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Seven chromatin regulators 
as immune cell infiltration 
characteristics, potential diagnostic 
biomarkers and drugs prediction 
in hepatocellular carcinoma
Jin‑wen Chai 1, Xi‑wen Hu 2, Miao‑miao Zhang 1 & Yu‑na Dong  3*

Treatment is challenging due to the heterogeneity of hepatocellular carcinoma (HCC). Chromatin 
regulators (CRs) are important in epigenetics and are closely associated with HCC. We obtained 
HCC-related expression data and relevant clinical data from The Cancer Genome Atlas (TCGA) 
databases. Then, we crossed the differentially expressed genes (DEGs), immune-related genes and 
CRs to obtain immune-related chromatin regulators differentially expressed genes (IRCR DEGs). 
Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to 
select the prognostic gene and construct a risk model for predicting prognosis in HCC, followed by 
a correlation analysis of risk scores with clinical characteristics. Finally, we also carried out immune 
microenvironment analysis and drug sensitivity analysis, the correlation between risk score and 
clinical characteristics was analyzed. In addition, we carried out immune microenvironment analysis 
and drug sensitivity analysis. Functional analysis suggested that IRCR DEGs was mainly enriched in 
chromatin-related biological processes. We identified and validated PPARGC1A, DUSP1, APOBEC3A, 
AIRE, HDAC11, HMGB2 and APOBEC3B as prognostic biomarkers for the risk model construction. 
The model was also related to immune cell infiltration, and the expression of CD48, CTLA4, HHLA2, 
TNFSF9 and TNFSF15 was higher in high-risk group. HCC patients in the high-risk group were more 
sensitive to Axitinib, Docetaxel, Erlotinib, and Metformin. In this study, we construct a prognostic 
model of immune-associated chromatin regulators, which provides new ideas and research directions 
for the accurate treatment of HCC.

Primary liver cancer is the sixth most common primary tumor and the fourth most common cause of cancer-
related death worldwide1, HCC accounts for 80–90%2. Although early HCC can be cured by local ablation, 
surgical resection or liver transplantation, most HCC cases in the world are in the advanced stage. Targeted 
systemic therapy and immune checkpoint inhibitors (ICIs) have been proven to be effective treatment options for 
advanced HCC patients3,4, but some patients still do not benefit from them, which may be related to the complex 
tumor microenvironment (TME). TME is a micro-internal environment with immune inflammatory response, 
hypoxia and low pH composed of tumor cells and non-tumor cells. These characteristics affect the occurrence 
and development of tumor and treatment resistance. Among them, immune cells and a variety of factors released 
by them play an important role in TME5,6. Intensive investigation of immune cells and interactions within the 
TME is important to improve the efficacy of antitumor drugs7. Recently, the construction of immune-related 
risk models using bioinformatics techniques can accurately predict the prognosis of cancer patients and guide 
the efficacy of ICIs therapy8,9.

The heterogeneity of HCC is also related to genetics, epigenetics, proteomics, transcriptomics and 
metabolomics10–12. In recent years, epigenetics has attracted wide attention. Epigenetics does not change the 
gene sequence to achieve the regulation of gene expression, thus affecting tumorigenesis and all hallmarks 
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of cancer13–15. The current studies suggest that epigenetic alterations contribute to promote tumor immune 
function16,17, and epigenetic therapeutics assist in enhancing the effect of immunotherapy18,19. For instance, the 
histone deacetylase inhibitor Belinostat improves the anti-tumor activity of CTLA-4 in a subcutaneous Hepa129 
murine HCC model, reflecting the synergistic effect of combined therapy20. In HCC animal experiment with 
the EZH2 inhibitor DZNep and anti-PD-L1 antibody, combination treatment upregulated the expression of 
Th 1 chemokines and associated tumor antigens, promoted effector T cell infiltration and promoted antitumor 
immunity21. Chromatin regulators (CRs) were vital regulatory element in epigenetics22. CRs were mainly clas-
sified into three major categories according to roles in epigenetics: DNA methylators, histone modifiers, and 
chromatin remodelers23,24. Mutations in chromatin regulators, such as ARID1A, ARID1B, ARID2, MLL, and 
MLL3, may contribute to the occurrence and progress of HCC25. Chromatin remodeling factor ARID2 expression 
was negatively correlated with pathological grade and organ metastasis in HCC patients, and ARID2 knockout 
promotes metastasis in HCC mouse models26. Previous studies found that CRs drive epigenetic alterations play 
an important role in HCC, and also revealed their role patterns in HCC patients27,28. The study by Dai et al. 
identified three CR-related patterns and established the CRs phenotype-related gene signature to predict energy 
metabolism and cuproptosis activity in HCC29. Although the construction of polygenic prognostic models based 
on CRs and immune-related genes provides potential indicators for the response of ICIs. However, as far as we 
know, there is no study on the combined analysis of CRs and immune-related genes in HCC.

