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Electrochemical etching strategy 
for shaping monolithic 3D 
structures from 4H‑SiC wafers
André Hochreiter , Fabian Groß , Morris‑Niklas Möller , Michael Krieger  & 
Heiko B. Weber *

Silicon Carbide (SiC) is an outstanding material, not only for electronic applications, but also for 
projected functionalities in the realm of spin‑based quantum technologies, nano‑mechanical 
resonators and photonics‑on‑a‑chip. For shaping 3D structures out of SiC wafers, predominantly 
dry‑etching techniques are used. SiC is nearly inert with respect to wet etching, occasionally 
photoelectrochemical etching strategies have been applied. Here, we propose an electrochemical 
etching strategy that solely relies on defining etchable volumina by implantation of p‑dopants. 
Together with the inertness of the n‑doped regions, very sharp etching contrasts can be achieved. We 
present devices as different as monolithic cantilevers, disk‑shaped optical resonators and membranes 
etched out of a single crystal wafer. The high quality of the resulting surfaces can even be enhanced 
by thermal treatment, with shape‑stable devices up to and even beyond 1550°C. The versatility of our 
approach paves the way for new functionalities on SiC as high‑performance multi‑functional wafer 
platform.

Silicon Carbide (SiC), especially its polytype 4H-SiC, is an extraordinary material for integrating  electronics1, 
 photonics2, high-quality  mechanics3 and quantum technologies on the very same  chip4,5. Due to its technological 
breakthrough in power electronics, it is available as single crystalline high-quality wafers. When, further, optical 
and mechanical functionality is demanded, there is a need for highest-quality devices with three-dimensional 
geometries. As to optics, SiC provides the unusual opportunity of simultaneous χ(2) and χ(3)  nonlinearities6,7. 
The current state-of-the-art photonics-on-a-chip is not integrated with traditional SiC fabrication techniques, 
but uses thin SiC-on-insulator  technology4,8,9. As to mechanics-on-a-chip, SiC provides an outstanding intrinsic 
property: it has the lowest internal damping of all known  materials3,9,10. Also here, device fabrication utilizes 
thin SiC layers on a sacrificial substrate. Given the extraordinary set of parameters of SiC, it is desirable to 
identify monolithic technologies for the preparation of optical and mechanical devices along with the electronic 
functionality. Compatibility with high-temperature protocols, for example epitaxial graphene  growth11 or defect 
 annealing12, would be beneficial.

For such applications, however, a technological prerequisite is an etching strategy that forms the desired 
3D-structures monolithically out of the single-crystal wafer, while maintaining high-quality surfaces and low 
defect budgets. The commonly used gas etching strategies (ICP-RIE/RIE) are projective, and even ‘anisotropic’ 
gas etching has limited aspect  ratios13–15. Further, they are prone to create surface-near point-defects. Therefore, 
a new process strategy is required. In an effort to increase the design space for advanced 3D geometries like 
cantilevers, disk-shaped resonators or membranes (cf. Fig. 1), including long-range lateral etching, we present 
a route based on implantation and subsequent electrochemical etching (ECE).

SiC is nearly inert and only few chemical reagents to resolve it under moderate conditions are known. Typi-
cally, both high temperatures and strong etchants are  needed16. Here we choose positive charge carriers (holes, 
h+) at the surface for the electrochemical attack. We opt for etching under alkaline conditions, the electro-
chemistry of which has extensively been studied by van Dorp17–19. In order to provide the required h+ on the 
surface, a vast majority of publications uses electron–hole creation by ultraviolet light including our own pre-
vious  work5,20–22. This methodology is limited because of optical constraints, in particular it has poor vertical 
 control22. Here we favor an electrochemical strategy where h+-concentrations are created by appropriate doping 
patterns. Additional control can be gained by electric potentials. In a late stage of our investigations, we found 
that the etching strategy is similar  to23.
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Etching of SiC involves a two-step process. First, oxidation of SiC follows two possible reaction pathways 
for the  oxidation24:

According to current knowledge, both oxidation pathways take place simultaneously, while the applied voltage 
determines the ratio of  both25. Experimentally it is indeed reported that the dissolution valence, i.e. the number 
of charge carriers required to etch one formula unit of SiC is between 6 and 6.918,24. In a second step, the resulting 
reaction products SiOx are removed by the electrolyte, that is potassium hydroxide (KOH). The dissolution of 
SiO2 involves the adsorption of water with the formation of hydrated silica ( SiO2 + 2H2O → Si(OH)4 ) and an 
attack by hydroxyl ions to form a soluble silicate ( Si(OH)4 + 2OH− → [Si(OH)2O2]

2− + 2H2O)26,27.
In steady state, the oxidation of SiC and the subsequent dissolution of SiOx occur with the same rate, which 

is our desired regime of operation, see Fig. 2. Otherwise, an overshooting of the SiO2-formation would passivate 
the surface and block the electrochemical process. This would result in an oscillatory behavior at higher rates, 
which we avoided by sticking to low reaction  rates28,29.

