
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18799  | https://doi.org/10.1038/s41598-023-46132-w

www.nature.com/scientificreports

Single‑cell RNA sequencing 
revealed potential targets 
for immunotherapy studies 
in hepatocellular carcinoma
Zhouhua Xie 1,2,6, Jinping Huang 1,3,6, Yanjun Li 1,3,6, Qingdong Zhu 2, Xianzhen Huang 2, 
Jieling Chen 1, Cailing Wei 1, Shunda Luo 4, Shixiong Yang 1,5* & Jiamin Gao 1,3*

Hepatocellular carcinoma (HCC) is a solid tumor prone to chemotherapy resistance, and combined 
immunotherapy is expected to bring a breakthrough in HCC treatment. However, the tumor and 
tumor microenvironment (TME) of HCC is highly complex and heterogeneous, and there are still 
many unknowns regarding tumor cell stemness and metabolic reprogramming in HCC. In this 
study, we combined single‑cell RNA sequencing data from 27 HCC tumor tissues and 4 adjacent 
non‑tumor tissues, and bulk RNA sequencing data from 374 of the Cancer Genome Atlas (TCGA)‑
liver hepatocellular carcinoma (LIHC) samples to construct a global single‑cell landscape atlas of 
HCC. We analyzed the enrichment of signaling pathways of different cells in HCC, and identified 
the developmental trajectories of cell subpopulations in the TME using pseudotime analysis. 
Subsequently, we performed transcription factors regulating different subpopulations and gene 
regulatory network analysis, respectively. In addition, we estimated the stemness index of tumor cells 
and analyzed the intercellular communication between tumors and key TME cell clusters. We identified 
novel HCC cell clusters that specifically express HP (HCC_HP), which may lead to higher tumor 
differentiation and tumor heterogeneity. In addition, we found that the HP gene expression‑positive 
neutrophil cluster (Neu_AIF1) had extensive and strong intercellular communication with HCC cells, 
tumor endothelial cells (TEC) and cancer‑associated fibroblasts (CAF), suggesting that clearance of this 
new cluster may inhibit HCC progression. Furthermore, ErbB signaling pathway and GnRH signaling 
pathway were found to be upregulated in almost all HCC tumor‑associated stromal cells and immune 
cells, except NKT cells. Moreover, the high intercellular communication between HCC and HSPA1‑
positive TME cells suggests that the immune microenvironment may be reprogrammed. In summary, 
our present study depicted the single‑cell landscape heterogeneity of human HCC, identified new 
cell clusters in tumor cells and neutrophils with potential implications for immunotherapy research, 
discovered complex intercellular communication between tumor cells and TME cells.

Abbreviations
HCC  Hepatocellular carcinoma
TME  Tumor microenvironment
TECs  Tumor endothelial cells
CAFs  Cancer-associated fibroblasts
CSC  Cancer stem cell-like cells
scRNA-seq  Single-cell RNA sequencing
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QC  Quality control
UMAP  Uniform manifold approximation and projection
DEGs  Differentially expressed genes
TCGA   The cancer genome atlas
CNVs  Copy number variants
KEGG  Kyoto encyclopedia of genes and genomes
TFs  Transcription factors
OS  Overall survival
RFS  Relapse-free survival
GRN  Gene regulatory network

Hepatocellular carcinoma (HCC) is becoming one of the most common and deadly malignancies worldwide. 
Treatment options for HCC include tumor resection, liver transplantation, or liver ablation, but they only apply 
to part of the patients with an early diagnosis, with approximately 50% of HCC patients undergoing systemic 
 therapy1. HCC has traditionally been considered as a chemoresistant solid tumor, but the advent of immuno-
therapy has brought a new prospects for cancer  therapy2,3. However, the efficacy of immunotherapy for HCC is 
significantly influenced by the heterogeneity of the tumor’s microenvironment (TME)4. The TME is an ecosystem 
created by cancer cells composed of components from both tumor and hosts. The high heterogeneity of tumors 
and TME in HCC results in dramatic differences in immunotherapy sensitivity between patients and it remains 
unclear how different TME subtypes are clinically relevant to  HCC5.

As it is known, cancer cells adjust their metabolism to maintain high proliferation and survive in adverse 
environments with low oxygen and nutrient deficiency, thus metabolic reprogramming is most common in the 
 TME6. The dynamic interactions between cancer cells and the TME cells are critical in generating heterogeneity, 
clonal evolution, and enhancing multi-drug resistance in tumor  cells7. Single-cell RNA-sequencing (scRNA-seq) 
allows us to study the various components of the TME and their interactions at a higher  resolution8. Although 
there are many single-cell studies on HCC, most of these studies usually focus on specific cell types of interest. 
The global single-cell landscape heterogeneity of HCC remains largely unknown.

