.

Following the establishment of empirical correlations between UCS and  Is for the investigated rock samples, 
this data was harnessed to forge predictive models through the MLP classifier. Operating on the principles of 
supervised learning, the entire dataset underwent meticulous labeling, with features systematically categorized 
as per ISRM guidelines. The MLP model was subsequently executed, and the resultant predictions for UCS 
were recorded. This performance was meticulously assessed, with the outcomes showcased through Figs. 7 and 
8. These illustrative visuals serve to highlight the contrasting dynamics between the measured and forecasted 
values attributed to the MLP model. The comprehensive comparison encapsulated in these figures extends across 
both the testing and training datasets, thereby affording a holistic insight into the predictive prowess of the MLP 
model in diverse scenarios.

Figure 6.  Empirical relationship between UCS and  Is for studied rocks.
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After deriving empirical relationships connecting Uniaxial Compressive Strength (UCS) and the Point Load 
Index (Is) for the examined rock specimens, this dataset was utilized to construct predictive models using the 
Multilayer Perceptron (MLP) classifier. Employing the principles of supervised learning, the complete dataset 
underwent meticulous labeling, with features methodically categorized according to guidelines outlined by the 
International Society for Rock Mechanics (ISRM). Subsequently, the MLP model was implemented, produc-
ing forecasts for UCS values. The performance of this model underwent thorough evaluation, with the results 
visualized through Figs. 7 and 8. These graphical representations effectively emphasize the contrasts between 
the actual and predicted values generated by the MLP model. By encompassing both the testing and training 
datasets, these illustrations provide a comprehensive understanding of the MLP model’s predictive capabilities 
across various scenarios. In the graphical depictions presented in Figs. 7 and 8, the observed discrepancies 

Figure 7.  Comparison of measured and predicted UCS for travertine rocks in training dataset.
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between the actual UCS values and the UCS values predicted by the MLP model are evident. This visual com-
parison not only underscores the model’s performance but also enables a quick assessment of its accuracy. The 
graphs unveil trends, potential outliers, and the overall alignment between predictions and real values. This 
comprehensive representation is particularly beneficial in decision-making processes, offering insights into the 
model’s reliability and potential areas of improvement. Furthermore, the inclusion of both testing and training 
datasets in the graphical analysis enables a thorough assessment of the model’s generalization ability. Overfitting 
or underfitting issues become more apparent when the model’s performance on unseen data is compared to its 
performance on the training data. These figures allow researchers and practitioners to gauge whether the MLP 
model successfully captures the underlying patterns in the data without overemphasizing noise or specific cases 

Figure 8.  Comparison of measured and predicted UCS for travertine rocks in testing dataset.
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encountered during training. Overall, these graphical representations encapsulate the entire evaluation process, 
showcasing the strengths and limitations of the MLP model in predicting UCS values based on Is. These visuals 
provide valuable insights into the model’s predictive prowess and its ability to generalize to new data, guiding 
future refinements and enhancements to improve its performance.

In the realm of machine learning and model validation, cross-validation is a well-established practice used 
to evaluate a model’s performance. Conventionally, this approach involves partitioning a training dataset into 
subsets, training the model on different combinations of these subsets, and assessing its performance across 
various iterations. However, the present study deviates from this customary procedure by employing ROC 
analysis as a form of cross-validation (70%-30% in this study). The rationale behind this unconventional choice 
lies in the specific problem addressed within the study and its associated research objectives. The core aim of the 
research is to predict  Is and UCS values for rock samples utilizing the point-load index. Given that ROC analysis 
is particularly adept at evaluating the performance of binary classifiers, it aligns seamlessly with the essence of 
the research problem. In essence, the MLP model employed in this study undertakes binary classification by 
determining whether a given rock sample belongs to a specific category based on its Is value. This underlying 
binary classification nature necessitates the utilization of ROC analysis, which enables a comprehensive assess-
ment of the model’s sensitivity and specificity across various classification thresholds. Consequently, ROC analysis 
empowers the study to gauge the MLP model’s capacity to effectively discriminate between different sample 
classes and make precise predictions, ultimately harmonizing with the overarching research objective of UCS 
estimation from  Is values. In summary, while conventional cross-validation methodologies are pervasive, the 
selection of ROC analysis as a cross-validation technique in this study is judiciously motivated by the unique 
binary classification character of the research problem. This analytical approach not only validates the model’s 
performance but also accentuates its suitability for discerning between various sample classes, consequently 
enriching the study’s ability to predict UCS values based on the  Is index.

Subsequent to an exhaustive training regimen employing the training dataset, the efficacy of the model 
underwent rigorous assessment through the scrutiny of a confusion matrix, which is encapsulated within Table 4. 
The discernible results emerging from this comprehensive performance analysis underscore the attainment of 
model accuracy reaching an impressive 0.96 and 0.90 for the training and testing datasets, respectively, indicative 
of noteworthy predictive capabilities. To augment this evaluation, Fig. 9 offers a visual exposition of the ROC 
analysis findings derived from both the training and testing datasets, thereby facilitating the estimation of the 
overall accuracy (OA). Delving deeper, the ROC curve delineates that the OA for the training dataset attains a 
value of 0.968 (AUC), while the OA for the test dataset stands at 0.903 (AUC). This substantiates the ROC’s pivotal 
role in corroborating the outcomes of the confusion matrix, attesting to the model’s adeptness in proficiently 
predicting Is and UCS values with commendable accuracy and a high degree of reliability.

