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Entropy in scalp EEG can be used 
as a preimplantation marker 
for VNS efficacy
B. Sklenarova 1,6, J. Chladek 1,2,3, M. Macek 2, M. Brazdil 1,3, J. Chrastina 4, T. Jurkova 5, 
P. Burilova 7, F. Plesinger 2, E. Zatloukalova 1,6 & I. Dolezalova 1,6*

Vagus nerve stimulation (VNS) is a therapeutic option in drug-resistant epilepsy. VNS leads to ≥ 50% 
seizure reduction in 50 to 60% of patients, termed "responders". The remaining 40 to 50% of patients, 
"non-responders", exhibit seizure reduction < 50%. Our work aims to differentiate between these two 
patient groups in preimplantation EEG analysis by employing several Entropy methods. We identified 
59 drug-resistant epilepsy patients treated with VNS. We established their response to VNS in terms 
of responders and non-responders. A preimplantation EEG with eyes open/closed, photic stimulation, 
and hyperventilation was found for each patient. The EEG was segmented into eight time intervals 
within four standard frequency bands. In all, 32 EEG segments were obtained. Seven Entropy methods 
were calculated for all segments. Subsequently, VNS responders and non-responders were compared 
using individual Entropy methods. VNS responders and non-responders differed significantly in all 
Entropy methods except Approximate Entropy. Spectral Entropy revealed the highest number of EEG 
segments differentiating between responders and non-responders. The most useful frequency band 
distinguishing responders and non-responders was the alpha frequency, and the most helpful time 
interval was hyperventilation and rest 4 (the end of EEG recording).

About one-third of patients with epilepsy are diagnosed as drug-resistant. In these cases, seizures persist despite 
treatment with antiseizure medication (ASM). Drug-resistant patients have a low chance of long-term cessation 
or significant seizure reduction with solely ASM1. They can be offered surgical therapy for epilepsy. If possible, 
resective brain surgery should be preferred because it is the only method with a high probability of long-term 
seizure freedom2. However, many patients do not respond to ASM and concomitantly are unsuitable candidates 
for brain surgery. Neurostimulation, specifically vagus nerve stimulation (VNS), deep brain stimulation of the 
anterior nuclei of thalami (ANT-DBS), or a responsive neurostimulator, can be therapeutic options in these 
situations3–8.

VNS is the most widely used neurostimulation for epilepsy. VNS therapy has advantages, such as minimal 
surgery with a low risk of severe complications, efficiency on seizure frequency, relatively good tolerability (the 
most common adverse events related to stimulation are mild voice hoarseness, dysphonia, cervical pain, exer-
tion dyspnea, cough, and snoring), and low costs when compared to ANT-DBS. European authorities have not 
approved responsive neurostimulators for clinical use9. One of the main disadvantages of VNS is the inability to 
reliably predict VNS efficacy based on preimplantation data. VNS therapy leads to a 50% seizure reduction in 
50 to 60% of patients, called “responders”. The remaining 40 to 50% of patients are “non-responders”, with less 
than 50% seizure reduction3.

Our inability to predict VNS efficacy reflects our incomplete understanding of VNS action, which has not yet 
been fully elucidated. Still, the primary presumed mechanism of action is neural synchronization/desynchroni-
zation, as found in pioneering animal experiments10,11 and later confirmed in human connectivity studies12,13. 
These findings suggest VNS as a network therapy that modulates brain synchrony toward a less epileptogenic 
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state through the vagus afferent networks14–16. The conditions of synchronization or desynchronization mean 
different behavioral types and varying system complexity. Entropy is a measure of signal complexity and one 
of the basic concepts in information theory introduced by Shannon17. It measures a selected pattern’s expected 
uncertainty. Entropy can be practically interpreted as the higher the Entropy, the higher the degree of spectral 
or temporal irregularity. Thus, based on our assumption about VNS action, applying Entropy to differentiate 
between VNS responders and non-responders seems logical. Specific Entropy measures are used to study the 
different aspects of the statistical behavior of stochastic processes, providing the rationale for applying several 
types of Entropy methods as features18.

We conducted this study using several types of Entropy methods to determine differences in Entropy between 
VNS responders and non-responders based on preimplantation EEG analysis.

Methods
The main aim of our project was to reveal differences in preimplantation EEG between responders and non-
responders to VNS therapy using different Entropy methods. We retrospectively reviewed all patients treated 
with drug-resistant epilepsy and indicated for VNS therapy. The patients were included in the study if (1) the 
VNS efficacy could be determined in terms of VNS responder (≥ 50% seizure reduction) and VNS non-responder 
(< 50% seizure reduction), (2) preimplantation EEG recorded based on the defined protocol was available (see 
below), and (3) there were at least 2 years’ of follow-up data. The patients with unclear VNS efficacy, unavailable 
preimplantation EEG, and a lack of follow-up data were excluded from the study.