Cancer cells have phenotypic plasticity that not only promotes cellular diversity and tumor evolution, but also 
reprograms and/or transdifferentiates to cancer stem cell-like cells (CSC)9. Therefoer, assessment of stemness 
in HCC malignant cells can help us to understand tumor development and differentiation, so as to inhibit it. To 
date, the major focus of cancer immunotherapy has been the interruption of immune checkpoints that suppress 
anti-tumour lymphocytes. In addition to lymphocytes, the HCC environment includes many other immune cell 
types, of which neutrophils are emerging as important contributors to the pathogenesis of HCC  pathogenesis10,11. 
Simultaneous targeting of tumor cells and surrounding growth-supporting immune cells is a promising strategy 
to modify the TME and enhance host antitumor immune  responses12.

Thus, to identify the potential transcriptomic changes of clinical significance in HCC, we combined scRNA-
seq data from the Gene Expression Omnibus (GEO) database, which consisted of 27 HCC tumor tissues and 
4 adjacent non-tumor tissues, with bulk RNA sequencing data from 374 samples of the Cancer Genome Atlas 
(TCGA)-liver hepatocellular carcinoma (LIHC) samples to construct a global single-cell landscape atlas for 
HCC. We conducted an analysis of the dynamic changes observed in specific subgroups of cells within the tumor 
immune microenvironment, as well as the corresponding signaling pathways that exhibited significant correla-
tions. In addition, we revealed the developmental trajectory of various cell subgroups and identified their key 
transcriptional regulatory targets. For HCC cells, we computed copy number variations (CNVs) and assessed 
cancer stemness scores.

Our study investigated the heterogeneity of single cells in human HCC. We discovered novel cell clusters in 
both tumor cells (HCC_HP) and neutrophils (Neu_AIF1) through our research. These findings hold significant 
implications for the field of immunotherapy research. Furthermore, our study unveiled intricate intercellular 
communication between tumor cells and cells in the TME. Additionally, we formulated a prognostic model 
with high confidence to assess potential risks for distinct cell subclusters. Based on our results, we postulated an 
exosome-mediated metabolic reprogramming process in HCC. Significant up-regulation of the ErbB signaling 
pathway, along with multicellular communication involving HSPA1-positive cells, supports this hypothesis. 
Identifying this metabolic reprogramming process offers valuable insights for future immunotherapy studies.

Method
Single‑cell RNA sequencing data sources and preprocessing
HCC-related scRNA-seq data were obtained from the Gene Expression Omnibus (GEO) database: GSE125449 
(GPL18573)13, GSE210679 (GPL20795)14, and GSE189903 (GPL24676)15, containing a total of 27 HCC tumor 
tissues and 4 adjacent non-tumor tissues (Supplementary Table 1). Single-cell data was integrated used the Inte-
grateData function of the Seurat package. We performed the quality control (QC) of the integrated single-cell 
data, filtering out cells with the highest and lowest number of 1% and cells with more than 10% of mitochondrial 
genes expression. Cells were clustered according to default parameters and visualized for dimension reduction 
by the Uniform Manifold Approximation and Projection (UMAP)  method16–18. The definition of cell type was 
defined based on the known marker genes (Supplementary Table 2).

Bulk RNA‑sequencing data sources and preprocessing
TCGA-LIHC data were obtained from TCGA database containing bulk RNA-seq data and corresponding clinical 
information for 374 HCC samples (https:// portal. gdc. cancer. gov/ proje cts/ TCGA- LIHC). In the HCC cohort, the 

https://portal.gdc.cancer.gov/projects/TCGA-LIHC
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bulk RNA-seq gene expression data were used log2 transform to analyze differentially expressed genes (DEGs) 
between high and low immune infiltration  groups19.

Differential expression gene (DEG) analysis
DEGs of different clusters in the HCC and adjacent non-tumor tissues were using the FindMarkers function in 
the Seurat package. Additionally, DEGs between normal liver tissues and tumor tissues were screened by limma 
package in TCGA-LIHC data. DEGs with adjusted P < 0.05 and | log fold change (log FC) |> 0.5 were considered 
 significant20.

Estimation of single cells CNV in HCC
Interindividual CNVs are used to determine the genomic contribution of complex traits in  HCC21–23. In our 
study, the R package InferCNV (v1.6.0) was used to calculate CNVs in cells derived from HCC tumor tissue, 
applying default parameters (https:// github. com/ broad insti tute/ infer CNV).

Enrichment analysis of KEGG
To explore the potential biological functions involved in HCC microenvironment cells, enrichment analysis 
of Kyoto Encyclopedia of Genes and Genomes  pathways24–26 was performed on top 50 clustered marker genes. 
KEGG analyses were performed using the clusterProfiler  package27, biological processes and pathways with 
p < 0.05 was considered significant in statistically.

Cellular communication analysis
Cellular communication processes and their regulation play an important role in cancer progression. In this 
study, we performed a cell–cell communication analysis using the iTALK package (https:// github. com/ Coolg 
enome/ iTALK), to depict the receptor-ligand interactions pairs between different cells in the HCC microenvi-
ronment. Considering the testing efficiency and computational burden, we focused on the tumor cells of interest 
and TME cell populations, and only 350–550 cells in each cell population were randomly selected for analysis.

