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Spatially interactive modeling 
of land change identifies 
location‑specific adaptations most 
likely to lower future flood risk
Georgina M. Sanchez 1*, Anna Petrasova 1, Megan M. Skrip 1, Elyssa L. Collins 1, 
Margaret A. Lawrimore 1, John B. Vogler 1, Adam Terando 2,3, Jelena Vukomanovic 1,4, 
Helena Mitasova 1,5 & Ross K. Meentemeyer 1,6

Impacts of sea level rise will last for centuries; therefore, flood risk modeling must transition from 
identifying risky locations to assessing how populations can best cope. We present the first spatially 
interactive (i.e., what happens at one location affects another) land change model (FUTURES 
3.0) that can probabilistically predict urban growth while simulating human migration and other 
responses to flooding, essentially depicting the geography of impact and response. Accounting for 
human migration reduced total amounts of projected developed land exposed to flooding by 2050 
by 5%–24%, depending on flood hazard zone (50%–0.2% annual probability). We simulated various 
“what-if” scenarios and found managed retreat to be the only intervention with predicted exposure 
below baseline conditions. In the business-as-usual scenario, existing and future development must 
be either protected or abandoned to cope with future flooding. Our open framework can be applied to 
different regions and advances local to regional-scale efforts to evaluate potential risks and tradeoffs.

Projecting human mobility and shifts in development patterns in response to future flooding is crucial for antici-
pating the need for policies and/or investments that protect lives, livelihoods, and property1. Geospatial modeling 
offers opportunities to assess conditions under future scenarios of climate and land change. Here we present 
the first open, spatially interactive (i.e., what happens at one location affects another) modeling framework that 
simulates plausible human responses to flood risk and integrates all three components of flood risk2 relevant to 
policy-making: exposure, hazard, and vulnerability. Flood risk, or the probability of flood damage at any par-
ticular time and place, depends on all three. For the purposes of policy-making, patterns in urban development 
influence exposure, or the amount of infrastructure that could be exposed to damage if a flood occurred. Hazard 
relates to the likelihood and intensity of floodwaters, and as sea levels rise and riverine flooding increases due to 
global climate change, the spatial area of flood hazard also increases. Lastly, vulnerability relates to the capacity 
of a population to reduce their exposure or diminish hazards through adaptive response; seawalls, for example, 
are intended to diminish hazard by preventing floodwaters from reaching protected areas, and elevating homes 
or retreating from hazardous areas reduces exposure, but the resources of populations dictate their capacity to 
enact these responses. Previous studies have primarily focused on modeling only one or two of the three com-
ponents of flood risk, and few have integrated all three, with available modeling methods constrained in terms 
of accessibility, scalability, and generalizability2–4.

For example, to predict future flood exposure, some studies have modeled changes in land use5 or urban 
growth6 and predicted future population size7 but have not considered changes in flood hazard caused by climate 
change scenarios. Geophysical models that predict changes in hazard due to sea level rise and flooding, mean-
while, have not accounted for future changes in urban growth and therefore increases in human exposure8,9. Both 
components––changes in exposure and changes in flood hazard––should be modeled in concert to better predict 
risk, but such modeling efforts must also account for vulnerability and human adaptive responses to flood hazard.
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Failing to incorporate human adaptation responses into flood risk assessments can grossly overestimate pre-
dictions of flood damage risk10–12. Yet, projections of the number of people exposed to future flooding typically 
have not considered adaptation to flood risk13–16 or site-specific adaptation strategies based on socio-economics, 
or alternative “what-if ” scenarios17. When modeling has considered adaptation, spatially interactive18 patterns 
and processes of future urban expansion have not been considered; instead, population and urban growth have 
been represented by increasing population density within existing urban areas, without considering that what 
happens at one location affects another, limiting prediction of the location and amount of flood-exposed area19–24. 
Additionally, methods that focus on individual-level adaptive behavior tend to be computationally demand-
ing, applicable only to specific locations, and challenging to scale up for broader contexts (e.g., agent-based 
models2,20,21 or dynamic systems models25). Important recent contributions have investigated the combined 
impact of urban expansion and global adaptation policies (e.g., coastal setback scenarios26) in response to future 
flood hazard. However, it is crucial to acknowledge that communities vary in their vulnerability to flood hazard 
and their capacity to adapt27. Therefore, modeling approaches need to incorporate these factors to ensure accurate 
assessments and the generation of relevant scenarios. The composition of at-risk (and near-risk) communities is 
also changing due to climate gentrification28, whereby properties become more valuable when they can accom-
modate development under climate change and lower-income residents are priced out.

To address the need for an accessible, scalable, and generalizable predictive model that integrates all three 
components of flood risk––exposure (patterns in urban development within floodplains), hazard (increases in 
flooding due to climate change), and vulnerability (capacity for adaptive response)––we built on an existing 
open-source land change model called FUTURES (FUTure Urban-Regional Environment Simulation29). The 
new version (FUTURES 3.0) integrates dynamic flood event modeling and human adaptive response to project 
spatially interactive patterns of urban growth via population redistribution and adaptation in the face of future 
urbanization and climate change. In the context of this study, human adaptive response is defined as the con-
tinuum of local efforts to reduce exposure to flood hazard, broadly categorized as either migration or in-situ 
measures; migration represents retreat and resettlement with subsequent conversion of formerly occupied land 
into abandoned land, and in-situ measures include elevation of structures, nature-based solutions, and coastal 
hardening.