Preimplantation EEG with eyes open/closed, photic stimulation, and hyperventilation were found for each 
patient. The EEG were post-processed to analyze individual Entropy methods: (1) Spectral Entropy, (2) Approxi-
mate Entropy, (3) Sample Entropy, (4) Empirical Permutation Entropy for Ordinal Patterns, (5) Empirical Permuta-
tion Entropy for Ordinal Patterns with Tied Ranks, (6) Robust Empirical Permutation Entropy, and (7) Conditional 
Entropy. Subsequently, the preimplantation EEG of VNS responders and non-responders were compared to reveal 
differences in individual Entropy measures.

The ethics committee of St. Anne’s University Hospital approved the study. All participants gave their 
informed consent to the current study. All methods were performed in accordance with the relevant guidelines 
and regulations.

Patient selection
We selected patients indicated for VNS therapy for drug-resistant epilepsy. The inclusion criteria were: (1) drug-
resistant epilepsy treated with VNS, (2) available data about VNS efficacy two years after VNS initiation in terms 
of responders (≥ 50% seizure reduction) and non-responders (< 50% seizure reduction), and (3) availability of 
preimplantation EEG recorded based on the defined protocol. Patients with unclear VNS efficacy or insufficient 
follow-up data and patients without high-quality preimplantation EEG were excluded.

In patients included in the study, we collected stimulation parameters, namely out-put current, on/off-time, 
and stimulation frequency 20 Hz vs. 30 Hz. We used a pulse width of 250 μs with a stimulation frequency of 20 Hz 
and 500 μs with 30 Hz. These parameters were evaluated at the end of 2 years follow-up (the final VNS settings).

The implantation of VNS was based on a clinical decision that was not part of this study. All patients under-
went a comprehensive presurgical evaluation: MRI, video-EEG, neuropsychology, and 18-fluorodeoxyglucose 
positron emission tomography (FDG-PET). Other investigations (ictal/interictal SPECT and their subtraction 
or invasive EEG) were employed if indicated.

Demographic data (age at epilepsy onset, duration of epilepsy, type of epilepsy, and data regarding ASM) 
were collected in the electronic health record system.

Preimplantation EEG recording and post‑processing
Brazdil et al.9 described the details of EEG acquisition and post-processing. In brief, for each patient, we identi-
fied a preimplantation scalp EEG recorded on a 64-channel Alien Deymed system with international electrode 
placement and a sampling frequency of 128 Hz.

The recording protocol contained eight time intervals: (1) rest 1, (2) eyes open/closed 1, (3) rest 2, (4) photic 
stimulation, (5) hyperventilation, (6) eyes open/closed 2, (7) rest 3, and (8) rest 4 (the last two minutes of EEG 
recording). EEG was filtered with a sixth-order Butterworth bandpass filter in four predefined passbands (theta 
4–7.5 Hz, alpha 8–12 Hz, beta 14–30 Hz, and reduced low gamma band 31–45 Hz).

Using this process, we obtained 32 EEG segments, each characterized by a time interval and frequency band. 
To capture changes in complexity in the time series over time, the within-band Entropy values19 were calculated 
in sliding overlapped time windows of fixed sizes for each channel and passband. For each time segment, a mean 
Entropy value was computed as a percentage change to the mean Entropy value estimated from the correspond-
ing baseline region (rest 1).

As the last step, VNS responders and non-responders were compared based on individual Entropy changes 
in each time interval and frequency band.

The basic main characteristics of complexity include Entropy, Fractal Dimension, and Lyapunov coefficients20. 
Entropy was introduced by Shannon17 and became one of the basic concepts of information theory. It is consid-
ered a measure of uncertainty related to the probability distribution of random variables. For a discrete set of 
probabilities, the Shannon Entropy was expressed by the equation:

H = −

∑n

i=1
pilog

(

pi
)

.
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Its value can be practically interpreted as the higher the Entropy, the higher the degree of irregularity. The 
practical estimation of Entropy is not trivial. Therefore, many variants of Entropy and algorithms for Entropy 
estimation have been developed depending on different postulates of the probability distribution function pi. It 
has been shown that other Entropy estimates used with different empirically determined computational param-
eters can provide complementary information18,21. Therefore, this study evaluated seven types of Entropies in 
the spectral and temporal domain, all implemented in MATLAB (MathWorks®). For this work, we calculated 
the following Entropy measures: (1) Spectral Entropy22, (2) Approximate Entropy23, (3) Sample Entropy24, (4) 
Empirical Permutation Entropy for Ordinal Patterns, (5) Empirical Permutation Entropy for Ordinal Patterns 
with Tied Ranks, (6) Robust Empirical Permutation Entropy, and (7) Conditional Entropy21, the characteristics 
of which are summarized in Table 1.