Transcription factors (TFs)‑based gene regulatory network
Gene regulatory networks (GRNs) is the mechanism controlling gene expression in the organism, ensure coor-
dinated cell behavior and fate  decisions28. To construct GRNs and identify transcription factors (TFs) that 
regulate each gene module, we performed GRN analysis using the R package SCENIC (v1.1.3) based on default 
 parameters29,30. We obtained transcription factor binding profiles from the JASPAR database (https:// jaspar. gener 
eg. net)31, construct the patterns of TFs regulating each co-expressed gene module.

Pseudotime analysis
To infer the developmental trajectories of each cell type, we performed a pseudotime analysis using the R pack-
age Monocle 3 (https:// cole- trapn ell- lab. github. io/ monoc le3), and the results were dimensional clustering and 
visualization by the UMAP method.

Construction of the prognostic model
We used the top 30 genes expressed by the cell cluster specifically to characterize the relative abundance of the 
cells, and then used multivariate COX analysis to analyze the relationship between cells relative abundance and 
clinical features. Using the default cut-off value, the samples were divided into high- and low- abundance groups. 
Overall survival (OS) and relapse-free survival (RFS) were determined using R package survival and survminer, 
and the potential risk score for cell relative abundance was calculated using the formula proposed by Li et al.23.

Stemness score of tumor cells
Cancer stem cells are the main force of tumor initiation, self-proliferation, and renewal, a small amount of cancer 
stem cells is sufficient to initiate new tumor formation, causing recurrence and  metastasis32. We evaluated the 
cell stemness score based on R package TCGAbiolinks, cell stemness score calculated by the stemness index for 
the expression profile of each sample with default  parameters33,34.

Estimate systems immune response
Utilizing RNA-seq data, EaSIeR provides a comprehensive description of the immune response in complex 
and dynamic systems, such as tumors. We used the R package  easier35 for predicting immune response in HCC 
samples. We classified the samples based on the median of the scoring results. Those samples that scored above 
the median were grouped into the immunotherapy response group, while the samples that scored below were 
categorized as the immunotherapy resistance group. This allowed us to obtain the subtypes of HCC cells between 
HCC patients with immunotherapy response and HCC patients with immunotherapy resistance.

Statistical analysis
Statistical analyses of our study were performed using R (https:// www. rproj ect. org/). The gene expression levels 
were analyzed by an unpaired t test, when p < 0.05 were considered significant.The Bioinforcloud platform is the 
main platform used for data analysis in our study (http:// www. bioin forcl oud. org. cn).

https://github.com/broadinstitute/inferCNV
https://github.com/Coolgenome/iTALK
https://github.com/Coolgenome/iTALK
https://jaspar.genereg.net
https://jaspar.genereg.net
https://cole-trapnell-lab.github.io/monocle3
https://www.rproject.org/
http://www.bioinforcloud.org.cn
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Result
Single cellular landscape of tumor microenvironment in HCC
As shown in Fig. 1A, we constructed a global single-cell landscape of human HCC. After QC, we divided 89,655 
cells into 45 cell clusters, which were identified into 15 distinct cell types based on known markers (Fig. 1B), 
including HCC cells, epithelial cells (Ep), endothelial cells (En), fibroblasts (Fib),  CD8+ T cells, NKT cells, Naive.T 
cells, NK cells, B cells, macrophages (Mac), neutrophils (Neu), monocyte-derived dendritic cells (MDDC), plas-
macytoid dendritic cell (pDC), and innate lymphoid cells (ILC). Furthermore, there were some cells that detected 
expression of both T cell markers (CD3, CD247) and B cell markers (CD79A, CD79B) that were defined as Dou-
bleCell. Furthermore, we have showed the single-cell atlas of tumor samples in comparison with normal controls 
(Fig. 1C). Each cell marker exhibited a specific gene expression for the cell cluster, confirmed the accuracy of cell 
identity (Fig. 1D; Supplementary Table 3). Chromosomal CNV analysis based on single-cell expression profiles 
revealed multiple copy events in chromosomes 1 to 22 in HCC samples (Fig. 1E). The proportion of En and Mac 
cells was significantly increased in HCC compared to control (Fig. 1F). In conclusion, we constructed a global 
single-cell atlas of human HCC with precise cell type annotation, which is important for our in-depth analysis 
of the heterogeneity of the HCC tumor and tumor microenvironment.

Revealed malignant cell subtypes that important for HCC heterogeneity
Seven malignant cell clusters (HCC_FYB, HCC_GZMA, HCC_GPX2, HCC_LTB, HCC_HP, HCC_NTS, and 
HCC_HRG) were identified from 27 HCC tissues (Fig. 2A,B), and named according to the highest expressed 
marker genes (Fig. 2C). Among these, we found two cell clusters with obvious sample specificity (HCC_NTS 
and HCC_HRG). Functional enrichment analysis of each malignant cells cluster showed intratumoral hetero-
geneity of HCC, such as HCC_NTS and HCC_HRG specifically enriched in Oxidative phosphorylation, Notch 
signaling pathway, MAPK signaling pathway, and PPAR signaling pathway, suggesting that the enrichment of 
these pathways contributes to the high heterogeneity of cell clusters (Fig. 2D). Furthermore, we constructed the 
gene regulatory network (GRN) and found that the GRN with TFs as pivots was organized into two modules 
(Fig. 2E), the corresponding TFs was shown in Fig. 2F.

