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Deep learning system 
for automated detection 
of posterior ligamentous 
complex injury in patients 
with thoracolumbar fracture 
on MRI
Sang Won Jo 1, Eun Kyung Khil 1,2*, Kyoung Yeon Lee 1, Il Choi 3, Yu Sung Yoon 4,5, 
Jang Gyu Cha 4, Jae Hyeok Lee 6, Hyunggi Kim 6 & Sun Yeop Lee 6

This study aimed to develop a deep learning (DL) algorithm for automated detection and localization 
of posterior ligamentous complex (PLC) injury in patients with acute thoracolumbar (TL) fracture on 
magnetic resonance imaging (MRI) and evaluate its diagnostic performance. In this retrospective 
multicenter study, using midline sagittal T2-weighted image with fracture (± PLC injury), a training 
dataset and internal and external validation sets of 300, 100, and 100 patients, were constructed 
with equal numbers of injured and normal PLCs. The DL algorithm was developed through two steps 
(Attention U-net and Inception-ResNet-V2). We evaluate the diagnostic performance for PLC injury 
between the DL algorithm and radiologists with different levels of experience. The area under the 
curves (AUCs) generated by the DL algorithm were 0.928, 0.916 for internal and external validations, 
and by two radiologists for observer performance test were 0.930, 0.830, respectively. Although no 
significant difference was found in diagnosing PLC injury between the DL algorithm and radiologists, 
the DL algorithm exhibited a trend of higher AUC than the radiology trainee. Notably, the radiology 
trainee’s diagnostic performance significantly improved with DL algorithm assistance. Therefore, the 
DL algorithm exhibited high diagnostic performance in detecting PLC injuries in acute TL fractures.

Thoracic and lumbar (TL) spine fractures are among the most common fractures, and not only the fracture 
morphology but also the posterior ligamentous complex (PLC) injury is considered to be very important in 
determining the patient’s  treatment1,2. In a previous study, it was reported that approximately 53% of acute 
TL spine trauma cases were accompanied by PLC  injury3. TL fractures are often evaluated through the 
Thoracolumbar Injury Classification and Severity Score (TLICS), which includes PLC injury  evaluation2,4. 
The PLC is a posterior structure that affects the stability of the vertebral fracture site and is composed of the 
supraspinous and interspinous ligaments, ligamentum flavum, and facet joint  capsule4,5. Magnetic resonance 
imagining (MRI) has become the most frequently used modality due to its high sensitivity and accuracy in 
detecting PLC  injuries4–6. On MRI, PLC injuries are best assessed in T2-weighted fat saturation sagittal  scans5, 
with injury diagnosis based on the presence of disruption in structures showing low signal intensity (SI) or 
suspected injury-related high SI  changes5,7,8. TLICS categorizes PLC injuries into intact, indeterminate, or injured 
based on the severity of these findings. However, it’s important to note that high SI changes can include false 
positives, such as edema, leading to reports of high sensitivity but low specificity in MRI  evaluations8,9. As a result, 
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the radiologist’s judgment in MRI-based PLC injury assessment is crucial and can significantly influence surgical 
decisions, as TLICS plays a pivotal role in determining whether a patient should undergo surgical  treatment4.

The development of artificial intelligence (AI) technology has led to an increasing number of AI decision 
support systems to help to prevent or reduce radiologists burnout due to abundant imaging  volume10–13. Deep 
learning (DL) technology has been applied by various studies in the radiologic diagnosis of TL  fractures10,12–17. 
However, most of these used DL to detect TL fractures in radiography and computed tomography (CT) and 
their usefulness has been proven for segmentation and detection of fractures. However, few studies for DL of 
TL fractures are based on MRI. Specifically, no MRI-based DL study has focused on PLC injury of multiple 
anatomical structures.

Therefore, in this study, we aim to develop a DL algorithm for automated detection and localization of PLC 
injury in TL fractures on MRI and evaluate its diagnostic performance.

Methods
This study was reviewed after obtaining Institutional Review Board (IRB) approval from each human research 
ethics committee of two institutions (Hallym University Dongtan Sacred Heart Hospital IRB and Soonchunhyang 
University Bucheon Hospital IRB). The requirement for written informed consent from the study subjects was 
waived by the IRB of Hallym University Dontan Sacred Heart Hospital and Soonchunhyang University Bucheon 
Hospital due to the retrospective study design. All the methods of this study were performed in accordance with 
the relevant guidelines and regulations.