Post‑hoc analysis
ROC analysis was performed to investigate the results obtained from the entropy analysis. The area under the 
ROC curve (AROC) was applied as a metric to quantify and find cut-off points that distinguish between respond-
ers and non-responders with satisfactory sensitivity and specificity. For identification between responders and 
non-responders, we considered the model to perform well when it achieved an AROC ≥ 0.75. This analysis was 
done for all electrodes in all entropy methods, time intervals, and frequency bands. All statistical calculations 
were again performed in Matlab software.

Statistic analysis
Demographic data between responders and non-responders were compared using Fisher’s exact or Mann–Whit-
ney tests. Statistical comparisons of different Entropy values between responders and non-responders were also 
performed with Mann–Whitney tests. We were interested in comparing the Entropy between groups for each 
frequency band and for each time interval from the protocol separately (we were particularly interested in three 
time intervals: the reactivity elicited during photo stimulation, during hyperventilation, and during subsequent 
rest). Using a false discovery rate (FDR), p-values for all 19 electrodes were corrected for multiple comparisons 
in each time interval and frequency band separately. Differences were considered significant when p ≤ 0.05.

Results
Patients characteristics
We included 59 patients treated with VNS for drug-resistant epilepsy, the demographic data (age at VNS implan-
tation, age at epilepsy onset, duration of epilepsy and type of epilepsy) are summarized in Table 1.

There were 24 (41%) responders to VNS and 35 (59%) non-responders. We did not find any statistically 
significant differences when comparing the demographic data of responders and non-responders (Table 2).

When analyzing differences in the final VNS settings between responders and non-responders, we found 
no significant differences in out-put current and on/off-time (off-time shorter than 3 min). The median of 
out-put current was 2 mA (min 1.75, max 2.5) in responders vs. 2 mA (min 1.5, max 2.5) in non-responders 
(p = 0.407). The changes of on/off-time were performed in 15 (63%) of responders vs. in 20 (57%) of non-respond-
ers (p = 0.790). The final VNS setting was more often on stimulation frequency/pulse width of 30 Hz/500 μs in 
non-responders. The frequency/pulse width 30 Hz/500 μs was used in 10 (29%) of non-responders vs. 1 (4%) 
of responders (p = 0.020).

Entropy
Significant statistical differences between VNS responders and non-responders were present in all types of 
Entropy except Approximate Entropy; in all cases, the responders and non-responders varied in different time 
intervals and frequency bands (Fig. 1). The most pronounced differences were in Spectral Entropy; in particular, 
significant differences between responders and non-responders were present in the EEG segments characterized 
by interval and frequency: (1) photic stimulation in beta, (2) hyperventilation in alpha, (3) hyperventilation in 
theta, (4) rest 3 in gamma, and (5) rest 4 in alpha (rest 3 and rest 4 are the resting states at the end of the EEG 
recording [Fig. 2]). The table with p-values for each electrode in the given Entropy method, time interval, and 
frequency band is attached as Supplementary Materials 1.

The alpha band was the most useful for differentiating between VNS responders and non-responders when 
looking at individual frequency bands. In the alpha band, all Entropy methods except Approximate Entropy 
revealed differences (Fig. 2). The most helpful time interval was hyperventilation and rest 4.

When analyzing the intervals in detail, where we confirmed significant differences between VNS responders 
and non-responders, we generally found that Entropy values were lower in responders than non-responders. 
The relative Entropy values in VNS responders were lower in 15 (83%) out of 18 intervals (see Supplementary 
Materials 2). The only three intervals in which VNS responders had higher levels of Entropy were in Spectral 
Entropy (photic stimulation in beta, hyperventilation in theta) and in Empirical Permutation Entropy for Ordinal 
Patterns with Tied Ranks (hyperventilation in theta).