The level of cell stemness in various cell clusters was assessed as depicted in Fig. 2G. Score of HCC_FYB is 
0.46 ± 0.13 (mean ± STD), HCC_HP is 0.33 ± 0.05, HCC_NTS is 0.31 ± 0.07, and HCC_HRG is 0.31 ± 0.05, signifi-
cant differences under the Tukey HSD test (p < 0.01). In comparison to HCC_NTS and HCC_HRG, HCC_FYB 
and HCC_HP exhibited a significantly higher degree of stemness. We chose the HCC_FYB subcluster with the 
highest cell stemness score (Supplementary Table 4) as the initial stage for development and performed pseudo-
time analysis on malignant cells. Importantly, we identified HCC_HP that connects HCC_NTS and HCC_HRG 
(Fig. 2H), which aligns with the cell stemness scoring results. The cell cluster HCC_HP have cells derived from 
the same sample with HCC_NTS, and also have cells from the same samples with HCC_HRG. HP is mainly 
expressed in the liver and almost not in other tissues, and downregulated in liver  cancer36. Our these results 
suggests that HCC_HP may be malignantly transformed from hepatocytes and is one of the cancer stem cells. 
Furthermore, we figured out the different HCC subtypes of cell populations between immunotherapy response 
and immunotherapy-resistant HCC patients (Fig. 2I). It is worth noting that compared to the immunotherapy 
response group, HCC_HP, HCC_FYB were significantly increased in the immunotherapy-resistant group, and 
HCC_NTS and HCC_HRG were specifically enriched. These findings further highlight the close correlation 
between these subgroups and immunotherapy-resistant, which could impact the progression of HCC.

Stromal cells in HCC exhibit distinct different differentiation trajectories
To investigate the ecological landscape heterogeneity of TEC and carcinoma-associated fibroblasts (CAFs) cells 
in HCC and explore the potential link among stromal cells in HCC tumor progression, we clustered En and Fib 
cells separately. We applied the UMAP algorithm to cluster the endothelial cells into 9 clusters (Fig. 3A), and then 
mapped the cell clusters onto groups as shown in Fig. 3B. Several significantly increased tumor endothelial cells 
(TECs) clusters were observed in the endothelial cells of HCC, such as TEC_PLVAP, TEC_CCL5, TEC_GPX1, 
and TEC_SEMA3G (Fig. 3C). The highly expressed genes in these endothelial subsets have distinct differences, 
especially CCL 21, expressed only in a small cluster of cells (Fig. 3D). GO and KEGG enrichment analysis showed 
that the ErbB signaling pathway and the Notch signaling pathway were upregulated significantly in almost all 
TEC cell clusters (Fig. 3E). We constructed the GRN and found that the GRN with TFs as pivots was organized 
into three modules (Fig. 3F), and the specific gene expression was regulated by TFs such as DMBX1, FOXA1, 
and NR2E3 (Fig. 3G). The pseudotime analysis revealed that En_RAC2 served as the starting point of develop-
ment throughout the developmental process (Fig. 3H). In contrast, TEC_GPX1 is located at a terminal stage of 
development, suggesting its fully differentiated state. From the pseudotime analysis we noticed three subpopula-
tions located in the middle state, we constructed a multivariate regression prognostic model for these TECs cells 
clusters, and found that the relative abundance of them all could be used as great HCC prognostic index (Fig. 3I).