To demonstrate this new modeling framework, we selected a test case location in the Southeast U.S. compris-
ing three counties near the fast-growing Charleston Metropolitan Area of the coastal South Carolina Lowcountry 
(Fig. 1). The region is arguably at the leading edge of climate adaptation response in the U.S., given its vulner-
ability to flooding, historical efforts to reduce flood impacts, and future plans to continue responding to flood 
hazards30,31. This low-lying region borders the Atlantic Ocean, contains dozens of rivers, and is experiencing 
rapid urbanization, placing its natural amenities and cultural ecosystem services under “coastal squeeze” from 
sea level rise and urban development32. The Lowcountry is increasingly prone to flooding from storms, high 
tides (a.k.a., sunny day flooding), and sea level rise, and its human population will become progressively exposed 
with more urbanization. Concurrently, regional land subsidence33 and dredging efforts to expand navigable 
channels34 exacerbate flood risks. By 2050, the City of Charleston is expected to experience up to 233 high-tide 
flood events per year (i.e., following a global mean sea level rise scenario of 0.37 m by 2050), compared to only 
50 in 2016 and 14 in 201935. The Charleston Metro Area is also growing three times faster than the U.S. average36, 
putting pressure on the city’s infrastructure and capacity to effectively manage coastal flooding. Lower-density 
suburban development from regional growth encircles the Charleston Metro Area, but a considerable amount 
of the Lowcountry remains rural. This urban-to-rural continuum permits investigating flooding and sea level 
rise impacts, and potential responses, across a socio-economically diverse region in which we have previously 
worked32. The area also well represents the vulnerabilities and capacities of communities experiencing the greatest 
impacts of sea level rise and frequent flooding34,37.

Modeling approaches
We compared the amount of developed land area predicted to be exposed to future flooding using three modeling 
approaches, to demonstrate the necessity of including all three components of flood risk––exposure, hazard, 
and vulnerability––in one modeling framework. We call the three modeling approaches static development, 
dynamic development, and climate-aware development (Supplementary Information [SI] Appendix, Fig. S1). All 
approaches used temporally and spatially explicit flood hazard information about fluvial (from rivers), pluvial 
(from rainfall), and coastal (from sea level rise and storm surge) flooding in 2020, 2035, and 205038; we accounted 
for increasing flood probabilities over time, following a stabilizing greenhouse gas emissions scenario (Repre-
sentative Concentration Pathway [RCP] 4.5 climate change scenario). The dynamic development and climate-
aware development modeling approaches are probabilistic, and we ran each type for 50 stochastic iterations from 
2020 through 2050 at annual time steps. Further details about the models and data are provided in “Methods”.

The static development approach assumes that the built landscape, as of 2019, remains constant; there is no 
urbanization or population growth into the future. It models the current infrastructure and developed areas 
exposed to future flooding but does not account for future growth or humans’ adaptive response to this increas-
ing hazard.

The dynamic development approach accounts for future population growth and urban development, mod-
eling the concurrent growing footprints of flooding and infrastructure to predict future flood exposure. Future 
population projections are based on a moderate socio-economic scenario (Shared Socioeconomic Pathway 2; SI 
Appendix, Table S2), and development patterns assume the continuation of historical growth trends. Humans’ 
adaptive response to flooding is not incorporated.

The climate-aware development approach integrates the combined effects of spatially interactive urbanization 
processes and human adaptation to flooding to predict exposure. It uses a flood response function that relates 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18869  | https://doi.org/10.1038/s41598-023-46195-9

www.nature.com/scientificreports/

adaptive capacity and level of flood damage sustained (see Methods). This function delineates three response state 
spaces––stay trapped, retreat, or protect and armor––based on published literature11,27,39–45. For our test case, 
we devised a plausible business-as-usual “reactive” flood response function, wherein residents are assumed to 
adapt to threats as they occur, without incentives or policies in place to affect outcomes. This “reactive” response 
scenario assumes that the residents with the lowest vulnerability are most likely to protect and armor, whereas 
those with the highest vulnerability are more likely to either retreat or stay trapped. We defined a flood damage 
threshold above which retreat is likely inevitable regardless of adaptive capacity (75% of the structure’s value; 
see Methods section Adaptive Response). Other shapes of this function are possible, parameterized to explore 
scenarios of response and represent the inclinations of different communities or the influence of policies. We 
present four additional response functions (managed retreat, resist, polarized population, trapped population) 
to assess the sensitivity of the geography of simulated outcomes to model parameters (e.g., threshold of damage 
above which residents retreat). This not only demonstrates the flexibility of our modeling approach for evaluating 
policy interventions but also highlights its capacity to facilitate formulating locally appropriate solutions across 
a range of response scenarios (see “What-if ” Policy Interventions and Flood Response Scenarios).

Results
Our climate-aware modeling approach using the “reactive” response function predicted an intermediate amount 
of total developed land exposed to future flooding in 2035 and 2050 (Fig. 2) compared to the static and dynamic 
development modeling approaches. By incorporating the departure of some residents (retreat and resettlement 
with subsequent conversion of developed land into abandoned land), the climate-aware approach produced lower 
estimates of exposed development than the dynamic development approach. The static development approach 

Figure 1.   Test case location in the Southeast U.S. (A) comprising three coastal plain counties in the Lowcountry 
of South Carolina (B) with detailed maps of annual flood probability in the Towns of Moncks Corner (C) and 
Summerville (D) and the City of Charleston (E). Detail maps (C, D, E) display anticipated flood hazard due 
to fluvial, pluvial, and coastal flooding under a moderate greenhouse gas emissions scenario (Representative 
Concentration Pathway [RCP] 4.5) by 2050.
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Figure 2.   Percentage change and total developed land exposed to future flooding relative to baseline conditions 
(i.e., 2019 development, 2020 flood hazard). Bar graphs display anticipated percent increases in developed 
land exposed to a 0.2% (500-year floodplain), 1% (100-year floodplain), 5% (20-year floodplain), 20% (5-year 
floodplain), and 50% (2-year floodplain) annual chance of flooding by 2035 (A) and 2050 (B) for the three 
modeling approaches (static development, dynamic development, and climate-aware development [“reactive” 
response scenario]). The difference in exposed developed land area between dynamic development and climate-
aware development is attributable to retreat. Line graphs (C) display the estimated cumulative developed land 
area (km2) within different hazard zones (50%, 20%, 5%, 1%, and 0.2% annual chance of flooding) through time 
and by modeling approach. The standard deviations displayed for dynamic development and climate-aware 
development were derived from the 50 stochastic urban growth simulations; static development has no standard 
deviation, because it represents only 2019 development. Maps (D–F) show percentage change in developed land 
exposed to future flooding (i.e., annual flood probability of 0.2% by 2050) by census tract unit across the three-
county test case location in South Carolina, U.S. Percentage change for the static development (D), dynamic 
development (E), and climate-aware development (F; “reactive” response scenario) modeling approaches.
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predicted the least total development land exposed to future flooding, but nonetheless predicted an increase in 
exposure compared to baseline because of increases in flood hazard due to climate change. The dynamic approach 
predicted the most total exposure (~ 82 km2 or 66% more exposed developed land than baseline conditions 
by 2050), due to both increases in urban growth and flood hazard, but no incorporation of adaptive response.