Subjects (Supplementary Method 1)
Between January 2019 to December 2021, the image database contained 583 consecutive patients who underwent 
baseline thoracic or lumbar spine MRI after trauma and were diagnosing them with one or two continuous acute 
TL fractures. Exclusions were made based on specific criteria as shown in Figure 1. Ultimately, we included 400 
patients with acute TL fractures, randomly divided into two groups: a training dataset of 300 patients (150 with 
PLC injury and 150 with normal PLC) and an internal validation dataset of 100 patients (50 with PLC injury 
and 50 with normal PLC). For external validation, we collected data from a different institution using different 
MRI scanners. The exclusion criteria of both external and internal validation datasets were identical, and 15 
patients were excluded. Ultimately, the external validation set consisted of 50 TL fracture patients with PLC 
injury and another 50 TL fracture patients with normal PLC. Table 1 summarizes the demographic information 
of the patients.

Image acquisition
For the training and internal validation sets, all MRI scans, which included routine thoracic or lumbar spine 
MRI, were conducted with a 3.0 T unit (Skyra 3.0 T, Siemens, Erlangen, Germany) in this institution. For 

Figure 1.  Flow chart for selection of the study population (PLC, posterior ligamentous complex; TL, 
thoracolumbar).
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external validation set, 1.5 T MRI (Signa HDxt 1.5 T, GE Healthcare, Milwaukee, Wis, USA) was used. All 
spine MRI sequences included fat suppression (FS) using the Dixon technique T2-weighted image (WI) in the 
sagittal plane for trauma evaluation. And we used only one midline image of sagittal FS-T2WI for the training, 
internal and external validation sets. The specific spine MRI parameters of all scans in all datasets are presented 
in Supplementary Tables 1, 2.

Data collection and annotation
Spine MR images of training and test sets were reviewed by two musculoskeletal (MSK) radiologists with nine 
and 10 years of experience, respectively. Manual segmentation for each fractured vertebral body, background 
soft tissue anatomy (BA) including PLC above and below fractured vertebral body level, and injured PLC on 
sagittal FS-T2-WI was performed by one MSK radiologist with 10 years of experience using in-house software 
(DEEP:LABEL, DEEPNOID) (Supplementary Fig. 1).

DL algorithm development
In this study, the proposed DL system consisted of a two-step process after preprocessing of the input image: (1) 
segmentation and patch extraction, and (2) classification. To ensure that the DL model can perform segmentation 
and classification more efficiently, we performed image preprocessing in the order shown in the green box in 
Fig. 2. To preserve the proportions of the image, we performed zero padding and resized it to 384 × 384 (height 
x width). Thereafter, contrast was enhanced, and brightness was adjusted as a preprocessing to improve the 
automatic segmentation performance of the fractured vertebral bodies. In MRI images, the spine has specific 
features, such as constant shape and pixel value, but to find a vertebral body with an acute fracture, we need to 
find changes in image features, such as bone marrow edema. Therefore, the contrast of pixel values is an essential 
factor in determining whether a vertebral body has an acute fracture, and to improve it, we used the contrast 
limited adaptive histogram equalization (CLAHE) and the enhancement technique of gamma  correction18,19. 
Min–Max Normalization was also applied during the preprocessing, and the preprocessed image described 
above became the input to the first DL architecture, and the next step, the segmentation task, was performed.

Segmentation and patch extraction
The DL architecture for segmenting acute vertebral body fracture and BA through preprocessed input images 
is shown in the yellow box in Fig. 2, and the detailed structure is shown in Fig. 3A. The DL algorithm used for 
training is Attention U-Net, which applies an attention mechanism to increase the concentration of features based 
on U-Net, the most commonly used segmentation algorithm in medical image  segmentation20. This architecture 
applies attention gates to each skip connection in the decoder part of U-Net to emphasize the target feature, 
which improves segmentation performance. The following parameters were used for attention U-net: 200 epochs; 
batch size of 32; dropout rate of 0.05; group normalization with group size of 16; RMS Prop optimizer; learning 
rate of 0.0025; and learning rate decay of 0.99 every training step.

Post-processing of the predicted labels extracted through the segmentation task is performed in the order 
described in the purple box in Fig. 2. This post-processing is intended to reduce noise by removing all but the 
largest components of the TL fracture and BA predicted by the segmentation algorithm (Attention U-net), and 

Table 1.  Clinical characteristics of training and validation datasets in this study. † PLC, posterior ligamentous 
complex; T, thoracic; L, lumbar, TLICS, Thoracolumbar Injury Classification and Severity Score; NA, Not 
applicable.