Additionally, to further explore the associations between Fib and En cells in HCC, we described the single 
cellular ecological landscape of Fib and also annotated CAFs cells to investigate the communication between 
TEC and CAF in subsequent studies. We applied the UMAP algorithm to cluster the fibroblasts of BTCs patients 
into 9 clusters (Fig. 4A,B). Based on the cell proportion, it is evident that CAF cells in HCC are highly complex 
(Fig. 4C). Two of these cell clusters highly express CD36 and were recently reported to provide an immuno-
suppressive microenvironment for HCC by secreting macrophage migration inhibitory  factors2. Markers gene 
expressions of distinct fibroblasts subpopulations were mapped to the single-cell atlas (Fig. 4D). GO and KEGG 
enrichment analysis revealed that the ErbB signaling pathway and GnRH signaling pathway were upregulated 
significantly in almost all CAF cell clusters (Fig. 4E). Based on the GRN, it was found that the GRN with TFs 
as pivots was organized into four modules (Fig. 4F), and that related TFs regulate the specific gene expression 
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Figure 1.  Single cellular landscape of tumor microenvironment in HCC. (A) Schematic diagram of our 
workflow. HCC tumor and adjacent tissues were processing and dissociated into single cells, and sequenced 
using 10 × Genomics platform. 45 cell clusters were identified of 89,655 cells. b. Expression correlation between 
single-cell clusters. (B) The cell types of single cells mapping HCC includes tumor cells (HCC), epithelial 
cells (Ep), endothelial cells (En), fibroblasts (Fib), CD8 + T cells, NKT cells, Naive.T cells, NK cells, B cells, 
macrophages (Mac), neutrophils (Neu), monocyte-derived dendritic cells (MDDC), plasmacytoid dendritic 
cell (pDC), and Innate lymphoid cells (ILC). (C) Single-cell atlas reveals the cell distribution in HCC patients 
and the control group. (D) Violin plots showing marker genes for 15 distinct cell types. (E) The heatmap shows 
the CNV levels of HCC in chromosomes 1 to 22. The rows represent the HCC samples, while the columns 
correspond to the specific chromosome numbers. (F) Bar plots showing the proportion of cell types in each 
sample. HCC, Hepatocellular carcinoma; scRNA-seq, single-cell RNA-sequencing; UMAP, Uniform Manifold 
Approximation and Projection.
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Figure 2.  Identification of the tumor cells clusters in human HCC. (A) Single-cell atlas shows the malignant cellular clusters 
of HCC. (B) Single-cell atlas shows cell clusters of tumor cells in related samples. (C) Marker genes for the distinct tumor 
cells clusters. (D) Biological pathways in distinct clusters of HCC. Bubble colors indicate the significance (−log10(FDR)) of 
enrichment, whereas bubble sizes correspond to the number of genes (Count) enriched in the pathway. (E) Transcription 
factors of tumor cells clusters in a co-expression pattern. Left: Heat map identified co-expression modules; Middle: major 
transcription factors and their binding sequences; Right: cell clusters of transcription factors. (F) The single-cell atlas 
showcases the transcription factors regulating gene expression in specific tumor cells clusters. The scatterplot of each tumor 
cells cluster highlights the top-ranked regulon with the highest score. (G) Cell stemness is scored for different cell clusters of 
HCC. (H) Single-cell atlas map the trajectory and pseudotime values of HCC malignent cells progression. (I) Differences in 
the abundance of tumor cells clusters between immunotherapy response and immunotherapy-resistant HCC patients.
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Figure 3.  Endothelial cells have heterogeneous differentiation in human HCC. (A) Single-cell atlas shows the endothelial cellular 
clusters of HCC. (B) Single-cell atlas shows clusters of endothelial cells in HCC and Control group. (C) Differences in the abundance 
of endothelial cells clusters in HCC tumor tissues and control samples. (D) Marker genes for the distinct endothelial cells clusters. 
Biological pathways in distinct clusters of endothelial cells. (E) Bubble colors indicate the significance (−log10(FDR)) of enrichment, 
whereas bubble sizes correspond to the number of genes (Count) enriched in the pathway. (F) Transcription factors of endothelial cells 
clusters in a co-expression pattern. Left: Heat map identified co-expression modules; Middle: major transcription factors and their 
binding sequences; Right: cell clusters of transcription factors. (G) The single-cell atlas showcases the transcription factors regulating 
gene expression in specific endothelial cells clusters. The scatterplot of each endothelial cells cluster highlights the top-ranked regulon 
with the highest score. (H) Single-cell atlas map the trajectory and pseudotime values of endothelial cells progression. Pie charts show 
the proportion of the different subpopulations in the clusters. (I) Multivariate regression prognostic model for cells clusters of HCC 
and control, p < 0.05 was considered statistically significant. HCC, Hepatocellular carcinoma; En, endothelial cells; TEC, tumor-
associated endothelial cells; RFS, relapse-free survival; UMAP, Uniform Manifold Approximation and Projection.
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Figure 4.  Fibroblasts component in human HCC is highly complex. (A) Single-cell atlas shows the fibroblasts cellular clusters of 
HCC. (B) Single-cell atlas shows clusters of fibroblasts in HCC and Control group. (C) Differences in the abundance of fibroblasts 
clusters in HCC tumor tissues and control samples. (D) Marker genes for the distinct fibroblasts clusters. (E) Biological pathways in 
distinct clusters of fibroblasts. Bubble colors indicate the significance (−log10(FDR)) of enrichment, whereas bubble sizes correspond 
to the number of genes (Count) enriched in the pathway. (F) Transcription factors of fibroblasts clusters in a co-expression pattern. 
Left: Heat map identified co-expression modules; Middle: major transcription factors and their binding sequences; Right: cell clusters 
of transcription factors. (G) The single-cell atlas showcases the transcription factors regulating gene expression in specific fibroblasts 
clusters. The scatterplot of each fibroblasts cluster highlights the top-ranked regulon with the highest score. (H) Single-cell atlas map 
the trajectory and pseudotime values of fibroblasts progression. Pie charts show the proportion of the different subpopulations in 
the clusters. (I) Multivariate regression prognostic model for cells clusters of HCC and control, p < 0.05 was considered statistically 
significant. HCC, Hepatocellular carcinoma; Fib, fibroblasts; CAF, carcinoma-associated fibroblasts; RFS, relapse-free survival; UMAP, 
Uniform Manifold Approximation and Projection.
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(Fig. 4G). The results of the pseudotime analysis show the developmental differentiation trajectories of CAF. 
Unlike En, the pseudotemporal developmental process of Fib shows few obvious transition-state cell clusters 
(Fig. 4H). Therefore, we selected three cell clusters located at the terminal of pseudotime development to con-
struct the multivariate regression prognostic model, evaluated the effect of subpopulations on prognosis. The 
relative abundance of CAF_APOC3, CAF_CD74 and CAF_COL1A_EFEMP1 all could serves as a potential 
model for prognostic evaluation (Fig. 4I).