The ROC curve visually depicts the relationship between the true positive rate (sensitivity) and the false 
positive rate (1-specificity) as the classification threshold changes. A higher AUC value signifies better model 
performance, with values closer to 1 indicating excellent predictive accuracy. Therefore, the AUC values obtained 
in this study indicate that the model excels in distinguishing between different rock conditions based on point-
load index and accurately predicting their UCS values. These results bolster the confidence in the model’s ability 
to reliably forecast rock strength properties using the point-load index. The combination of the confusion matrix 
and ROC curve analysis provides a comprehensive assessment of the model’s predictive capabilities, validating 
its potential for real-world applications where accurate estimations of rock strength are essential for decision-
making processes in various fields such as mining and geotechnical engineering.

As previously outlined, a diverse array of traditional machine learning techniques, spanning RF, DT, LR, 
SVM, and k-NN, was employed to facilitate a comprehensive comparative assessment of the MLP-based model’s 
performance. Notably, these classifiers were applied to the same dataset using an identical split ratio, with 70% 
allocated for the training set and 30% for the testing set. This meticulous and standardized comparative analysis 
was paramount in discerning the efficacy and applicability of the MLP-based model within the context of well-
established conventional methodologies. Table 5 presents the outcomes derived from the comparative predictive 
models, as assessed through confusion matrix. As evident from the table, the MLP model achieved the highest 
levels of accuracy and precision compared to the other classifiers in the study. This underscores the superior 
performance of the MLP-based approach.

The process of model training is a critical phase in machine learning, and in this context, the model’s profi-
ciency was rigorously evaluated through a confusion matrix analysis, the results of which are succinctly presented 
in Table 3. This analytical tool systematically portrays the model’s classification performance, showcasing the 
instances of true positives, true negatives, false positives, and false negatives. Such an in-depth evaluation is 
imperative as it provides a comprehensive snapshot of how well the model can differentiate between different 
classes, thereby offering insights into its prediction accuracy and potential areas of improvement. By scrutiniz-
ing the confusion matrix, we gain a nuanced understanding of the model’s strengths and weaknesses, paving 
the way for informed decisions on refining the model’s architecture and parameters for optimal performance.

Table 4.  Results of performance analysis based on confusion matrix for applied model.

Dataset

Evaluation criteria

AccuracyPrecision Recall F1-score

Training 0.97 0.96 0.96 0.96

Testing 0.90 0.87 0.90 0.90
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Turning our attention to the performance analysis, the derived outcomes yield noteworthy conclusions. The 
model’s prowess is exemplified by the achieved accuracy rates of 0.96 for the training dataset and 0.90 for the 
testing dataset. These percentages depict the proportion of correctly predicted instances, indicating a high level 
of predictive competency. This level of accuracy is particularly impressive considering the inherent complexities 
within the dataset and the inherent challenges in modeling rock strength predictions. Such results resonate with 
the practical implications of the model, as high accuracy is imperative in domains where accurate predictions 
hold significant value, such as geological and engineering applications.

The assessment was further enriched by the incorporation of ROC (Receiver Operating Characteristic) curve 
analysis, an established technique for evaluating classification model performance across varying thresholds. 
Figure 9 encapsulates the ROC curve outcomes, offering an insightful visualization of the trade-off between true 
positive rate (TPR) and false positive rate (FPR). This graphical representation enhances our understanding of 
how the model performs across different classification scenarios. With an AUC (Area Under the Curve) value of 
0.968 for the training dataset and 0.903 for the testing dataset, the ROC analysis underscores the model’s consist-
ency in distinguishing between classes, emphasizing its robustness and efficacy in making accurate predictions.

In a broader context, the confluence of the confusion matrix analysis and the ROC curve assessment bolsters 
our confidence in the predictive model’s reliability and applicability. The agreement between these analyses cor-
roborates the model’s ability to accurately forecast both Is and UCS values. As the ROC analysis aligns with the 
confusion matrix results, it substantiates the notion that the model’s predictions are both accurate and reliable. 
Moreover, the ROC analysis reaffirms the model’s suitability for real-world applications where reliable predictions 
are paramount. Overall, the meticulous evaluation not only sheds light on the model’s current performance but 
also lays the foundation for future refinements and enhancements to amplify its predictive capabilities across 
varied contexts.

Figure 9.  ROC curve analysis for model’s capability evaluation.

Table 5.  Results of performance analysis for justification classifiers.