Training set—injured 
PLC
(n = 150)

Training set—normal 
PLC
(n = 150)

Internal validation 
set—injured PLC
(n = 50)

Internal validation 
set—normal PLC
(n = 50)

External validation 
set—injured PLC
(n = 50)

External validation 
set—normal PLC
(n = 50)

Age 66.13 ± 14.97 63.13 ± 17.89 68.26 ± 13.49 61.60 ± 16.94 57.34 ± 19.85 64.66 ± 16.45

Sex (male/female) 65/85 38/112 19/31 12/38 26/24 14/36

Location of fracture

 Only T 52 68 15 26 15 14

 Only L 98 80 34 24 32 34

 T12 and L1 0 2 1 0 3 2

Number of fracture

 1 144 144 48 48 37 46

 2 6 6 2 2 13 4

Total number of 
fracture 156 156 52 52 63 54

Number of injured PLC

 1 62 NA 22 NA 32 NA

 2 86 NA 24 NA 16 NA

 3 2 NA 2 NA 2 NA

TLICS score 4.22 ± 0.81 1.78 ± 0.42 4.30 ± 0.80 1.82 ± 0.39 4.29 ± 0.89 1.59 ± 0.50
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utilizes the most reliably segmented components to extract patches as represented by the blue box in Fig. 2. 
This patch extraction was performed by cropping the image with a slight margin based on the location of the 
determined component. In the case of images where the fractured vertebral body and BA were not predicted 
at all, the entire image was processed as a patch. This final patch was then used as an input to the second DL 
architecture to perform the classification task of whether the PLC was injured or not.

Classification
This final extracted patch was also preprocessed to 256 × 256 by zero-padding and resizing as the original image, 
and the DL architecture that utilizes it as an input image to classify PLC injury is shown in the red box in Fig. 2, 
and the detailed structure is shown in Fig. 3B. The DL algorithm we used for training was Inception-ResNet-V221, 
which combines the strengths of Inception and ResNet by applying the concept of residual connections to the 
Inception V4 architecture. The outcome of the model is a binary result of whether the PLC is injured, and we 
used Gradient-weighted class activation mapping (Grad-Cam) to visualize in a heatmap which parts of the image 
the model used to make its judgment. The following parameters were used: 200 epochs; batch size of 16; dropout 
rate of 0.05; Adam optimizer; learning rate of 0.0001; and learning rate decay of 0.99 every training step (Fig. 3B). 
Additionally, we used data augmentation such as 15º rotation and gamma contrast (0.7–1.7). Because the injured 
PLC was small and due to the anatomical characteristics of these patches, other augmentation operations that 
included interpolation, flipping, and mirroring were not performed. The performance of the DL algorithm was 
investigated using internal and external validation datasets.

Comparison of the proposed DL system (two serial DL algorithms) with other DL algorithms.
To verify the superiority of the DL system proposed in this study, we conducted several comparative experiments 
on an external validation dataset. Through these comparative experiments, we can compare the performance of 
the backbone DL architecture used in each step with various other DL algorithms and explain the rationales for 
the backbone DL architecture settings of the proposed DL algorithm system. Furthermore, we eliminated two 
processes, segmentation task and patch extraction, and compared the PLC injury diagnosis performance of the 

Figure 2.  The process of deep learning algorithm system, which consists of the two algorithms Attention 
U-net and Inception-ResNet-V2. Imaging preprocessing was performed by zero padding, resize, histogram 
equalization, Min–Max normalization, and gamma correction. After segmentation of fractured vertebral body 
and background soft tissue anatomy by trained Attention U-net, post-processing of predicted segmentation 
(label) and patch extraction were performed. Final classification task was performed by Inception-ResNet-V2.
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classification algorithms on the original image (single classification algorithm result) with that of the proposed 
DL system (two serial DL algorithms) to validate the usefulness of the two processes.

Observer performance test
We conducted an observer performance test to investigate the diagnostic performances between the DL algorithm 
and radiologists. Two newly invited radiologists independently reviewed the images of the test set (the first 
session). One radiologist was an MSK radiologist (reader 1[R1]) had ten years of experience in radiology, 
including musculoskeletal radiology. Another radiologist was a trainee (reader 2[R2]) who had three years of 
experience in radiology, including MSK radiology. We did not involve the radiologists who defined the reference 
standard for the external validation dataset to participate in this test. Additionally, if there is a radiologist whose 
diagnostic performance is significantly lower than that of the DL algorithm or other radiologist, we evaluated 
whether the DL algorithm could improve the diagnostic performance of the radiologists after one-month washout 
period (the second session).