Post‑hoc analysis
As the final step, we tried identifying the most discriminative electrodes between responders and non-responders 
in the given Entropy method, time interval, and frequency band (Table 3, Fig. 3, and Supplementary Materials 
3). When AROC analysis was performed, we identified 21 electrodes, enabling us to differentiate between VNS 
responders and non-responders with AROC ≥ 0.75 (Table 3). The highest number of discriminative electrodes 
defined by AROC ≥ 0.75 was found in Spectral Entropy (n = 6), followed by the Permutation Entropy for Ordinal 
Patterns with Tied Ranks (n = 5). However, the best results according to AROC were obtained for electrode C4 
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Entropy Description

Spectral entropy

Spectral Entropy has been proposed to measure signal regularity in 
the frequency domain. It was first used to determine the irregularity 
of the EEG α-rhythm by Inouye et al. (1991), who used the Entropy 
of the normalized power spectrum over the whole frequency range 
as an irregularity index and also as a within-band Entropy in four 
frequency bands: delta, theta, alpha, and beta19. A normalized 
power distribution can be viewed as a probability distribution, and 
then Spectral Entropy can be estimated as Shannon’s Entropy. The 
Entropy represents the uniformity of power spectral distribution, so 
the smallest Entropy corresponds to a single frequency component, 
while the largest values correspond to white noise. Calculation of 
the spectrum using fast Fourier transformation requires a stationary 
time series over the selected period; therefore, the spectrum is usu-
ally computed using moving windows or using a Welch periodogram 
[MATLAB (MathWorks®)]

Parameters: 4 s sliding time window with 100 point increments

Approximate entropy

Approximate Entropy was introduced in 1991 to solve the problems 
occurring in the analysis of short and noisy physiological signals. It 
was applied in heart rate analysis to distinguish between two groups 
of data23,25. The application of the method to EEG signal analysis was 
originally published by Rezek and Roberts26. Approximate Entropy 
is derived from formulas motivated by the Kolmogorov-Sinai 
Entropy enhanced in works of Grassberger and Procaccia, Takens 
and Eckmann-Ruelle, which are considered as "standard" Entropy 
measures for use with time-series data. The method is very stable 
to infrequent, significant outliers or numerical artifacts23 and is 
particularly suitable for detecting abnormalities in long-term data25, 
although it can be achieved with relatively few data points. For short 
time series, it is strongly dependent on data length, which may cause 
its inconsistency for different datasets. Therefore, Approximate 
Entropy is recommended for use with fixed parameters as a relative 
measure for comparing different datasets24. Moreover, if the data 
contain a lot of noise, then the estimate of the Approximate Entropy 
may not be valid25 or, as is reported in the case of Spectral Entropy, 
may interpret the signal in a completely opposite sense27. To calculate 
Approximate Entropy, we applied an algorithm implemented in the 
MATS toolkit28

Parameters: 4 s sliding time window with 100 point increments, 
embedded dimension 3, vector of the delay times 1

Sample Entropy

Sample Entropy was developed to eliminate the bias of Approximate 
Entropy and its strong dependency on the length of the data24. 
Despite the similarity between Sample Entropy and Approximate 
Entropy, they are based on different theoretical backgrounds. Sample 
Entropy is in fact an estimate of H2(T) Entropy introduced in the 
works of Broer and Takens21,29. Sample entropy is evaluated as a 
negative logarithm of the conditional probability that two sequences 
that are similar for a specified number of points remain similar in the 
next time step24. The estimation is based on counting pairs within 
a specified tolerance (r), where the self-matches are not included 
in calculating the probability and therefore its bias is reduced. Both 
parameters (m, r) are crucial for estimated entropy values, but no 
recommendations exist for their optimal settings24

Sample Entropy shows higher relative consistency than Approximate 
Entropy and is more appropriate for highly complex time series than 
Empirical Permutation Entropy21. We used the MATLAB SampleEn 
function implemented by Martinéz-Cagical30 according to Richman 
and Moorman24

Parameters: 4 s sliding time window with 100 point increments, 
embedded dimension 2, radius 0.01 of standard deviation, Euclidean 
distance type

Continued
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Entropy Description

Empirical permutation entropy for ordinal patterns

The concept of Permutation Entropy for Ordinal Patterns is a very 
promising emerging approach31. Permutation Entropy introduced 
by Unakafova20, was designed to measure the complexity of general 
high dimensional real-world time series: regular, chaotic, or noisy. 
The concept of permutation patterns combines Entropy and 
symbolic dynamics. It is based on mapping a time series into a set 
of not necessarily overlapping permutation patterns, called ordinal 
patterns, that describe relationships between adjacent values of the 
time series. Practically, the original signal is converted to a sequence 
of predefined patterns using ordinal transformation30,32. In our 
particular case, the Empirical Permutation Entropy was calculated 
using a modification of Permutation Entropy that was previously 
proposed32,33 and implemented31. An advantage of this implementa-
tion is the high speed of calculation based on precomputed ordinal 
pattern-based characteristics (e.g. ordinal distributions itself). 
Permutation Entropy values are then computed using lookup tables 
instead of computing ordinal pattern entropy for each time step. 
Entropy based on ordinal patterns has an extremely low sensitivity 
to noise, it is independent of the analysis period, and it is suitable 
for analyzing systems characterized by high dimensionality and low 
stationarity33,31,34. Possible limitations lie in bias arising from high 
permutation order34 and in the condition that the time-series data 
must not contain the same subsequent values. To avoid this type of 
misclassification, we also used the Empirical Permutation Entropy 
for Ordinal Patterns with Tied Ranks, which is described below