The climate-aware modeling approach revealed that locations with a 5% or greater chance of flooding in any 
given year are highly likely to experience retreat (lower percentage change in exposed developed land relative 
to baseline conditions than the dynamic development approach; Fig. 2A,B). By 2050, the difference between the 
dynamic and climate-aware modeling approaches was greatest for areas with a 20% annual chance of flooding 
(inside the 5-year floodplain). This difference in exposed developed land area between the two approaches is 
attributable to retreat.

In terms of total developed land area exposed to flooding (Fig. 2C), both the climate-aware and dynamic 
modeling approaches predicted similar amounts of development through time and for all flood probabilities. 
However, the stochastic challenges (see Methods) and reactive response function used in the climate-aware 
approach simulated the implementation of adaptation strategies to withstand flood damage in those floodplains. 
The consistently lower amount of at-risk developed land predicted by the climate-aware approach relative to the 
dynamic approach represents the retreat response.

Retreat predicted by the climate-aware approach varied spatially, with some census tracts resulting in a lower 
amount of developed land exposed to flooding than current (baseline) values (Fig. 2D–F). In the absence of any 
measure to control flooding, the census tracts with negative values (Fig. 2F) represent areas where residents are 
likely to retreat. In the static (Fig. 2D) and dynamic (Fig. 2E) approaches, the amount of developed land exposed 
to flooding only increased.

The spatial resolution of our simulations (30-m) permitted identifying locations where new development is 
expected (Fig. 3A) and where retreat (Fig. 3A) or protect and armor adaptation or staying trapped (Fig. 3B) are 
likely, given the “reactive” response function used in our model (see Methods for details). Our results indicate 
that a considerable amount of land in the three-county study area is projected to be newly developed (approxi-
mately 121 km2, SD = 29 km2) in flood-prone locations by 2050. Consequently, measures aimed at safeguarding 
this additional development from potential flood damage may be required in the future. A large portion of 
existing and future development in the study area would need to be protected (125 km2, SD = 43 km2) by 2050 
or abandoned (through voluntary or forced retreat; 11 km2, SD = 13 km2) to adapt to future flood hazard, while 
localities unable to protect and armor or retreat will remain vulnerable to subsequent flood events (stay trapped; 
31 km2, SD = 3 km2; SI Appendix, Fig. S2).

Figure 3.   Geography of impact and response. Locations and probabilities by 2050 of simulated new 
development or retreat (A) and protect and armor or “stay trapped” (B) across the Charleston Metropolitan 
Area, South Carolina (U.S.); protect and armor is in response to a 1% annual chance of flooding (100-year 
floodplain). Probability maps (A–B) are derived from 50 stochastic urban growth simulations computed 
with the climate-aware modeling approach for a “reactive” response scenario. Likely destinations of residents 
from the three-county study area (SA) that resettled outside of the study area due to “retreat” (C); numbers 
of displaced pixels are averaged across the 50 stochastic simulations. The thickness of lines and size of dots 
indicates the relative number of developed pixels displaced from the study area to a new destination within 
South Carolina (SC) or another state (two-letter abbreviations). State abbreviations are ordered top to bottom by 
increasing distance from the study area.
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Our model predicted that most (approx. 76%) of the residents expected to retreat from the three-county study 
area will likely relocate within it (SI Appendix, Table S1). Of the approximately 24% that will leave the area, most 
will likely relocate elsewhere within South Carolina (27%) or to nearby southern states (Fig. 3C), particularly 
Florida (12%), Georgia (10%), North Carolina (10%), and Virginia (9%). However, a total of 42 states other than 
South Carolina are likely to receive residents who retreat, including states as far away as Washington and Oregon.

“What‑if” policy interventions and flood response scenarios
Besides a “reactive” response function, we parameterized four others, which we called managed retreat, resist, 
polarized population, and trapped population. We utilized these four additional parameterizations (Fig. 4) to 
assess the impact of varying shapes of the adaptive response function on the geography of simulated outcomes. 
This involved testing different thresholds of damage at which residents retreat. “Managed retreat” results in the 
lowest amounts of developed land exposed to future flooding compared to baseline conditions and all other 
modeled scenarios, particularly in areas with annual flood probabilities greater than 1% (100-year floodplain; 
Fig. 4B,C). Managed retreat is the only scenario that predicts a decrease in the amount of total developed land 
in flood-exposed areas over time below baseline conditions (SI Appendix, Fig. S3). Furthermore, managed 