Statistical analysis
The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of the 
DL algorithm and radiologists were analyzed. The area under the curve of the receiver operating characteristics 
(AUROC) analyses were also performed to compute the discriminating power of the DL algorithm and the two 
radiologists. To analyze the diagnostic performance between the DL algorithm and the reviewers, we compared 
the area under the curve using the Delong’s test. McNemar’s test was performed to compare the sensitivity 
and specificity of the DL algorithm with those of each of the two radiologists. McNemar’s test was also used 
to compare the sensitivity and specificity of the radiologist with DL algorithm assistance and the radiologist 
without DL algorithm assistance. Statistical analyses were performed using R statistical software version 4.0.3 
and MedCalc version 12.7 (MedCalc Software). In all analyses, a P < 0.05 was considered significant.

Results
Dataset
The clinical characteristics of the training and validation datasets are summarized in Table 1. The training dataset 
of 300 examinations for BA segmentation by Attention U-net included 150 patients in the normal PLC group 
(mean TLICS score, 1.78 ± 0.42; range, 1–2) and 150 in the injured PLC group (mean TLICS score, 4.22 ± 0.81; 
range, 2–8). The internal validation test of 100 examinations including 50 in the normal PLC group (mean TLICS 
score, 1.82 ± 0.39; range, 1–2) and 50 in the injured PLC group (mean TLICS score, 4.3 ± 0.80; range 3–7). The 
external validation dataset also consisted of 50 examinations with PLC injury (mean TLICS score, 1.59 ± 0.50; 
range 1–2) and 50 examinations without PLC injury (mean TLICS score, 4.29 ± 0.89; range, 3–7).

Figure 3.  Schematic architectures of the first step deep learning algorithm (Attention U-net) and second step 
deep learning algorithm (Inception-ResNet-V2). (a) A block diagram of the Attention U-Net segmentation 
model in this study. The input image is gradually filtered and down-sampled at each step in the encoding 
portion of the network. In addition to the basic structure of U-Net, where Encoder for obtaining overall context 
information of the image and Decoder for accurate localization are symmetrically configured, the accuracy is 
improved by emphasizing only the necessary features using Attention Gates (AGs) for each skip connection. 
(b) The overall scheme of the Inception-ResNet-v2 networks in this study. As a first step, it goes through a Stem 
block with a general Convolution and Pooling structure. In the second step, it goes through a combination of 
Inception-ResNet Block, which combines Inception’s features and ResNet’s strengths, and Reduction Block, 
which generates size changes in features. Finally, the probability value of the class is extracted by making the 
feature into a one-dimensional vector through Global Average Pooling.
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Diagnostic performance of the model
First step result (segmentation result of DL) of attention U‑net
The Dice similarity coefficient of attention U-net in the first step were 0.849 for BA and 0.919 for fractured 
vertebral body in the internal test set and 0.773 for BA and 0.853 for fractured vertebral body in the external 
test set (Table 2). The proportion of attention U-net segmented BA containing the area of manual segmented 
BA were 99% (99/100 examination) in the internal validation test and 95% (95/100 examination) in the external 
validation test.

Second step result (detection of PLC injury) of inception‑ResNet
The AUROC of the internal validation was 0.928. The sensitivity and specificity in the internal test set were 
88.0% and 82.0%, respectively (Table 2). Six patients (two in the lumbar vertebral levels, one in the lower thoracic 
vertebral level, and three in the T12-L1 levels) with injured PLC were missed in the internal test set. The algorithm 
made nine false-positive detections in the internal test set; six had lumbar and three had thoracic vertebral 
fractures.

The AUROC of the external validation was 0.916. The sensitivity and specificity in the external test set were 
82.0% and 94.0%, respectively. Nine patients (three in the lumbar, four in the lower thoracic, and two in the 
T12-L1 levels) with injured PLCs were missed in the external test set. The external test set had three false-positive 
detections of lumbar vertebral fractures (Table 2).

Comparison result of the proposed DL system (two serial DL algorithms) with other DL 
algorithms
Comparison of first step (segmentation) result of traditional U‑net vs. Attention U‑net
For the first DL algorithm comparison, we used the traditional U-net to validate the effectiveness of attention 
gate. The Dice similarity coefficient of the TL fracture and BA of the two segmentation algorithms (traditional 
U-net / Attention U-net) were 0.789/0.853 and 0.697/0.773, respectively. In other words, the segmentation results 
of the TL fracture and BA by traditional U-Net are approximately 6.4% and 7.6% lower than those of Attention 
U-Net, respectively.