In this study, we investigated the expression profiles and functional enrichment of immune-related CRs in 
HCC. We successfully constructed a new prognostic model of HCC based on seven genes, PPARGC1A, DUSP1, 
APOBEC3A, AIRE, HDAC11, HMGB2, and APOBEC3B. Furthermore, we analyzed the correlation between 
risk score and clinical characteristics, and explored the correlation between the risk model and the immune 
microenvironment in HCC. Our results provide a new direction for revealing new biomarkers and new ideas 
for the accurate treatment of HCC.

Materials and methods
Data collection
The RNA sequencing (RNA-seq) data and relevant clinical data of HCC including 374 cancer samples and 50 
para-cancer samples were downloaded from The Cancer Genome Atlas (TCGA) database (https://​portal.​gdc.​
cancer.​gov/)30. Another 232 Japanese population HCC samples were obtained from the ICGC portal (https://​
dcc.​icgc.​org/​proje​cts/​LIRI-​JP)31.

A total of 870 Chromatin regulators (CRs) were retrieved from previous topic research22. The lists of immune-
related genes were downloaded from the InnateDB (https://​www.​innat​edb.​com/) and totaling 1040 human 
immune-related genes (Supplementary Table 1).

Identification of immune‑related CRs differentially expressed genes (IRCR DEGs)
Based on the genes expression of cancer tissues and para-cancer tissues in the TCGA-HCC dataset, differentially 
expressed genes (DEGs) were obtained using the “limma” R package according to the criteria of |log2 FC (fold 
change)|> 1 and adjusted p values < 0.01. Then the “VennDiagram” R package was utilized to obtain IRCR DEGs 
for the above DEGs. In addition, we obtained the mutations of IRCR DEGs through Gene Set Cancer Analysis 
(GSCA) (http://​bioin​fo.​life.​hust.​edu.​cn/​GSCA/#/)32.

Functional enrichment analyses and gene–gene interaction network
To analyze the identified IRCR DEGs, the Gene Ontology (GO)33 and Kyoto Encyclopedia of Genes and Genomes 
(KEGG)34 pathway enrichment analyses were performed and visualized using the “clusterProfiler”35 and “GOplot” 
R package36. An adjusted p value < 0.05 was considered the screening criterion for significantly enriched terms.

GeneMANIA37, a flexible plugin of Cytoscape, which was applied to identify the genes most relevant to the 
query gene set and to construct a composite gene–gene functional interaction network.

Construction of a prognostic model based on IRCRs
We performed lasso-penalized Cox regression analysis to construct the prognostic risk model through glmnet 
R package. Risk scores were calculated by the following formula:

All HCC patients were divided into high-risk group and low-risk group by the median risk score. Moreover, 
we plotted K-M survival curve to evaluate the discrepancy of OS between the two groups by the “Survminer” R 
package38, and time-related receiver operating characteristic (ROC) curves were applied to assess the accuracy 
of the risk model by the “survivalROC” (version 1.03) packages39. The ICGC LIRI-JP dataset was considered as 
a valid set for further external verification of the prognostic model.

Construction of nomogram model
We researched the relationship between IRCR-based signature and clinical characteristics in HCC. To verify 
whether the signature risk score could be used as an independent prognostic factor in HCC patients, univariate 
and multivariate Cox regression analyses were performed. A nomogram associated with outcome was built to 
investigate the probability of prognosis for HCC patients. The calibration curve was performed to assess the 
predictive utility of the nomogram.

Risk score =
∑

(coefficienti ∗ expression of mRNAi)

https://portal.gdc.cancer.gov/)
https://portal.gdc.cancer.gov/)
https://dcc.icgc.org/projects/LIRI-JP)
https://dcc.icgc.org/projects/LIRI-JP)
https://www.innatedb.com/
http://bioinfo.life.hust.edu.cn/GSCA/#/)
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Immune cell infiltration analysis
In order to determine the immune prognostic correlation of IRCR-based signature in HCC, we used CIBERSORT, 
CIBERSORT-ABS, QUANTISEQ, MCP-counter, XCELL, TIMER, and EPIC algorithms to evaluate the infiltra-
tion level of immune cells between high-risk group and low-risk group. Meanwhile, we explored the expression 
of several immune checkpoints to predict the effect of immune checkpoint blockade therapy. In addition, the 
TIMER database(https://​cistr​ome.​shiny​apps.​io/​timer/)40 was used to identify the correlations between 7 IRCRs 
and six immune cells (B cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and dendritic cells) in 
HCC.