Figure 4.   “What-if ” scenarios of policy interventions. Additional to the “reactive” response scenario (A.i; 
displayed here for reference), we computed four alternative scenarios: “managed retreat” (A.ii), “resist” (A.
iii), “polarized population” (A.iv), and “trapped population” (A.v), with the climate-aware development 
modeling approach. Bar graphs display anticipated percent changes in developed land exposed to a 0.2% 
(500-year floodplain), 1% (100-year floodplain), 5% (20-year floodplain), 20% (5-year floodplain), and 50% 
(2-year floodplain) annual chance of flooding by 2035 (B) and 2050 (C) as relative to baseline conditions (i.e., 
2019 development, 2020 flood hazard). Standard deviations were derived from 50 stochastic urban growth 
simulations.
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retreat resulted in a greater number of census tracts overall demonstrating some level of retreat and pointing 
to a regional pattern (SI Appendix, Fig. S4). “Resist” revealed the highest percent increases in developed land 
exposed to future flooding (Fig. 4B,C). While estimated exposure for the resist scenario is highly comparable 
to results associated with the dynamic development modeling approach (SI Appendix, Fig. S3), a few census 
tracts with negative values (SI Appendix, Fig. S4) show areas where residents experiencing high levels of flood 
damage are likely to retreat. With a “polarized population,” the probability of retreat is greater than in the resist 
scenario, but overall smaller than in the reactive scenario (Fig. 4A). Estimated exposure for a polarized popula-
tion falls between those two scenarios (Fig. 4B,C and SI Appendix, Fig. S3), while the spatial pattern of estimated 
exposure by census tract closely resembles the patterns presented by the resist scenario (SI Appendix, Fig. S4). 
Compared to all scenarios, except “managed retreat”, “trapped population” results in considerably lower levels 
of exposure across all hazard zones (Fig. 4B,C and SI Appendix, Figs. S2 and S3). The response function for this 
scenario decreases retreat for more vulnerable communities and increases it for less vulnerable ones; in our study 
area, flood-prone areas such as high-value waterfront property predominantly exhibit lower vulnerability (SI 
Appendix, Fig. S7). Consequently the “trapped population” scenario concentrates the high probability of retreat 
in less vulnerable census tracts, including waterfront areas (SI Appendix, Fig. S4).

Discussion
Our open science approach to developing FUTURES 3.0 responds to the global need for flexible and transferable 
modeling frameworks that can integrate three critical components of flood risk relevant to policymaking1. We 
simultaneously modeled urban growth, increases in flood hazard due to climate change, and human adaptive 
response to flooding to estimate the future flood exposure of built infrastructure. Given that urban areas continue 
to expand, that flood hazards are intensifying under climate change9,38, and that people (if capable) are likely to 
try to reduce their flood risk or prevent further damage to their properties46, integrating all three components 
is important when estimating future risk and exposure.

Anticipating human responses to flood hazards or damage is a challenging task, given that the past may not 
be a good proxy for the future and that few studies have retrospectively examined human decision-making in the 
face of flood risk or damage47. Prior research seeking to predict responses have focused on simulating adapta-
tion decisions based on cost–benefit analyses19 or bounded rationality of individual agents2,20–22. Our scenario-
based approach using plausible response functions is presented as an alternative, to overcome the difficulties in 
accounting for “irrational” decision-making or the non-economic factors that influence a choice in traditional 
cost–benefit approaches20 and the computational expense and limited transferability of agent-based modeling. 
In this way, scenario modeling permits conducting simulation experiments to test approaches for efficiently and 
equitably allocating resources for adaptation. These experiments can be used to iteratively test assumptions or 
predict outcomes based on lessons learned from regional-scale analysis of flood management policies (e.g.48,49), 
local case studies of damage and adaptive capacity (e.g.43,50), or community-specific plans (e.g.51,52). FUTURES 
3.0 enables the use of customizable flood response functions to capture the range of human behaviors likely for 
specific areas, providing an array of alternative scenarios of what may happen under different assumptions of 
political or economic conditions. Response function parameterization will determine the simulated amount of 
development exposed to flooding in response to policy interventions (see “What-if ” Policy Interventions and 
Flood Response Scenarios).

Of particular note in the flood response functions is the option to retreat, which has a complicated relation-
ship with social vulnerability and equitable adaptation44,46. In our test case, we assumed retreat to be voluntary 
for the least vulnerable census tracts and forced for the most vulnerable ones, reflecting current inequities, but 
the FUTURES 3.0 model does not distinguish between these two types of retreat. Generally, more affluent and 
privileged residents and homeowners have a greater range of adaptation options. They are more likely to pos-
sess, or be able to acquire, the resources needed to adapt properties (e.g., elevate structures), and they are in a 
better position to navigate securing a buyout and are more likely to be successful in a new location41,42,46,53–55. 
Importantly, buyout programs currently benefit only individual homeowners and do not facilitate the relocation 
of whole communities; existing policies therefore disregard the social ties and connections to place integral to 
both individual and group identity and success for many members of tight-knit and Indigenous communities44. 
Without the resources to protect themselves and maintain social support systems and livelihoods, underprivi-
leged residents and renters may be forced to abandon their homes only after severe flooding results in an unten-
able living situation, exacerbating their social vulnerability.

By integrating retreat and resettlement into our model, we were able to project where displaced residents 
are likely to go (Fig. 3C). Our results are comparable to those of other researchers18 that used similar methods 
to predict both intrastate and interstate migration. Our modeling predicts new “destination” communities to 
concentrate across the Southeast (i.e., South Carolina, Florida, North Carolina, and Georgia), but displaced 
residents are likely to relocate as far west as Washington, Oregon, and California. Destinations carry their own 
flood risks or other stressors or hazards, however, and it is likely that future adaptation will be necessary to 
protect both new and established residents. It is also uncertain whether “destination” communities are prepared 
to receive in-flows of climate migrants19,21 and how human movements might impact natural resources (e.g., 
conservation corridors).