Comparison of second step (classification) result of inception‑ResNet‑V2 vs. other classification algorithms
The classification performance was verified by comparing several deep learning models other than Inception-
ResNet-V2, which was the second DL algorithm in the proposed DL system. The DL algorithms used in the 
comparison were Inception-ResNet-V2 (proposed DL algorithm),  InceptionV322,  Xception23,  MobileNetV224, and 
 EfficientNetB725, and the inputs used in this comparison process were all the same: the final image patches from 
the first (prepocessing of input image) and second processes (segmentation and patch extraction) of the proposed 
DL system. Additionally, in this process, the hyperparameters and data augmentation were set the same as the 
classification model of the proposed DL system. In terms of AUROC, the proposed model (Inception-ResNet-V2) 
performed the best with 0.916, followed by InceptionV3, EfficientNetB7, Xception, and MobileNetV2. In detail, 
the sensitivity was higher for InceptionV3 than for the proposed model. Nevertheless, InceptionV3 and other DL 
algorithms performed significantly worse than the proposed model on other diagnostic metrics, and the proposed 
model had the most stable performance when considering both normal and injured PLC classes (Table 3).

Comparison of classification performance between the single algorithm (without segmentation and patch extraction) 
and the two serial DL algorithm (proposed DL system)
We obtained the performance of the classification model without the two processes, segmentation task and patch 
extraction, the second step of the proposed DL system, to validate the effectiveness of the two processes. That 
is, it is an experiment that performs preprocessing on the original MRI image, but omits the segmentation task 
and patch extraction task and directly uses the classification model to classify PLC injuries. The deep learning 
architecture for the classification comparison was Inception-ResNet-V2, InceptionV3, Xception, MobileNetV2, 
and EfficientNetB7, and the hyperparameters and data augmentation were set the same as the classification model 

Table 2.  Performance evaluation of deep learning algorithm for internal and external validation datasets. 
† DSC, Dice similarity coefficient; BA, background anatomy; TL, thoracolumbar, PPV, positive predictive value; 
NPV, negative predictive value; AUROC, area under the curve of the receiver operating characteristics.

Internal validation External validation

First step (segmentation)

 DSC (BA/TL fracture) 0.849/0.919 0.773/0.853

 Detection proportion of BA by Attention U-net segmentation 0.99 (99/100) 0.95 (95/100)

Second step (detection of the PLC injury)

 Sensitivity 0.880 0.820

 Specificity 0.820 0.940

 PPV 0.830 0.932

 NPV 0.872 0.839

 AUROC 0.928 0.916
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of the proposed DL system. The classification performance of each model on the external validation dataset is 
presented in Table 4. The highest performing model was InceptionV3 with an AUROC of 0.730, followed by 
Inception-ResNet-V2, MobileNet-V2, Xception, and EfficientNetB7. Nevertheless, all models performed worse 
in AUROC than the proposed DL system predicted by the input after segmentation and patch extraction, and 
even InceptionV3, which performed the best among the single algorithm results, had an AUROC of 18.6% lower 
than the proposed DL system.

Comparison between the DL algorithm and radiologists
In the first session of the observer performance test, the AUROCs for R1, and R2 were 0.930, and 0.830, 
respectively. There was no significant difference in the diagnostic performance of PLC injury between the DL 
algorithm and R1. However, the diagnostic performance of the DL algorithm tended to be higher (0.916) than 
that of R2 and was close to the statistically significant p value on Delong’s test (p = 0.051). Furthermore, the 
diagnostic performance of R1 was higher than that of R2 (p = 0.011). The sensitivity and specificity of the two 
radiologists (R1/R2) were 92.0%/68.0% and 94.0%/98.0%, respectively. The accuracy of the two readers were 
93.0% (R1) and 83.0% (R2). There was no significant difference between the algorithm and the two radiologists’ 
diagnosis of PLC injury (p > 0.05). However, there was significant difference in the diagnosis of PLC injury 
between the R1 compared to R2 (p = 0.001). In the second session of observer performance test (R2 with 
DL-algorithm assistance), AUROC for R2 was 0.920. The increment of AUROC was 0.090 compared to the 
first session (p < 0.001). In terms of sensitivity, significant increment was shown (p = 0.006), while no significant 
difference of specificity (p > 0.999) was shown (Table 5 and Fig. 4).