Parameters: window size 4 s, ordinal patterns order 3, time delay 1 
point

Empirical permutation entropy for ordinal patterns with tied ranks

Empirical Permutation Entropy for Ordinal Patterns with Tied Ranks 
is the improvement of the Empirical Permutation Entropy computed 
for ordinal patterns21. The method consists of adapting it to the same 
values of the "tied ranks" that occur with high frequency in the time 
series21. The method is less time consuming and more suitable for use 
with large datasets. On the other hand, the applicability of the algo-
rithm can be limited by a limited amount of precomputed lookup 
tables for commonly used embedding dimensions. The method has 
been previously implemented31

Parameters: window size 4 s, ordinal patterns order 3, delay 3 
between points in ordinal patterns

Robust empirical permutation entropy

The resistance of Permutation Entropy to noise and abnormal 
changes is quite low. Therefore, Robust Permutation Entropy was 
proposed21,33 and implemented31. The method is characterized by 
counting only the "robust" ordinal patterns with a sufficient number 
of reliable pair points. The disadvantage is that it depends on the 
setting of the method parameters. Although the threshold setting 
is ambiguous and the computation is more demanding in terms of 
time, the method exhibits much greater robustness in terms of obser-
vational noise and abnormal deviations such as artifacts

Parameters: window size 4 s, ordinal patterns order 6, delay 1 
between points in ordinal patterns, lower threshold 0.2, upper 
threshold 100

Conditional entropy

An algorithm for calculating Conditional Entropy proposed by 
Unakafova in 2014 and implemented31 is an efficiently computed 
Conditional Entropy of Ordinal patterns35. Conditional Entropy 
characterizes the average variety of ordinal patterns that follow a 
given ordinal pattern, while Permutation Entropy characterizes the 
variety of the ordinal patterns themselves. For several cases of, e.g., a 
periodic dynamic system, it provides a better estimation of Kolmog-
orov-Sinai Entropy (for finite order) than Permutation Entropy. The 
computational requirements are the same as for Permutation Entropy

Parameters: window size 4 s, ordinal patterns order 3, delay 1 
between points in ordinal patterns

Table 1.   Description of applied Entropy types—Spectral Entropy, Approximate Entropy, Sample Entropy, 
Permutation Entropy for Ordinal Patterns, Permutation Entropy for Ordinal Patterns with Tied Ranks, Robust 
Empirical Permutation Entropy, and Conditional Entropy.

Table 2.   Demographic data—Differences between vagus nerve stimulation (VNS) responders and non-
responders. Extra-TLE extra-temporal lobe epilepsy, G generalized, TLE temporal lobe epilepsy.