Here, we observed that ErbB signaling pathway is upregulated in both TEC and CAF of HCC, and this path-
way is closely related to cell proliferation, migration, differentiation, apoptosis and cell movement, suggesting 
that the stromal cell activity of HCC is enhanced.

A new myeloid cell subpopulation were identified
Myeloid-derived cells play an important role in immune checkpoint  blockade37, where macrophages are among 
the key cells of TME and play a complex role in tumor  development38. Neutrophils have recently begun to receive 
increasing attention in terms of tumor progression suppression, but many aspects are still unknown about neu-
trophil heterogeneity in  tumors11.

To characterize myeloid immune cells in HCC, we reclustered macrophages (into 9 clusters) and neutrophils 
(into 8 clusters) (Figs. 5A,B and 6A,B). The TAM components of HCC reflects its high plasticity and are divided 
into four TAM subtypes (Fig. 5C), the expression of marker genes in distinct cell clusters shown in Fig. 5D, GnRH 
signaling pathway and ErbB signaling pathway was upregulated in TAM of HCC (Fig. 5E). The GRN with TFs 
as the pivots was organized into six modules (Fig. 5F) and regulated by eight TFs (Fig. 5G). The results of the 
pseudotime analysis shows different differentiation trajectory in TAM of HCC (Fig. 5H). Specifically, TAM_
IL32_HSPA1B arises through the differentiation of Mac_IL32, while TAM_C1QC gives rise to TAM_RANASE 
through further differentiation, which is facilitated by the participation of Mac_LGALS2.

Two significantly increased cell clusters (Neu_HSPA1A and Neu_TUBA4A) were identified in HCC (Fig. 6C). 
Moreover, three cell clusters (Neu_Neu LTB, Neu_HOPX, and Neu_NFKB1A) showed significant decreases in 
HCC. Markers of distinct neutrophils subpopulations were mapped to the single-cell atlas (Fig. 6D). Same as 
TAM cells, GnRH signaling pathway and ErbB signaling pathway are upregulated in the HCC related cell clus-
ter Neu_HSPA1A (Fig. 6E). The GRN with TFs as the pivots was organized into four modules (Fig. 6F). These 
TFs (TGIF2, FOXD1, SP2, NFATC4, and HESX1) regulate the specific gene expression (Fig. 6G). The results 
of the pseudotime analysis show that Neu_HOPX serves as the starting point for development, evolving into 
Neu_HSP90B1, Neu_LTB, and Neu_AIF1 subclusters (Fig. 6H). Additionally, Neu_HSPA1A is a developmental 
differentiation terminal cluster.

In tumor cells, we found a subtype of interest HCC_HP, and analyzed HP positive cell type, observing a 
cluster of neutrophils (Neu_AIF1) that showed positive expression of the HP gene. To explore the intercellular 
communication between this neutrophil subset and the HCC_HP, we performed the iTALK analysis (Fig. 7). 
These HP positive clusters (Neu_AIF1, CAF_APOC3, TEC_GPX1, HCC_HRG and HCC_HP) demonstrate 
extremely extensive intercellular communication. These results suggest that we may be able to inhibit HCC 
tumor progression by removing this newly identified neutrophil cluster (Neu_AIF1).

Lymphocytes in HCC are reprogrammed by the tumors
T-lymphocytes play an important effector role in killing in anti-tumor immunity. Here, we characterize the single-
cell landscape of  CD8+ T cells of HCC. The  CD8+ T cell clusters of HCC were re-clustered to obtain 9 cell clusters 
(Fig. 8A,B). Interestingly, the one of the  CD8+ T clusters with high HSPA1B expression  (CD8+ T_HSPA1B) was 
significantly higher in HCC compared to the control (Fig. 8C,D). Similar to myeloid cells, we observed that the 
GnRH signaling pathway and ErbB signaling pathway pathway were upregulated in these two HCC associated 
 CD8+ T cell clusters (Fig. 8E), however, both signaling pathways are downregulated in HCC-related NKT cell 
(Supplementary Fig. 1E). The GRN with TFs as pivots was organized into four modules (Fig. 8F) and regulated 
by night TFs (Fig. 8G). The results of the pseudotime analysis also indicate that  CD8+ T_HSPA1B is at a devel-
opmental terminal, indicating that it is in a fully differentiated state (Fig. 8H).

We observed that expression of HSPA1B was found not only in T lymphocytes, but also in NK lymphocytes 
(Supplementary Fig. 2). We speculated that malignant cells in HCC might be undergo immune reprogramming 
with HSPA1 as the axis, so we conducted intercellular communication analysis for all cell clusters that were 
positive for HSPA1 (HSPA1A or HSPA1B). Consistent with our speculation, there is extensive and complex 
intercellular communication between tumor cells and all HSPA1 positive cell clusters, suggesting that TME cells 
in HCC may be metabolically reprogrammed by tumor cells via the HSPA1-GRIN2D/TLR4 axis to promote 
tumor progression (Fig. 9).