Table 3.  Comparison of classification result of Inception-ResNet-V2 vs. other classification algorithms. †  
PPV, positive predictive value; NPV, negative predictive value; AUROC, area under the curve of the receiver 
operating characteristics; InResNetV2, Inception-ResNet-V2.

External validation dataset InResNetV2 (Proposed) InceptionV3 Xception MobileNetV2 EfficientNetB7

Sensitivity 0.820 0.880 0.740 0.380 0.780

Specificity 0.940 0.680 0.760 0.840 0.680

PPV 0.932 0.733 0.755 0.704 0.709

NPV 0.839 0.850 0.745 0.575 0.756

AUROC 0.916 0.875 0.838 0.670 0.820

Table 4.  Comparison of classification performance of Single algorithm result (single algorithm result) and the 
proposed DL system (two serial DL algorithm result). † DL, deep learning; PPV, positive predictive value; NPV, 
negative predictive value; AUROC, area under the curve of the receiver operating characteristics; InResNetV2, 
Inception-ResNet-V2.

External validation set Proposed DL system
InResNetV2 (single-
algorithm) InceptionV3 Xception MobileNetV2 EfficientNetB7

Sensitivity 0.820 0.340 0.500 0.200 0.420 0.280

Specificity 0.940 0.820 0.720 0.960 0.700 0.780

PPV 0.932 0.654 0.641 0.833 0.583 0.560

NPV 0.839 0.554 0.590 0.546 0.547 0.520

AUROC 0.916 0.624 0.730 0.505 0.536 0.498

Table 5.  Performance of Deep learning and Radiologist in Diagnosing PLC injury. † Data in the parentheses 
are 95% confidence intervals. ‡ PLC, posterior ligamentous complex; DL, deep learning; PPV, positive 
predictive value; NPV, negative predictive value; AUROC, area under the curve of the receiver operating 
characteristics; MSK, musculoskeletal.

Sensitivity Specificity PPV NPV AUROC

DL algorithm 0.820 (0.686–0.914) 0.940 (0.835–0.988) 0.932 (0.819–0.976) 0.839 (0.742–0.905) 0.916 (0.844–0.963)

MSK radiologist (R1) 0.920 (0.808–0.978) 0.940 (0.835–0.988) 0.939 (0.836–0.979) 0.922 (0.821–0.968) 0.930 (0.861–0.971)

Radiology trainee (R2)
without DL-assistance 0.680 (0.533–0.805) 0.980 (0.894–0.999) 0.971 (0.829–0.996) 0.754 (0.671–0.821) 0.830 (0.742–0.898)

R2 with DL-assistance 0.880 (0.757–0.955) 0.960 (0.863–0.995) 0.957 (0.849–0.989) 0.889 (0.790–0.944) 0.920 (0.848–0.965)
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Grad-CAM
Grad-CAM was also used to provide a visual explanation of the decision and make it more transparent to better 
understand the functionality of the deep neural  network26. Several examples of Grad-CAM map are illustrated 
in Fig. 5 for normal PLC and injured PLC. For the injured PLC, the Grad-CAM map was confined to the injured 
PLC and background anatomical regions. In the normal PLC group, the Grad-CAM map was more widely 
distributed than in the injured PLC case and included the BA, vertebral body, and spinal canal. This Grad-CAM 
map suggested that the deep neural network in the second step was properly trained and that the important areas 
for imaging diagnosis are being monitored by inception-ResNet-V2.

Figure 4.  ROC plots for deep learning algorithm and radiologists in the external validation dataset. AUROC 
of the DL-algorithm was not significantly different from that of experienced musculoskeletal radiologist (R1, 
p = 0.722), but tended to be higher than that of radiology trainee (R2, p = 0.051) on Delong’s test, close to 
statistical significance. There was significantly different in the AUROC between R1 and R2 (p = 0.011). In the 
second session with deep learning algorithm assistance, significant improvement in diagnostic performance 
was observed in R2 (increment of AUROC was 0.090, p = 0.007). (ROC, the receiver operating characteristics; 
AUROC, the area under the curve of the receiver operating characteristic; DL, deep learning).