Study limitations and future work
There are several limitations of our study to consider for future work with FUTURES 3.0. First, for simplicity, we 
did not simulate restricting development in areas with high flood hazard, i.e., to proactively prevent construction 
that might require protection or be abandoned in the future. Restricting future development in FUTURES 3.0, 
however, is possible (e.g., using a spatial protection layer [see56 for an example using FUTURES 2.0], or with a 
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flood response function that uses managed retreat) and may be useful for planning26 or scenario development 
that focuses on conservation of wetlands and other open spaces that provide flood protection services. Second, 
we used historical migration trends (1990–2015) to anticipate where displaced residents migrate, but it is also 
possible to incorporate “climate-aware” migration trends that anticipate how migration is influenced by climate57 
and climate change1,18,20. Such migration patterns would consider “pulls” to new areas (e.g., economic advantages, 
natural amenities, and comfortable temperatures) and “pushes” that both cause current residents to leave and 
dissuade new settlement (e.g., hazards including floods, wildfires, extreme temperatures, and droughts).

Further enhancements to FUTURES will enable more fully integrating how economic considerations impact 
human development and adaptive behavior. Using the locations of planned new roads or job-creating industries 
would likely improve predictions of desirable areas for future development. Considering how flood damage 
influences local or regional economies would capture the “indirect” effects of flooding on a household’s decision 
to relocate20,21,58. Distinguishing between different types of land use in FUTURES’ exposure assessment would 
more clearly indicate where homes versus businesses are experiencing flood damages that could lead to job loss 
or other forms of economic disruption. Including calculations of adaptation cost may be useful for planning 
allocation of resources for targeted protection from flood impacts19,22,23 as well as for assessing the costs vs. 
benefits of retreat and/or protective investments.

Integrating the feedback loop between development, protective measures, the natural cycling of water, and 
flood hazard (e.g., through expanded impervious surface) provides another opportunity for future work. With-
out interventions or the expansion of infrastructure that can handle larger volumes of stormwater runoff, new 
development only exacerbates the flood risk of existing development. Capturing this feedback loop in a simu-
lation could be accomplished by integrating hydrologic modeling with FUTURES; the impact on runoff and 
streamflow of simulated annual development, and benefits of large-scale protective measures (e.g., gray/green 
infrastructure), would be iteratively estimated, informing changes in flood hazard that would in turn influence 
adaptation decisions and further development.

Call to action
Scenario-based models that effectively project future risks are critical to support forward-thinking planning 
efforts that can anticipate, or avoid, costly interventions and impacts. Flexible models like FUTURES 3.0 can be 
used to run simulations for any geographic area, using any land use and flood hazard data and a flood response 
function that can be customized to reflect local or regional conditions. Given that predicting human behavior is 
inherently difficult and that future climate change will present unprecedented challenges, reducing uncertainty of 
how, when, and where adaptation strategies could protect lives and livelihoods and prevent future flood impacts 
will be essential. We are encouraged by recent institutional efforts to support community engagement projects 
that can help parameterize flood response functions while acknowledging the value of participants’ time, input, 
and local knowledge through appropriate compensation. Community engagement projects that focus on scenario 
development and adaptive planning are crucial to envisioning and creating interventions that are more likely to 
produce just and equitable outcomes. To have the greatest utility for decision-making, these efforts would require 
integration of all three components of flood risk2: exposure (patterns in urban development within floodplains), 
hazard (increases in flooding due to climate change), and vulnerability (capacity for adaptive response).

Methods
We developed a new version of the FUTURES land change model (FUTURES 3.0) that can now probabilisti-
cally project new urban development while also simulating human migration and other adaptation measures in 
response to flood hazard from climate change (Fig. 5).

FUTURES is an open source urban growth model designed to address the regional-scale ecological and envi-
ronmental impacts of urbanization (e.g., assessments of tradeoffs between conservation strategies32,56 and eco-
system services59–61). It is one of the few land change models that explicitly captures the spatial interactions and 
processes of development in response to user-specified scenarios29. Spatially interactive18 urbanization processes 
consider how the state of one location at a given time influences the state of another location at a subsequent 
time (e.g., new development in one location affects the likelihood of future development in nearby locations). 
FUTURES simulates locational interactions and patterns of development by integrating three submodels that 
consider local site suitability for land change (POTENTIAL62; Fig. 5A(i), per capita land consumption of a 
region (DEMAND63; Fig. 5A(ii), and the spatial patterns of urbanization (PGA64, or Patch-Growing Algorithm; 
Fig. 5A(iii)29,65. The PGA stochastically assigns placement of discrete spatial objects (patches) of developed land 
across the POTENTIAL surface, based on the study area’s historical trends in the size and shape of land change 
events. At each time step, the POTENTIAL surface determines whether the patch results in land conversion, and 
the quantity of new patches is directed by DEMAND. The PGA allows integration of policy-oriented, user-defined 
parameters to explore alternative development scenarios. FUTURES is publicly available through GRASS GIS 
and GitHub65, has been validated as accurately capturing the spatial configuration of new development60,66,67 (see 
subsection FUTURES 3.0 Validation), and has been used or cited in over 100 land change studies.

FUTURES 3.0 is a new version of the model introducing the CLIMATE FORCING submodel [Fig. 5A(iv)] 
to estimate the probability that a developed location (e.g., a 30-m pixel) will experience flood damage and its 
likely adaptation response (protect and armor, retreat, or stay trapped). Adaptive response [Fig. 5A(v)] is based 
on flood probability38, level of damage (see subsection Adaptive Response for details about building structure 
depth-damage functions), and local estimates of adaptive capacity (i.e., a continuum of low to high vulnerability 
based on socioeconomic data from the Centers for Disease Control and Prevention, CDC68,69).