This electrochemical reaction gives a handle to remove specific volumina selectively. p-doped, i.e. h+-rich 
regions can efficiently be etched as opposed to n-doped regions where, due to the lack of h+ , etching is com-
pletely suppressed.

(1)SiC+ 4H2O+ 8h+ → SiO2 + CO2 ↑ +8H+

(2)SiC+ 2H2O+ 4h+ → SiO+ CO ↑ +4H+.

Figure 1.  Monolithically etched 3D-devices from single-crystal 4H-SiC wafer. (a) disk-shape optical resonator, 
(b) doubly clamped mechanical resonator, (c) single clamped mechanical resonator, (d) free-standing circular 
membrane (central hole is required as etching access). (a–c) SEM micrographs, (d) optical micrograph.

Figure 2.  Electrochemical oxidation reactions. (a) Electrochemical etching setup. The current (I) flows via the 
p-SiC layer to the counter electrode. (b) Dissolution of SiC , forming SiO and SiO2 as intermediates, subsequently 
forming soluble silicates. (c) Oxidation ( rox ) and dissolution ( rdiss ) rates as a function of applied voltage. The 
grey area indicates the voltage range suitable for steady-state etching.
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We start with a 4°-off-axis n-type wafer with an epilayer (nitrogen-doped  1016  cm−3). The required doping 
profiles can be defined by ion implantation, which is described in detail in the SI, detailed data can be found 
 in30. The hole concentration profile is shown in Fig. 3, where Aluminum-implantation creates a box-like p-type 
profile in a depth from 550 nm to 1.6 µm. At its flank, the hole concentration drops by more than ten orders of 
magnitude within 50 nm, which gives hope that the etch-stop is defined within atomic precision. In order to 
ensure reliable n-doping of the top layer, a counter implantation with Nitrogen is performed. Subsequent anneal-
ing to 1700°C for 30 min in 900 mbar Argon-atmosphere re-establishes the crystalline lattice (locally, a carbon 
cap stabilizes the  surface31). Note that dopant diffusion is essentially absent in the rigid SiC-lattice.

For the geometries in this manuscript, we used only vertical implantation profiles. The methodology can 
be readily extended to more complex 3D structures, when in addition, lateral patterning of the implantation is 
achieved, for example with robust metallic masks.

But also with laterally homogeneous doping profiles, 3D structures can be defined. For this purpose, we 
pattern resist masks which define a top window (electron beam lithography or similar). A projective etching of 
the n-type layer is performed by standard RIE / ICP-RIE techniques, such that the p-SiC layer is slightly etched. 
Now, the ECE is performed, which isotropically removes the p-SiC layer, see Fig. 4. A typical lateral etch velocity 
is 2 µm/h. Care has to be taken that during this process an uninterrupted current path through the p-type layer 
has to be maintained. If however, p-type areas are disconnected from the current pathway during the etching, the 
dissolution stops for this island. While this may occur unintendedly, this property can also be exploited for the 
positive (see e.g. self-limited support columns for disk-shape optical resonators in Fig. 4). In any case, maintain-
ing intact current pathways throughout the etching process has the rank of a design principle.

Figure 1 displays a cantilever-like structure after ECE. We report one complication that arises after the 
ECE. Underneath the top n-type layer, in barely accessible regions, often an undesired porous p-type structure 
remains (goat beard), see SI. It reminds the formation of porous SiC in  KOH35. It can reliably be removed by two 
simple techniques: either a subsequent isotropic dry etch with  CF4 at 190 mTorr that is suited for well-accessible 
devices like cantilevers, see SI. Alternatively, high temperature annealing beyond 1000°C in 900 mbar Argon 
atmosphere removes this layer even in hardly accessible regions. It can be suspected that thermal oxidation has 
a similar  effect36,37.

An obvious quality criterion for optical or mechanical devices is the surface roughness. In our devices, the 
ECE process leaves the etched surface quite smooth. The top surface of the n-SiC layer is essentially unchanged 
(in our experiments,  rmstop = 1.46 nm, see Fig. 5a). For characterizing the bottom layer, we removed a single 
clamped cantilever with scotch tape and studied its surface with the AFM. The result is shown in Fig. 5b, it 
yields  rmsbottom = 2.48 nm. Hence, both the unetched top and the freshly etched bottom surfaces have both low 
surface roughness.