Figure 5.  Representative four cases of FS sagittal T2 weighted image via gradient-weighted class activation 
mapping. (a,c) TL fracture cases with normal PLC. (b,d) TL fracture cased with injured PLC. Compared to 
injured PLC cases (b,d) and normal PLC cases (a,c), it can be seen that Grad-CAM is more limited to the 
background soft tissue anatomy area including injured PLC. This can be interpreted as the DL algorithm making 
a judgment based on the area where the PLC is injured. (FS, fat suppression; TL, thoracolumbar; PLC, posterior 
ligamentous complex; DL, deep learning).
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In some cases, the classification algorithm in the second step was not affected by the BA segmentation 
(attention U-net) in the first step (Supplementary Fig. 2), while in other cases it was highly affected (Fig. 6). The 
inception-ResNet-V2 algorithm detected one injured PLC from one failed BA segmentation in the PLC injury 
group of the internal test set. Furthermore, the DL algorithm accurately classified one normal and three injured 
PLC cases from five (one normal and four injured PLC cases) failed BA segmentation cases in the external test 
set (Supplementary Fig. 2).

In the comparison of classification performance without segmentation and patch extraction and the proposed 
DL system, the single classification algorithm performed poorly compared to the proposed DL system (two 
serial DL algorithms), and to identify the reason for this, Grad-CAM was used to determine which part of the 
image was utilized by the DL algorithms to predict classification. As a result, unlike the proposed DL system, 
there were cases where the single classification algorithm failed to focus on the fractured vertebral body, which 
occupied a small area of the entire sagittal image (Fig. 6). Therefore, we inferred that the AUROC was relatively 
low because the single classification algorithm often based its predictions on locations unrelated to the TL fracture 
and PLC injury.

Discussion
This study is the first study on MRI-based PLC injury in TL fractures. Two-step training of the DL system was 
effective for the detection and classification of PLC injury showing AUROCs of 0.927 and 0.916 in the internal 
and external validation sets, respectively, which was similar to the performance of MSK radiologists. And we 
also revealed improvement in radiologist performance with the aid of the DL algorithms.

The reasons for this high diagnostic performance can be speculated as follows. First, in this study, BA including 
the PLC was segmented using Attention U-net, and the image range for finding features was dramatically reduced 
by patch extraction only around the segmentation. As shown in the single classification algorithm results, without 
the segmentation and patch extraction process in the first step, the performance was significantly reduced because 
the corresponding feature had to be detected at all spine levels included in the image. Therefore, the area that 
the DL algorithm should evaluate was reduced to BA above and below the vertebral body fracture, and then the 
features were extracted. Through the comparison of classification performance between the single algorithm and 
the two serial DL algorithms, we clearly confirmed that the first step significantly improved the performance of 
Inception-ResNet-V2 in the second step. Second, in the first step, the Attention U-net showed higher accuracy 
in terms of the Dice similarity coefficient compared to the traditional U-net. A previous study reported the 

Figure 6.  Comparison of Grad-CAM results for a single classification algorithm (left column) and the proposed 
DL system (right column). (a) and (c) are FS T2 sagittal images of two different TL fracture patients with PLC 
injury. The GRAD-CAM results for Single classification algorithm are (a) and (c), and the GRAD-CAM results 
for the proposed DL system of (a) and (c) images are (b) and (d), respectively. The yellow dashed boxes indicates 
the final image patches resulting from the segmentation task and patch extraction. As shown in the figure, the 
single classification algorithm (a,c) makes predictions based on different locations than the final image patches 
extracted by patch extraction, such as the yellow boxes, unlike the proposed DL system (b,d). This disparity 
explains why the AUROC of the single classification algorithm is much lower than that of the proposed DL 
system (FS, fat suppression; TL, thoracolumbar; DL, deep learning).
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attention gates in Attention U-net improve the sensitivity and accuracy for dense label predictions by suppressing 
feature activations in irrelevant  regions20. Another study on lumbar spine MRI reported that the use of Attention 
U-net increased the accuracy of lumbar spine  segmentation27. Similar to previous studies, our study showed 
that the fractured vertebral body and the BA segmentation results of the Attention U-net were superior to those 
of the traditional U-net. Third, the Inception-ResNet-V2 used in the second step is an algorithm that combines 
residual blocks with Inception previously developed by  Google21,22,28,29. Due to this combination, the amount 
of memory and computation almost doubled compared to Inception V3, but it combined the advantages of 
ResNet, ’Compensating for the problem (Gradient Vanishing/Exploding, an increase in error due to an increase 
in the number of parameters) that occurs when the network is deep with residual connections’; thus, it has 
higher performance than the general Inception  algorithm21. In our study, similar to previous studies, Inception-
ResNet-V2 performed better in terms of AUROC compared to Inception V3. Inception-ResNet-V2 has been 
reported as a deep neural network with high accuracy in medical image  classification30,31, and our study also 
showed high accuracy despite relatively few training cases.