The CLIMATE FORCING submodel integrates current and future flood probability and flood depth data 
(see “Data Sources” below) with the adaptive capacity of developed pixels (see “Adaptive Response” below) to 



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18869  | https://doi.org/10.1038/s41598-023-46195-9

www.nature.com/scientificreports/

Figure 5.   The new FUTure Urban-Regional Environment Simulation framework (FUTURES 3.0). Designed 
to probabilistically predict new urban development and adaptation measures in response to flood hazard from 
climate change (A). FUTURES simulates spatially explicit patterns of development through the integration 
of four submodels that consider local site suitability for land change (POTENTIAL; A.i), per capita land 
consumption of a region (DEMAND; A.ii), the spatial patterns of urbanization (Patch-Growing Algorithm 
[PGA]; A.iii), and local capacity for adaptive response to flooding due to climate change (CLIMATE FORCING; 
A.iv). Adaptive response (A.v and B) is based on local estimates of flood probability, level of damage, and 
adaptive capacity. The core of the CLIMATE FORCING submodel is a flood response function (B) that 
determines whether the residents of a pixel leave the area (retreat) or remain (either stay trapped or protect and 
armor). The flexibility of FUTURES 3.0 accommodates creating different scenarios and altering the shape of the 
flood response function to represent community preferences or policy influences. A plausible flood response 
function (B) assumes residents will adapt to threats on an as-needed basis (i.e., “reactive” response scenario).
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probabilistically predict flood severity and the response evoked by simulated damage in a developed pixel. The 
submodel also predicts the within- or between-county destinations of displaced residents (following methods 
by17). FUTURES is a stochastic model and can generate hundreds of simulations of flood responses at yearly 
time steps. We programmed the PGA to run 50 independent stochastic iterations of FUTURES 3.0 from 2020 
through the year 2050, employing a consistent setup. Through these iterations, we probabilistically predict where 
new development will occur and where adaptation interventions or the inability to act (staying trapped) is more 
likely to occur.

FUTURES parameterization
We parameterized FUTURES following methods detailed by29,65. In FUTURES, the POTENTIAL submodel 
estimates local site suitability for urbanization as a function of hypothesized environmental, infrastructural, and 
socio-economic predictors. We included in the POTENTIAL submodel the predictor variables that significantly 
explained land change (i.e., from non-urban to urban) during a reference period (2001–2019) while maintaining 
parsimony and predictive accuracy (SI Appendix, Table S2). We assumed that urbanization processes can vary 
from region to region, and therefore, FUTURES uses a multilevel model structure (at the county level in this 
research) that accounts for the spatial nonstationarity of drivers of urban development (SI Appendix, Table S3). 
We assumed no new development occurs in parks and protected areas, open water bodies and riparian buffer 
zones, which we excluded from the simulations.

The DEMAND submodel estimates per capita land consumption for a given area (e.g. county) based on the 
relationship between historical population totals and amounts of developed land across multiple reference dates 
(2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019; see “Data Sources” below). The historical estimates are used to 
create a logarithmic trend function specific to, for example, each county in the study region. Future annual per 
capita land consumption is extrapolated for each county using annual population projections through the year 
2050 based on a moderate socio-economic scenario (Shared Socioeconomic Pathway 2; SI Appendix, Table S2).

The PGA submodel allocates simulated growth using an iterative, stochastic, site selection process designed to 
mimic the urban forms (i.e., the spatial configuration of development patterns) characteristic to the study area. 
We parameterized the PGA submodel based on observed patterns of new development during the 2001–2019 
reference period. We assumed the persistence of factors that drove the spatial configuration of development 
during the reference period throughout the projection phase. Using the GRASS GIS r.future.calib70 module, we 
generated a “patch library” with a distribution of patch sizes and shapes that are stochastically allocated during 
simulations.

FUTURES 3.0 validation
We validated hindcasts of land change following accuracy assessment methods recommended by71,72. Specifi-
cally, we calculated allocation and quantity errors and assessed accuracy using the "figure of merit," a metric 
that measures the statistical agreement between observed and simulated changes within a defined area (SI 
Appendix, Figs. S5 and S6). Model performance is comparable to previous implementations of the FUTURES 
framework29,56,60 and other land change models66,71. However, quantitative evaluation of adaptive response out-
comes was infeasible due to data scarcity. To our knowledge, no local efforts here or elsewhere in the U.S. have 
been adopted to systematically document ongoing adaptation measures or residents’ adaptation preferences 
based on metrics of adaptive capacity. Furthermore, FEMA’s national dataset on hazard-mitigated properties73 
recorded only 25 properties in the study area that had taken action between 1999 and 2019 to reduce or eliminate 
long-term risk of flooding (e.g., floodproofing, elevating property, acquisition/demolition), a gross underestimate 
for an area at the leading edge of climate adaptation response. Residents and communities may have received 
support from alternative mitigation and recovery assistance programs (e.g., U.S. Department of Housing and 
Urban Development’s Community Development Block Grant, U.S. Small Business Administration’s Disaster Loan 
Assistance), but these data were unavailable for our analysis. To gain insight into the validity of the FUTURES 3.0 
flood response function, we evaluated the correlation between social vulnerability68,69 (the CDC Social Vulner-
ability Index [SVI]) and FEMA’s redacted insurance claims74 processed from 2000–2009 and 2010–2022 (see SI 
Appendix, Figs. S7 and S8). We found significant, negative correlations (Pearson coefficient of − 0.24 [p < 0.05] 
for 2000–2009 and − 0.32 [p < 0.001] for 2010–2022) between the SVI score and the number of processed insur-
ance claims for both time periods, which supports our assumption that less vulnerable census tracts are more 
likely to rebuild and enact in-situ adaptation measures.