Finally, we address the question, how the presented 3D fabrication technique is compliant with further pro-
cessing. Underetched devices were spin-coated with PMMA and nLof resist materials without being damaged. 
They also survived lift-off processes, rinsing and drying without special precautions. Remarkably, the devices 
are also robust with respect to high-temperature steps. In SiC, relevant spin-carrying color centers are created, 
converted and finally annealed out in a temperature range from 400°C to 1400°C12. The native oxide layer sub-
limes at temperatures above 800°C in  UHV38. Epitaxial graphene fabrication in n-type 4H-SiC is performed at 
above 1500°C39. Unintentional implantation damage anneals out at 1600°C to 1700°C. Hence, we explored this 

Figure 3.  Dopant-defined layers for electrochemical etching. By suitable implantation profiles for Aluminum 
and Nitrogen, a sharply defined p-SiC layer with an excess of positive charge carriers (holes) is defined. The hole 
concentration is calculated, utilizing the charge neutrality equation, assuming a compensation ratio of 0.3532, 
and a doping concentration dependant ionization energy ( Eion(NAl) = 210meV− 3 · 10−8eVcm · N

1/3

Al
)33,34.
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entire temperature range with completely processed devices like cantilever structures or membranes. They were 
exposed to high temperature steps in Ar atmosphere (900 mbar) for 30 min and subsequently investigated with 
SEM (see Fig. 6a–d) and AFM (Fig. 6e). The shape of the cantilevers is maintained at least up to 1550°C. Beyond 
this temperature, as can be seen in Fig. 6d a visible re-arrangement occurs. It is most obvious at the lower edge, 
where a discontinuity has been created. Also in the lower and upper left corners, an additional faceted transi-
tion is formed, following crystalline directions. Remarkably, below 1550°C, our cantilevers provide an excellent 
shape stability. An analysis of the upper surface profile shows very little effect up to 1200°C. In the temperature 
range of 1275°C to 1350°C, pronounced terraces are formed and step bunching occurs (4° miscut) with typical 
step heights of the order of 10 nm, beyond 1550°C approaching towards 25 nm.

From the contrast in the SEM micrographs, the characteristic pattern of the initiation of graphene growth 
becomes apparent, which forms a homogenous coverage when annealing the sample at 1700°C11. This is more 
than an interesting detail: epitaxial graphene provides an atomically smooth surface termination that is inert as 
long as oxygen plasma is avoided.

In conclusion, we present a versatile electrochemical fabrication route for generating high-quality mono-
lithic 3D devices in SiC. The shape of the 3D structure is defined by doping profiles. The surface quality can be 
enhanced by high temperature annealing. While in this study, we limited ourselves to homogenous p-type layers 
and homogeneous n-type top layers, much more refined 3D shaping is possible. Such 3D devices, monolithically 
carved out of monocrystalline SiC wafers, pave the way to implement mechanical and optical monolithic devices 
with excellent surface properties on the SiC platform. Together with the already available electrical semiconductor 

Figure 4.  Electrochemical etching using dopant-defined layers. (a,b) Before ECE, areas to be removed are 
defined by lithography and gas etching slightly into the p-layer. Positive charge carriers (h+), required for 
ECE, are supplied via Ni/Al ohmic contacts. Applying anodic voltages results in (energy) band bending of the 
semiconductor, holes accumulate at the p-SiC/KOH interface and promote etching. (c, d) ECE removes the 
p-SiC layer. The etching is stopped vertically by the n-SiC layer; the lateral etching is stopped as soon as the 
remaining p-island is electrically unconnected. Without any applied potential, the p-SiC/KOH interface depletes 
of holes (due to band bending, grey area). (b,d) SEM micrographs, scale-bar: 2 µm.

Figure 5.  Surface characterization after ECE. AFM measurements on a cantilever (top and bottom surfaces). 
Statistical evaluation yields roughnesses of  rmstop = 1.46 nm and  rmsbottom = 2.48 nm. The scale-bar refers to 
500 nm. (b) Height profiles referring to the lines indicated in (a).
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functionalities, graphene electronics and spin-physics in SiC a rich toolbox can be established, unifying quantum 
and classical technologies on the very same chip (Supplementary Information).

Data availability
The data that support the findings of this study is available in an open-access repository: https:// doi. org/ 10. 
22000/ 1722. 
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