The comparison between Inception-ResNet-V2 and other classification algorithms showed that Inception-
ResNet-V2 had better diagnostic performance in terms of AUROC than other classification algorithms. Due to 
this, we selected Inception-ResNet-V2 as the backbone model for the classification task (second step). Notably, 
Efficient NetB7 had a slightly lower AUROC value than Inception V3 and Inception-ResNet-V2, despite being 
a more recently developed DL algorithm. The exact reason for this is unclear, but it is possible that the relatively 
small training data set in this study made it difficult to make accurate comparisons between models. Also, for 
DL algorithms with relatively complex compound scaling methods such as Efficient  NetB725, it is possible that 
applying the same hyperparameters and data augmentation methods as applied to the Inception V3, Inception-
ResNet-V2 algorithms may not be the most optimal method. This may require further research using more 
training data in the future study.

The algorithm developed in this study was also evaluated using an external dataset of images taken using 
different equipment from other MRI vendors in different hospitals. In the external validation dataset, unlike the 
internal dataset, the injured PLC group had a different gender distribution and mean age. Additionally, in the 
external dataset, the injured PLC group had more cases with two vertebral body fractures than one, compared 
to the injured PLC group in the internal dataset. This external validation suggested that the algorithm might be 
robust and effective for general use in real clinical settings.

The importance of PLC evaluation in TL fracture is well known, and the presence or absence of PLC injury 
is essential in surgical decision-making due to its effect on the stability of the fracture  site1,2,32. Evaluation of 
PLC is mostly performed using MRI, and in most fracture patients, additional MRI is performed for PLC 
injury or neurological  evaluation4,5,9. In determining surgical treatment, TLICS is commonly used by many 
clinicians because it reflects the spinal stability and the biomechanical mechanism of the  spine4,33. The MRI-based 
evaluation of PLC injury depends more on the radiologist than on the evaluation of fracture morphology. It can 
be more difficult for a surgeon to assess a PLC injury using MRI than evaluate the TL fractures. Therefore, the role 
of the radiologist is even more important in the MRI-based evaluation of PLC injury. Inter- and intraobserver 
agreement on PLC injury was fair to moderate (0.389–0.616) among radiologists using MRI; radiologists possibly 
tend to over-recognize PLC conditions on  MRI34 possibly because the subjective evaluation of MRI-based PLC 
injury and opinions may differ between surgeons and radiologists. Thus, in this context, the DL system proposed 
in our study has the potential to help radiologists in the consistent diagnosis of PLC injuries and surgeons in 
the evaluation of PLC injuries.

Until recently, studies using the DL system on TL spine fractures covered radiography and  CT10,14,17,35,36. 
However, few studies on TL spine fracture using CT or MRI have been conducted. DL studies using MRI 
are limited because diagnosis is complicated and data collection is difficult because the segmentation of the 
anatomical structure of the spine must be the basis and fractures need to be diagnosed using multiplane imaging 
data. In particular, the PLC contains several ligamentous structures that complicate evaluation; most PLC injuries 
are in the interspinous or supraspinous ligament, and the most visible location is the spinous process, which 
is midline and visible on the sagittal plane. Therefore, in this study, the complicated process of data collection 
could be further simplified because the evaluation of the PLC was possible even if only one image was evaluated.

This study has some limitations. First, a small number of training datasets were used. In DL development, 
more accurate and sophisticated training is possible with more data. However, in our study, we were able to 
increase the diagnostic accuracy even though we used a small sample by using a two-step DL system. Second, PLC 
was evaluated with only one mid-sagittal image of MRI. However, most of the injuries were of the interspinous 
and supraspinous ligaments; in the absence of skipping in the mid-sagittal image, PLC evaluation was sufficient 
with only one image. Although there are limitations in assessing injuries to only the facet joint capsule or 
ligamentum flavum, these cases are extremely rare. Finally, false positives in the PLC evaluation are likely, such as 
due to interspinous bursitis at the lower lumbar level. However, considering that findings of interspinous bursitis 
also lead to disagreements in the diagnosis of PLC injury even among radiologists, this may be an inherent 
limitation of imaging diagnosis of PLC injury.

In conclusion, the DL algorithm detected PLC injury in patients with TL fracture with a high diagnostic 
performance, which was comparable to that of an experienced MSK radiologist. Therefore, PLC evaluation using 
the proposed DL algorithm may benefit radiologists and surgeons by enabling efficient and accurate screening 
of PLC injuries.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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