Classifier

Evaluation criteria

AccuracyPrecision Recall F1-score

MLP (training) 0.97 0.96 0.96 0.96

FR 0.63 0.65 0.65 0.63

DT 0.68 0.65 0.65 0.68

LR 0.64 0.67 0.64 0.64

SVM 0.80 0.83 0.83 0.80

k-NN 0.75 0.77 0.75 0.77
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The application of MLP models in point-load prediction for rocks present notable advantages and considera-
tions, as reflected in the ROC and AUC outcomes. Demonstrated by AUC values of 0.968 for training and 0.903 
for testing, the MLP model excels in accuracy, leveraging its capacity to grasp intricate data relationships. Its 
predictive prowess empowers precise categorization of diverse rock conditions, with potential implications for 
geotechnical engineering and mining sectors. However, the promising performance also entails certain limita-
tions. The risk of overfitting looms, potentially compromising the model’s generalization beyond the training set. 
A vigilant approach to data quality is paramount, as the model’s effectiveness hinges on the comprehensiveness 
and representativeness of the dataset. Moreover, the complexity of MLP models poses challenges in understand-
ing their internal mechanics, impeding interpretability—particularly significant in fields valuing transparent 
decision-making. Thus, while MLP offers potent predictive capabilities, a balanced assessment of its benefits and 
limitations is crucial for deploying it effectively in real-world applications.

Leveraging deep learning techniques, specifically deep Multilayer Perceptron (MLP), in point-load testing for 
rocks offers multifaceted advantages. Deep MLP has the capacity to uncover intricate patterns and relationships 
within complex datasets, enabling it to capture nuanced variations in rock properties that may elude conventional 
methods. Its hierarchical architecture allows it to automatically learn relevant features, reducing the need for 
manual feature engineering. This empowers the model to adapt and perform well even in scenarios with diverse 
rock types, unearthing predictive insights that can enhance drillability estimations and geotechnical decision-
making. Additionally, the scalability of deep MLP enables it to handle vast and diverse datasets, accommodating 
a broad spectrum of rock samples. The model’s ability to generalize across different geological contexts enhances 
its applicability beyond specific regions, supporting standardized point-load predictions globally. Furthermore, 
the adaptability of deep MLP empowers it to refine predictions over time as new data becomes available, foster-
ing continuous improvement in accuracy. By harnessing the power of deep learning, particularly deep MLP, in 
point-load analysis, the geotechnical and mining industries stand to benefit from more precise, efficient, and 
adaptable predictive models that advance their understanding and management of rock properties.

Conclusion
The current study endeavors to introduce a novel MLP-based predictive model geared towards prognosticating 
the compressive strength (UCS) of Azarshahr travertine, contingent on the point-load testing index (Is). The 
principal aim of this modeling endeavor is to devise a non-destructive avenue for estimating UCS predicated on 
limited  Is values, a salient asset in formulating drillability plans for open-pit mining ventures. To underpin this 
undertaking, an extensive database of 150 meticulously documented point load test records was meticulously 
assembled, meticulously adhering to the guidelines outlined by ISRM for both axial and diametral testing meth-
odologies. Notably, the empirical strength regression analysis rendered an estimated R2 coefficient of 0.9231 for 
axial strength and an even more commendable 0.9728 for diametral strength in relation to UCS. This predictive 
model’s efficacy was subjected to rigorous validation procedures, encompassing both train/test split and cross-
validation methodologies. The former entailed randomly partitioning the provided database into training (70%) 
and testing (30%) subsets, enabling the MLP model to be meticulously honed and meticulously scrutinized. 
The model’s accuracy was meticulously gauged through the lens of the confusion matrix, yielding impressive 
accuracy rates of 0.96 and 0.90 for the training and testing datasets, respectively. The robustness of the model’s 
predictive potential was further accentuated through ROC curve analysis. This statistical tool, shedding light on 
the interplay between the true positive rate (TPR) and the false positive rate (FPR), unveiled an overall accuracy 
(OA) represented by AUC values of 0.968 for the training phase and 0.903 for the testing phase. In conclusion, 
the unveiled MLP-based predictive model stands as a pioneering contribution, underpinned by empirical rela-
tions, meticulous training, and comprehensive validation. Its adeptness in forecasting UCS values from limited 
Is indices ushers in a realm of possibilities for enhanced drillability planning in open-pit mining endeavors. By 
bridging the gap between empirical relations and data-driven predictions, this model bears significant promise 
in refining excavation strategies and bolstering mining operations.

As a stepping stone for future endeavors, the current methodology offers a solid foundation for further 
exploration and enhancements. To extend the applicability and robustness of the MLP-based predictive model, 
integrating a broader range of geological and environmental variables could yield insights into more intricate 
rock behavior patterns. Additionally, expanding the dataset to encompass diverse rock types and mining regions 
would fortify the model’s generalization capabilities. Exploring the potential of hybrid models, amalgamating dif-
ferent machine learning techniques, could unveil synergistic effects that enhance accuracy and predictive power. 
Moreover, the integration of real-time monitoring data from mining operations could facilitate continuous model 
calibration and refinement, ultimately resulting in more precise and responsive predictions. Lastly, collabora-
tion with domain experts and stakeholders would ensure that the model aligns seamlessly with practical mining 
applications, fostering a comprehensive framework for optimized drillability planning and excavation strategies.
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