Non-responders Responders p-value

Age (years) at VNS implantation (median, min–max) 30 (19–65) 36 (19–62) 0.177

Age (years) at epilepsy onset (median, min–max) 12 (0–27) 5 (0–51) 0.223

Duration (years) of epilepsy before VNS implantation 15 (4–55) 26 (6–60) 0.284

Gender—female (%)/ male (%) 17 (71%)/7 (29%) 17 (49%)/18 (51%) 0.188

Type of epilepsy—TLE (%)/ extra-TLE (%)/ generalized (%) 5(21%)/18(75%)/1(4%) 8 (23%)/25 (71%)/2 (6%) 1
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Figure 1.   Individual Entropy types—differences between responders and non-responders to VNS therapy. The results of 
six types of Entropy measures (Spectral Entropy, Sample Entropy, Permutation Entropy for Ordinal Patterns, Permutation 
Entropy for Ordinal Patterns with Tied Ranks, Robust Empirical Permutation Entropy, and Conditional Entropy) are shown 
for a group of 59 patients treated with vagus nerve stimulation (VNS)—24 responders and 35 non-responders. The results 
for Approximate Entropy are not shown, because no significant differences were revealed. On the X axis, there are eight time 
intervals of the EEG record (rest 1—baseline, eyes open/closed 1, rest 2, photic stimulation, hyperventilation, eyes open/closed 
2, rest 3, and rest 4). On the Y axis, there are different frequency bands (theta, alpha, beta, and gamma). Each circle represents 
the head of a patient with electrodes placed according to the 10–20 EEG system36. A black dot represents each electrode. 
The larger white and red dots represent electrodes where statistically significant differences between responders and non-
responders were revealed in a given time interval for an individual frequency band. Blue underlines mark the time intervals of 
a given frequency band where statistical differences were found. Red underlines mark the time intervals of the given frequency 
band, in which we identified the most discriminative electrodes defined by the area under the ROC curve (AROC) ≥ 0.75. Red 
dots mark these most discriminative electrodes (n = 21). The curves for the two most discriminative electrodes defined by the 
highest AROC are shown in Fig. 3. The remaining 19 curves are part of Supplementary Materials.
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during Rest 3 in alpha in Robust Empirical Permutation Entropy (AROC = 0.81548) and for electrode P3 dur-
ing hyperventilation in alpha in Permutation Entropy for Ordinal Patterns with Tied Ranks (AROC = 0.80357, 
Fig. 3). The resting 19 AROC curves are enclosed as Supplementary Materials.

Discussion
VNS therapy is the most widely used neurostimulation method indicated for drug-resistant epilepsy. With effi-
cacy in 50 to 60% of implanted patients, VNS offers a significant probability of seizure reduction. However, VNS 
has only minimal or no impact on seizure frequency in almost half of the implanted patients3.

Several studies demonstrated that VNS responders and non-responders differ in some of their biological 
characteristics. Workewych et al. (2020) performed a systematic literature review to identify 16 unique bio-
markers to differentiate between them. These biomarkers can be divided into four groups: (1) network-based 

Figure 2.   The ability of individual time intervals and frequency bands to differentiate between responders and 
non-responders to vagus nerve stimulation (VNS). The figure shows the ability of individual Entropy measures 
to differentiate between VNS responders and VNS non-responders. The individual states are shown on the 
X-axis, and the number of contacts differentiating between responders and non-responders is on the Y-axis. The 
particular types of Entropy are marked by different colors.

Table 3.   The area under the ROC curve (AROC) with sensitivity and specificity for best cut-off point—the 21 
most discriminative electrodes in defined time interval and frequency band, calculated for individual Entropy 
methods. The two most discriminative electrodes are in bold.

Entropy Frequency band Interval Electrode AROC Sensitivity Specificity

Spectral entropy

Theta Hyperventilation
F7 0.752 0.914 0.625

T5 0.775 0.686 0.708

Alpha
Hyperventilation

C3 0.761 0.708 0.771

P3 0.762 0.667 0.771

Rest 4 C3 0.754 0.833 0.771

Gamma Open/Close Fz 0.760 0.708 0.771

Sample entropy Alpha

Open/Close P3 0.753 0.917 0.576

Rest 3 Fz 0.765 0.750 0.800

Rest 4 O1 0.769 0.792 0.657

Permutation entropy for ordinal patterns Alpha

Hyperventilation P3 0.796 0.750 0.686

Rest 4
C3 0.781 0.750 0.714

P3 0.774 0.792 0.743

Permutation entropy for ordinal patterns with 
tied ranks

Theta Hyperventilation P3 0.756 0.743 0.750

Alpha

Hyperventilation P3 0.804 0.792 0.686

Rest 4 T5 0.754 0.750 0.686

Rest 4 P3 0.783 0.792 0.686

Rest 4 O1 0.754 0.792 0.743

Robust empirical permutation entropy Alpha

Hyperventilation C4 0.768 0.708 0.800

Hyperventilation P3 0.771 0.625 0.800

Rest 3 C4 0.815 0.875 0.686

Rest 4 P3 0.764 0.833 0.629



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18849  | https://doi.org/10.1038/s41598-023-46113-z

www.nature.com/scientificreports/

or connectomic indicators, (2) electrophysiological indicators, (3) structural neuroimaging findings, and (4) 
systemic biomarkers, including heart rate variability (HRV)16.

Our group devoted attention to identifying electrophysiological indicators and HRV markers. Our first pub-
lication identified differences between responders and non-responders based on EEG power spectra analysis and 
its subsequent shift during EEG recordings37. We confirmed our results using a different EEG recording system38. 
Using HRV analysis as an independent marker, we found differences in the RR interval and in the percentage of 
adjacent NN intervals differing by more than 50 ms (pNN50)39.

The suggestion of synchronization as a mechanism of VNS action10–13 and the work of Bodin et al. (2015) 
inspired us to consider Entropy analysis40. Moreover, Sangare et al. (2020) found that VNS stimulation causes 
desynchronization in responders. This EEG change was not found in non-responders12. The different levels of 
synchronization can correlate to the varying types of system behavior and complexity, which are variables suit-
ably reflected by Entropy.