Discussion
Immunotherapy has promising prospects for the treatment of advanced HCC, but the current response rates are 
low, which is closely related to the composition of the tumor and  TME39. Here, we provide a global single-cell 
transcriptome atlas to characterize the tumor ecosystem in HCC, performed a comprehensive analysis of the 
malignant cells, stromal cells, myeloid cells, and lymphocytes of TME in HCC, also constructed a prognostic 
model for some of these stromal cells.

Targeted therapies are likely to induce the stemness transformation of cancer cells and acquire drug 
 resistance9,40. Stemness score is an indicator to assess the similarity between tumor cells and stem cells, 
which is associated with the active biological processes in stem cells as well as the higher degree of tumor 
 dedifferentiation41. Our analysis revealed the presence of a malignant cell cluster (HCC_HP) in HCC that may 
contribute to the heterogeneity of the tumor, HP is downregulated in human HCC, the cell cluster HCC_HP have 
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Figure 5.  Macrophages have heterogeneous differentiation in human HCC. Single-cell atlas shows the macrophages 
cellular clusters of HCC. (A) Single-cell atlas shows clusters of macrophages in HCC and Control group. (B) Differences 
in the abundance of macrophages clusters in HCC tumor tissues and control samples. (C) Marker genes for the distinct 
macrophages clusters. (D) Biological pathways in distinct clusters of macrophages. Bubble colors indicate the significance 
(−log10(FDR)) of enrichment, whereas bubble sizes correspond to the number of genes (Count) enriched in the pathway. (E) 
Transcription factors of macrophages clusters in a co-expression pattern. Left: Heat map identified co-expression modules; 
Middle: major transcription factors and their binding sequences; Right: cell clusters of transcription factors. (F) The single-cell 
atlas showcases the transcription factors regulating gene expression in specific macrophages clusters. The scatterplot of each 
macrophages cluster highlights the top-ranked regulon with the highest score. (G) Single-cell atlas map the trajectory and 
pseudotime values of macrophages progression. Pie charts show the proportion of the different subpopulations in the clusters. 
HCC, Hepatocellular carcinoma; Mac, macrophages; TAM, tumor-associated macrophages; UMAP, Uniform Manifold 
Approximation and Projection.
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Figure 6.  Neutrophils (Neu) have heterogeneous differentiation in human HCC. (A) Single-cell atlas shows 
the neutrophils cellular clusters of HCC. (B) Single-cell atlas shows clusters of neutrophils in HCC and Control 
group. (C) Differences in the abundance of neutrophils clusters in HCC tumor tissues and control samples. (D) 
Marker genes for the distinct neutrophils clusters. (E) Biological pathways in distinct clusters of neutrophils. 
Bubble colors indicate the significance (−log10(FDR)) of enrichment, whereas bubble sizes correspond to 
the number of genes (Count) enriched in the pathway. (F) Transcription factors of neutrophils clusters in a 
co-expression pattern. Left: Heat map identified co-expression modules; Middle: major transcription factors 
and their binding sequences; Right: cell clusters of transcription factors. (G) The single-cell atlas showcases 
the transcription factors regulating gene expression in specific neutrophils clusters. The scatterplot of each 
neutrophils cluster highlights the top-ranked regulon with the highest score. (H) Single-cell atlas map the 
trajectory and pseudotime values of neutrophils progression. Pie charts show the proportion of the different 
subpopulations in the clusters. HCC, Hepatocellular carcinoma; Neu, Neutrophils; UMAP, Uniform Manifold 
Approximation and Projection.
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cells derived from the same sample with HCC_NTS, and also have cells from the same samples with HCC_HRG, 
possessed a highly stemness score, be located in a key position at the differentiation trajectory, which may possible 
differentiate into highly heterogeneous malignant cell subtypes (e.g., HCC_HRG and HCC_NTS). Addition-
lly, HCC_HRG and HCC_NTS exhibit significant enrichment within the Oxidative phosphorylation, MAPK 
signaling pathway, and the PPAR signaling pathway. Previous research has indicated that the NTS potentially 
regulates the MAPK signaling pathway, thereby facilitating HCC  progression42. The PPAR signaling pathway 
potentially plays a role in influencing the targeted induction of HCC differentiation in cancer stem  cells43. 
Notably, the HCC_HP subcluster exhibits no enrichment in pathways related to oxidative phosphorylation. This 
observation might account for the complete loss of gene expression related to oxidative phosphorylation within 
the population of HCC_HP.