Adaptive response
We developed a plausible flood response function that relates adaptive capacity and level of flood damage sus-
tained. This function delineates response state spaces (stay trapped, retreat, or protect and armor; Fig. 5B) based 
on published responses of humans to flood events11,27,39–45. To our knowledge, no frameworks or datasets are 
available that describe the actual choices or preferences of residents of the three-county test case location (South 
Carolina) in response to flood hazard and damage. We used the CDC Social Vulnerability Index (SVI68,69) to 
determine vulnerability at the census tract level, using the range of vulnerability as a metric of adaptive capacity 
(x-axis in Fig. 5B). The SVI takes into account parameters including socioeconomic status (e.g., poverty and 
unemployment rates, education levels), household characteristics (e.g., age distribution, disability rates, single-
parent households), racial and ethnic minority status, and housing type and transportation factors (household 
structural attributes, crowding, vehicle availability)69. To implement the SVI scores69 (0 [lowest vulnerability] to 
1 [highest vulnerability]) as metrics of adaptive capacity, we transformed the scores to range from − 1 (highest 
vulnerability) to 1 (lowest vulnerability). Each 30-m pixel is assigned the transformed SVI value of the census 
tract to which it belongs. We used depth-damage functions75 and the HAZUS General Building Stock76 to relate 
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flood depth to percentage damage to structure value at the census block-level (y-axis in Fig. 5B). Depth-damage 
functions vary spatially depending on the distribution of building types (e.g., single floor dwelling, condo-
minium, mobile homes, school, retail) in each census block. Regardless of adaptive capacity value, we assume 
that retreat is necessary above a user-defined threshold of damage (y-axis in Fig. 5B); damage that exceeds 50% 
of the structure’s value is known to require demolition and rebuilding77. For the “reactive” response function we 
set a 50% damage threshold value for an adaptive capacity value of 0, with higher thresholds for less vulnerable 
census tracts (75% of structure value) and lower for more vulnerable tracts (25%).

The flood response function determines whether the residents of a pixel leave the pixel (response is retreat) or 
remain (response is either stay trapped or protect and armor). The response for all pixels with values above the 
response function is “retreat” (the model does not distinguish between forced or voluntary retreat; Fig. 5B). Pixels 
with values below the response function but with positive adaptive capacity values are assumed to “protect and 
armor,” while those with negative adaptive capacity values (i.e., more vulnerable) are assumed to “stay trapped.”

However, because FUTURES is probabilistic, each pixel faces a stochastic challenge using two Gaussian dis-
tribution functions to ultimately characterize its likely flood response. For example, a pixel with a damage value 
of 0.51 and adaptive capacity value of 0.60 is highly likely to “protect and armor” because it falls below the flood 
response function (Fig. 5B), but there is also a low-probability chance of retreat given the Gaussian distribution.

At each time step of the simulation, the response of a developed pixel (stay trapped, retreat, or protect and 
armor) is determined by whether that pixel is simulated to flood, the percent damage incurred following a 
simulated flood event, and its adaptive capacity. Using a Monte Carlo approach, we stochastically simulate 
pseudo-flood events based on spatial flood probability data38. To characterize the spatial distribution of a flood 
event and account for hydrological connectivity between pixels, we stochastically simulate flood events within the 
boundaries of 12-digit Hydrologic Unit Codes (HUC-12)78. When a flood event in a particular HUC-12 occurs, 
the response of each flooded pixel is determined by the shape of the flood response function.

When a pixel’s outcome is “protect and armor,” we assume that a local-level (i.e., “pixel-level”) investment is 
made to enact protection (e.g., elevate homes or build a levee), which remains in place for all future time steps. 
If in a subsequent time step, the pixel experiences a less severe flood event, the pixel will remain unaffected. 
However, if that pixel experiences a more severe flood event, the past protect and armor response will be consid-
ered inadequate, and the flood response function and stochastic challenge will be used to determine the pixel’s 
response for that time step.

When a pixel’s outcome is “retreat,” we simulate new development elsewhere to accommodate population dis-
placement (either in a different area of the same county, a different county within the study area, or a county out-
side of the study area); new development adds to the population quota in the DEMAND submodel of FUTURES 
for the subsequent time step. When a pixel response is “retreat,” development in that pixel is not allowed in future 
time steps and the pixel is marked as “abandoned.”

To simulate retreat, we used between-county migration values based on the Internal Revenue Service’s (IRS’s) 
annual series of county-to-county migration flow data for the years 1990–201579. This dataset is the largest, most 
comprehensive record of county-to-county migration in the U.S. The IRS does, however, suppress migration flows 
comprising fewer than 10 individual migrants, systemically suppressing small rural migration flows.

Since the IRS dataset does not contain within-county migration information, we estimated the diagonal of 
the migration matrix to represent the probability that people relocate within the same county. We computed the 
net migration rate (normalized to range − 1 to 1) as a proxy for the “attractiveness” of a county. If net migration 
is zero, we set the within-county migration probability to 50%, meaning it is equally probable that a displaced 
pixel will be relocated within the same county versus to a different county. A net migration value of 1 then cor-
responds to a 100% chance of relocation within the county and a value of − 1 corresponds to a 100% chance of 
relocation to a different county. SI Appendix, Table S4, provides a subset of all origin/destination probabilities 
for study counties in South Carolina. Space limitations prevent displaying the full migration matrix (3 by 3152; 
where 3152 represents the total number of counties in the U.S.) for the study area (see Data and Code Availability 
for complete dataset). SI Appendix, Table S1, provides the likely destinations of residents from the three-county 
study area that resettled within South Carolina or another state due to retreat.

When relocating a pixel, we randomly select a county within the U.S., using the migration probabilities as 
weights. To adjust for the different population densities between origin and destination counties within the study 
area, we multiply the size of the pixel area (30 × 30 m, or 900 m2) by a ratio of the population density of the pixels 
in the origin county (numerator, known from DEMAND submodel) and the population density of the pixels in 
the destination county (denominator, known from the DEMAND submodel). In this way, if the origin pixel is 
from a more densely populated county than pixels in the destination county, the population from that one pixel 
is spread among multiple pixels in the destination county. The adjusted number of pixels is then added to the 
DEMAND table for the destination county for the next time step.