We analyzed seven Entropy measures and revealed differences in all of them except one. A similar concept 
was applied in the work of Kang et al. (2019). The authors investigated four Entropy methods (Sample Entropy, 
Permutation Entropy, Wavelet Entropy, and Fuzzy Entropy) to distinguish between children with autism spec-
trum disorder and typical development. They found that the an individual Entropy method were more sensitive 
with the increase of age41.

We found the highest number of differences when we employed Spectral Entropy. Spectral Entropy is derived 
from Shannon’s Entropy, which was demonstrated to be effective for the predictability of EEG series focusing on 
anesthetic drug effects34. Shannon’s Entropy is not normalized to the EEG total power, which leads to inter-indi-
vidual variance in the absolute value of Shannon’s Entropy, impeding its application in clinical settings. Spectral 
Entropy was designed to overcome this limitation42. Spectral Entropy is now widely applied in neuroscience43. 
It was used to predict changes in working memory performance reduced by short-time training in a delayed-
match-to-sample task43 and was involved in research on preclinical Alzheimer’s disease44.

Other Entropy methods were also successfully used in neurological and neuroscience research. Sample 
Entropy was found to be helpful in the identification of children with autism spectrum disorder41,45,46, in the 
classification of resting-state status45, and in the analysis of EEG from epileptic patients46. Permutation Entropy 
was applied to EEG to describe changes associated with a transition from wake to sleep47, early diagnosis of 
Alzheimer’s disease48, and seizure onset to enable seizure prediction49.

In general, there is a massive palette of individual Entropy methods, as was summarized in a complex review 
by Lau et al.50. Each method has advantages and disadvantages that another method can overcome. For example, 
Approximate Entropy and Sample Entropy are now the most widely applied. These methods are supposed to be 
unreflective of system complexity. Multiscale Entropy suppresses this limitation, but it was preferably designed 
to analyze long data, a disadvantage that can be compensated by another mathematical approach (e.g. MMSE, 
which is other version of MSE)50. From this point of view, it can be presumed that an individual Entropy method 
reflects a different behavior or character, and it seems adequate to use them in combinations for the correct system 
characterization. Our results can support this affirmation. When analyzing the most discriminative electrodes 
defined by the AROC ≥ 0.75, we identified 21 electrodes in different Entropy methods, time intervals, and fre-
quency bands. The Spectral Entropy contained six of them. Based on this finding, we could suppose the Spectral 
Entropy is the most valuable one. However, when focussing on the most discriminative electrodes defined by the 
highest AROC, they were not found in Spectral Entropy but in Permutation Entropy for Ordinal Patterns with 
Tied Ranks and Robus Empirical Permutation Entropy.

Figure 3.   The areas under the ROC curve (AROC) for the most discriminative electrodes. A/ Robust Empirical 
Permutation Entropy—electrode C4 during Rest 3 in alpha. B/ Permutation Entropy for Ordinal Patterns with 
Tied Ranks—electrode P3 during hyperventilation in alpha.
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As mentioned above, the suspected mechanism of VNS action is the desynchronization of EEG activity. 
This desynchronization/synchronization is tightly linked to the pathophysiological mechanisms of epilepsy. 
Epilepsy is a network disease characterized by epileptic seizures, which are thought to be the picture of abnor-
mally synchronized neuronal activity. If this pathological synchronization is disrupted, it probably results in 
seizure abolishment51,52. Our study found that VNS responders tend to have lower levels of Entropy before VNS 
initialization. Lower Entropy levels can be interpreted as lower levels of irregularity, i.e., a more synchronized 
state. We can hypothesize that patients with lower levels of irregularity can change their behavior. It means that 
they are capable of reacting by desynchronization in response to stimulation. This change in system complexity 
is reflected by increment Entropy. This finding was confirmed by Sangare et al.12.

Our study found the most pronounced differences in alpha and during hyperventilation. It is questionable 
why the alpha frequency range and hyperventilation are essential. The significance of alpha activity is not fully 
understood, but alpha is linked to the inhibition of the cerebral cortex. Jensen et al. (2010) suggested that alpha 
activity provides pulsed inhibition, reducing a given area’s processing capabilities. At the same time, active 
processing is reflected by synchronization in the gamma band accompanied by an alpha band decrease48. It is 
plausible that responders are characterized by a lower level of inhibition in alpha reflected by lower Entropy in 
this range. Hyperventilation is characterized by the physiological slowing of the brain rhythm and can be per-
ceived as a potentially proconvulsive state reflected by the triggering of interictal epileptiform discharges and 
seizures53,54. Based on this presumption, this more epileptogenic state increases the brain’s demands to suppress 
it, so the abnormalities in brain synchronization/desynchronization have more chances to manifest.