The main focus of cancer immunotherapy is to interrupt the suppression of anti-tumor lymphocytes. In addi-
tion to lymphocytes, the HCC environment also includes many other immune cell types, such as neutrophils are 
becoming an important contributor to the pathogenesis of HCC, several neutrophils for HCC patients is currently 
in clinical  trials10. We found that Neu_HOPX, as the starting point of the developmental trajectory, may play an 

Figure 7.  The receptor-ligand pairs among HP gene positive expression cells. (A) The immune checkpoint 
receptor-ligand pairs among HP gene positive expression cells. (B) The chemokine receptor-ligand pairs 
among HP gene positive expression cells. (C) The growth factor receptor-ligand pairs among HP gene positive 
expression cells. (D) The other receptor-ligand pairs among HP gene positive expression cells.
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Figure 8.  CD8+ T cells have heterogeneous differentiation in human HCC. (A) Single-cell atlas shows the  CD8+ 
T cellular clusters of HCC. (B) Single-cell atlas shows clusters of  CD8+ T cells in HCC and Control group. (C) 
Differences in the abundance of  CD8+ T cells clusters in HCC tumor tissues and control samples. (D) Marker 
genes for the distinct  CD8+ T cells clusters. (E) Biological pathways in distinct clusters of  CD8+ T cells. Bubble 
colors indicate the significance (−log10(FDR)) of enrichment, whereas bubble sizes correspond to the number 
of genes (Count) enriched in the pathway. (F) Transcription factors of  CD8+ T cells clusters in a co-expression 
pattern. Left: Heat map identified co-expression modules; Middle: major transcription factors and their binding 
sequences; Right: cell clusters of transcription factors. (G) The single-cell atlas showcases the transcription 
factors regulating gene expression in specific  CD8+ T cells clusters. The scatterplot of each  CD8+ T cells 
cluster highlights the top-ranked regulon with the highest score. (H) Single-cell atlas map the trajectory and 
pseudotime values of  CD8+ T cells progression. Pie charts show the proportion of the different subpopulations 
in the clusters. HCC, Hepatocellular carcinoma; UMAP, Uniform Manifold Approximation and Projection.
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important role in neutrophil differentiation. Based on the intercellular ligand receptor interaction analysis of 
cell clusters with HP positive expression, indicating the active crosstalk between these cells. A novel cell cluster 
(Neu_AIF1) of immune cells was identified from these clusters and might hold value in immunotherapy research. 
Previous studies have demonstrated abnormal expression of LTB in human HCC samples, suggesting its potential 
as a novel target for  HCC44. Moreover, we also discovered its expression in neutrophils, and the precise role of 
Neu_LTB requires additional investigation.

Figure 9.  The receptor-ligand pairs among HCC tumor cells and TME cells. (A) The immune checkpoint 
receptor-ligand pairs among HCC tumor cells and TME cells. (B) The chemokine receptor-ligand pairs among 
HCC tumor cells and TME cells. (C) The receptor-ligand pairs among HSPA1 positive cells.
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We observed that HSPA1B was specifically expressed not only in T lymphocytes, but also NK lymphocytes 
(Supplementary Fig. 2). We speculated that malignant cells in HCC might undergo immune reprogramming 
with HSPA1 as the axis, so we conducted intercellular communication analysis for all cell clusters with positive 
expression of HSPA1 (HSPA1A or HSPA1B). Consistent with our speculation, extensive and complex intercellular 
communication exists between tumor cells and all HSPA1-positive cell clusters. We hypothesized that tumor 
cells may metabolically reprogram TME cells in HCC through the HSPA1-GRIN2D/TLR4 axis to promote 
tumor progression (Fig. 9).

In the global landscape analysis of TME of HCC, we found that many subsets of different cell types highly 
expressed the heat shock protein HSPA1 related gene (HSPA1A and HSPA1B), we speculate that there may be a 
metabolic reprogramming associated with HSPA1 in HCC. Accordingly, we performed intercellular communi-
cation analysis of HSPA1 positive expression cell clusters in all cell types, and found that hyperactive crosstalk 
between HCC associated TECs, CAFs, TAM, neutrophils, plasma cells, NK cells, NKT cells, and  CD8+ T cells. 
The cell cluster (TEC_CCL21) interacts with almost all immune cells, and CCL21 has been shown to promote 
tumor immune  escape45,46. Meanwhile, in the enrichment analysis of these cells, we noted the upregulation of 
ErbB signaling pathway, this pathway was directly related to exosome-mediated signal transduction in  tumors47,48. 
In summary, we hypothesized that exosome-mediated metabolic reprogramming with the HSPA1-GRIN2D/
TLR4 axis appeared in HCC, possibly use as a important target for immunotherapy research of HCC. However, 
due to the limited availability of HCC data, we can only mine the limited biological information in less than 
30 samples, many HCC malignant cells and TME cell types with higher heterogeneity still need to obtain more 
sequencing samples to understand, more samples of HCC could be considered for analysis in the future to assist 
in clinical treatment studies.

Conclusion
Our study analyzed the single-cell landscape heterogeneity of human HCC, identified new cell clusters in tumor 
cells (HCC_HP) and neutrophils (Neu_AIF1) with implications for immunotherapy research, discovered com-
plex intercellular communication between tumor cells and TME cells, and established high confidence prognostic 
model. We speculated from the results of the significantly up-regulated signaling pathway (ErbB signaling path-
way) and HSPA1-positive multicellular communication analysis that there is an exosome-mediated metabolic 
reprogramming process in HCC, which provides a meaningful target reference for immunotherapy studies.

Data availability
All data analysed during this study are included in this published article.
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