“Stay trapped” is the least likely response in our simulations, but we included this possible outcome in 
FUTURES 3.0 to make the model as generalizable as possible and to represent the reality of individuals being 
trapped by flooding80. Given the high social and economic costs of migration and adaptation53, “trapped” indi-
viduals are characterized by a lack of resources, skills, and/or desire to leave “at-risk” locations and a concurrent 
inability to protect their properties from flood damage, likely leading to a cycle of declining property values and 
quality of life27; these individuals may not migrate until assistance is provided or faced with a life-threatening 
situation. The difference between “stay trapped” and “protect and armor” in the model is dependent on adaptive 
capacity, assuming that the trapped pixels enact no adaptive measures and remain vulnerable to subsequent 
flood events.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18869  | https://doi.org/10.1038/s41598-023-46195-9

www.nature.com/scientificreports/

Development of the modeling approaches
All three modeling approaches described above (“Modeling Approach” section) share a baseline set of data: 
flood hazard conditions in 2020 and land cover in 2019. They also share the same flood hazard projections for 
2035 and 2050. They differ in how they project the development footprint––either no new development (static 
development), urbanization that does not respond to flooding (dynamic development), or urbanization that does 
respond to flooding using the flood response function (climate-aware development). The latter two approaches 
share the same parameterization for the DEMAND, POTENTIAL, and PGA submodels. Only the “climate-aware 
development” approach uses the CLIMATE FORCING submodel. All three modeling approaches output the 
estimated amount and location of development by 2035 and 2050 (which is simply unchanged from 2019 for 
the “static development” approach). A negative change in developed land is possible for only the “climate-aware” 
modeling approach (due to “retreat” responses of pixels).

Development of “what‑if” policy interventions and flood response scenarios
The flexibility of FUTURES 3.0 (Fig. 5A) and the flood response function (Fig. 5B) accommodates creating differ-
ent scenarios and altering the shape of the function to represent the inclinations of different communities or the 
influence of policies (Fig. 4A). We evaluated four additional response functions besides “reactive” [Fig. 4A(i)] to 
demonstrate how each influences estimates of exposed development. In the “managed retreat” scenario, policy-
makers incentivize converting developed land to undeveloped land (i.e., abandoned), with residents of all levels 
of adaptive capacity moving elsewhere [Fig. 4A(ii)]; the response function is altered to reduce the probability of 
both “stay trapped” and “protect and armor.” In the “resist” scenario, residents of all levels of adaptive capacity 
are highly resistant to retreat [Fig. 4A(iii)]; the response function is therefore altered to reduce the probability 
of “retreat.” In a “polarized population” scenario, both the least and most vulnerable residents remain in place, 
while those of intermediate adaptive capacity retreat [Fig. 4A(iv)]; the response function is altered to reflect a 
high probability of “protect and armor” for the least vulnerable residents and a high probability of “stay trapped” 
for the most vulnerable ones. Finally, in the “trapped population” scenario, vulnerable communities with little 
to no ability to adapt remain trapped in at-risk locations [Fig. 4A(v)], and the response function is altered to 
reduce the “retreat” outcome for vulnerable communities.

Data sources for exposure analysis
Flood hazard
To establish current and future flood hazard conditions, we used nationwide data from First Street Foundation 
(FSF38) that differentiate flood depth based on the different return periods of flood events (the chance that a flood 
would occur in any given year): 2-year return period (50% annual chance of flooding), 5-year (20%), 20-year 
(5%), 100-year (1%), and 500-year (0.2%). FSF provides property-level flood hazard and water depth estimates 
as points at parcel centroids. To obtain estimates for undeveloped areas, where point data were not available, we 
primarily used FSF tiled data.

To disaggregate and refine FSF water depth levels > 1.2 m (values which were aggregated in a single category 
in the tiled data), we obtained the elevation of individual properties from a 1 arc-second U.S. Geological Survey 
(USGS) Digital Elevation Model (DEM81) and the water depth from FSF parcel-level flood data; we combined 
these two data sources to determine water surface elevation above sea level during a flood event. We then inter-
polated parcel-level water surface elevation into a 30-m raster and subtracted the DEM to obtain more precise 
water depth values across the terrain. We repeated this process for the FSF 2020, 2035, and 2050 datasets and 
each of the return periods (5-, 20-, 100-, 500-year flood) at each time interval. All of these datasets represent the 
“middle-of-the-road” climate change Representative Concentration Pathway (RCP) 4.5.

We used FSF data because FSF has developed one of the most sophisticated models that incorporate the 
effect of climate change on the spatial and temporal distribution of combined fluvial, pluvial, and coastal flood 
hazard. The evolution of the modeling methods has been validated by several prominent experts38,82,83. However, 
FUTURES 3.0 is flexible and can accommodate any kind of flood hazard data, such as the publicly available U.S. 
Federal Emergency Management Agency’s 100-year floodplain.

Land cover
We used USGS National Land Cover Database (NLCD84,85) data from 2001, 2004, 2006, 2008, 2011, 2013, 2016, 
and 2019 to parameterize the POTENTIAL, DEMAND, and Patch-growing Algorithm (PGA) submodels within 
FUTURES (see29,59,65 for details about parameterizing and calibrating FUTURES submodels; see SI Appendix, 
Tables S2 and S3, for details about predictor variables and the model coefficients used in this study). We used 
NLCD 2019 data to identify the baseline locations of developed land at the start of our simulations, overlaying 
flood hazard to understand development exposed to flooding.

We used NLCD data because they are publicly available with nationwide coverage, and widely used and vetted 
for a range of research applications. However, any land cover data can be used with FUTURES 3.0, including 
other established datasets or those newly classified from remotely sensed imagery.

Data availability
The data that support the findings of this study are available in Zenodo with the identifier https://​doi.​org/​10.​
5281/​zenodo.​66078​60.

https://doi.org/10.5281/zenodo.6607860
https://doi.org/10.5281/zenodo.6607860
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Code availability
The open source FUTURES software, including all submodels (POTENTIAL, DEMAND, PGA, CLIMATE 
FORCING), can be accessed through the GitHub repository (https://​github.​com/​ncsu-​lands​cape-​dynam​ics/​
GRASS_​FUTUR​ES) with the identifier https://​doi.​org/​10.​5281/​zenodo.​66070​97.
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