Based on these stated presumptions, VNS responders can be characterized by pathological levels of syn-
chronization, which are reflected by low levels of Entropy. Because these levels are lower, they can be artificially 
increased by stimulation, leading to desynchronization and increment Entropy, which leads to successful seizure 
abolishment. Vice versa, the mechanism of synchronization is not altered in VNS non-responders. That is why 
VNS cannot be effective in this population. The Entropy is not pathologically changed, so it cannot be increased, 
and stimulation does not lead to the required desynchronization. We have several questions that should be 
answered in the future. First, who—responders or non-responders—resembles the general (healthy) popula-
tion? Second, are other neurostimulation techniques based on similar pathophysiological mechanisms? If so, 
they may require different levels of complexity change for their successful application in a given patient. If it is 
possible to measure or evaluate the levels of alteration pre-operatively, it could be helpful in indicating a suitable 
neurostimulation technique (VNS vs. ANT-DBS vs. responsive neurostimulator).

In our study, the differences between VNS responses could not be attributed to different settings of VNS 
devices. In our study, VNS reponders and non-responders did not significantly differ in out-put current or on/
off-parameters. The only difference was present in stimulation frequency/pulse width. The stimulation frequency/
pulse width of 30 Hz/500 μs was more often used in VNS-non-responders, conditioned by the experience of 
experts in setting VNS parameters in our center. Initially, VNS devices are set on low out-put current, stimula-
tion frequency of 20 Hz, pulse width 250 μs, on-time 30 s, off-time 3 or 5 min. As a first step, we increase the 
out-put current to the maximal tolerable value. As the second step, we change the on/off-time parameters. 
When the optimal response is not reached, we shift the stimulation frequency/pulse width from 20 Hz/250 μs to 
30 Hz/500 μs. In the case of VNS responders, the efficacy in terms of seizure reduction was regarded as satisfac-
tory on 20 Hz/250 μs. That’s why 30 Hz/500 μs parameters were not applied except for one patient. In VNS non-
responders, we optimized the VNS response and adjusted stimulation frequency/pulse width to 30 Hz/500 μs. 
However, the effectiveness of this step was low in our cohort.

The preimplantation differentiation between VNS responders and non-responders is a holy grail in epilepsy 
research. It would lead to the minimalization of unnecessary surgery and improvement of financial allocation. 
From this point of view, it seems reasonable to focus on this topic. Several authors have identified individual 
preimplantation markers differentiating between VNS responders and non-responders, including in the analysis 
of laryngeal motor evoked potentials55 and in works based on MRI56,57 or magnetoencephalography (MEG) data 
analysis58. We can expect that at least some of these markers will be successfully incorporated into predictive 
algorithms.

Our work faces standard limitations of this type of research: its retrospective nature and a limited number of 
included subjects. Another limitation is due to the empirical setting of the parameters for the Entropy calcula-
tion. The optimization of these parameters should be the subject of further research. Despite these limitations, 
we believe it will be possible to create a precise "tool" that enables physicians to reliably predict the response in 
a given patient based on preimplantation data. That activity should be the main goal of the research focused on 
the differentiation between VNS responders and non-responders. There have been some attempts to construct 
such an algorithm with the application of machine learning37,56–58. However, we still lack their prospective veri-
fication in a large dataset.

Conclusion
When analyzing scalp preimplantation EEG with eyes closed, photic stimulation, and hyperventilation, it is 
possible to differentiate between VNS responders and non-responders by applying different Entropy methods. 
The particular Entropy methods may represent complementary information. Statistically significant results were 
obtained in all employed Entropy methods except Approximate Entropy. Spectral Entropy seems to be the most 
useful when differentiating between VNS responders and non-responders. The alpha frequency band was the 
most helpful, and the most helpful interval was hyperventilation. In our opinion, the difference between VNS 
responders and non-responders can reflect the pathological level of synchronization represented by Entropy in 
VNS responders. This pathological level found in responders can be artificially increased by VNS, leading to 
successful seizure abolishment in this population. By contrast, Entropy is probably on a "normal" level in VNS 
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non-responders. From this point of view and in accordance with the literature, it seems reasonable to apply more 
Entropy methods to delineate between VNS responders and non-responders, especially in prospective studies.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to patients protec-
tion but are available from the corresponding author on reasonable request.
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