Drug sensitivity analysis
The half-maximal inhibitory concentration (IC50) of drugs were analysed by using the Genomics of Drug Sen-
sitivity in Cancer (GDSC, http://​www.​cance​rrxge​ne.​org/)41 database, and the drugs sensitivity were predicted 
by using the “pRRophetic”42 R package.

Statistical methods
R (v.4.0.2) was used for statistical analysis and visualization. Differences between groups were compared using the 
Wilcoxon rank-sum test. P value < 0.05 was considered statistically significant (ns, p ≥ 0.05; *p < 0.05; **p < 0.01; 
***p < 0.001).

Informed consent
All participating authors give their consent for this work to be published.

Results
Identification and mutation analysis of IRCR DEGs in HCC samples
We found 4274 DEGs between the HCC and normal samples, of which 3054 were upregulated and 1220 were 
downregulated in the HCC samples (Fig. 1A, Supplementary Table 2). 9 IRCR DEGs were obtained by overlap-
ping 4274 DEGs, 870 CRs and 1040 human immune-related genes (Fig. 1B). The situation of single nucleotide 
variation (SNV) of 9 IRCR DEGs in HCC samples were summarized in Fig. 1C,D. The mutation frequency was 
100% in the 9 samples. Among them, PPARGC1A, EHMT2, AIRE and PKN1 were the highest mutated genes 
with more than 15% mutation rates. Besides, the most common variant classification was missense mutation. 
In addition, we found that single nucleotide polymorphisms (SNP) play an important role in the above mutated 
genes, and there were six classes of base substitution and the most common class was C > T.

Functional annotation of the IRCR DEGs
To explore the biological functions and potential mechanisms of the IRCR DEGs in the TCGA-HCC cohort, we 
performed GO and KEGG enrichment pathway analysis. A total of 94 Gene Ontology (GO) entries and 2 KEGG 
pathways were enriched in the 9 IRCRs (Supplementary Table 3). The results of biological process (BP) analysis 
showed that 9 IRCRs were remarkably involved in DNA methylation or demethylation, cytidine catabolic process, 
and cytidine deamination. Cellular component (CC) were located in P-body, cytoplasmic ribonucleoprotein gran-
ule, and ribonucleoprotein granule. Molecular function (MF) analysis suggested that cytidine deaminase activity, 
deoxycytidine deaminase activity, and hydrolase activity, acting on carbon–nitrogen (but not peptide) bonds 
were mainly enriched. From the KEGG pathway analysis, we found that these IRCRs were mainly associated with 
longevity regulating pathway and Viral life cycle-HIV-1 (Fig. 2A). Through the chord plot analysis of the top 15 
biological processes, we found that APOBEC3A and APOBEC3B were mainly involved in the above biological 
processes, and revealed that they play an important role in chromatin-related biological processes (Fig. 2C).

Based on the 9 IRCR DEGs of identified and potential targets were obtained by shared protein domains, co-
expression and pathway in the GeneMANIA, an entire network was constructed using Cytoscape(version 3.7.2). 
As shown in Fig. 3B, the results suggested that the 9 IRCR DEGs may interact with these 20 proteins, such as 
APOBEC1, APOBEC2, APOBEC3C, APOBEC4, ADAT2 and ADAT3, etc. (Fig. 2B).

Construction of a prognostic model based on IRCRs
A risk model was constructed with 7 genes (PPARGC1A, DUSP1, APOBEC3A, AIRE, HDAC11, HMGB2, 
APOBEC3B) by using LASSO Cox regression analysis (Fig. 3A,B). The risk score was calculated by coeffi-
cients of 7 IRCRs as following formula: risk score = (-0.1335 × PPARGC1A expression) + ( 0.0302 × DUSP1 
expression) + (0.1716 × APOBEC3A expression) + (0.3182 × AIRE expression) + (0.2219 × HDAC11 expres-
sion) + (0.1269 × HMGB2 expression) + (0.0219 × APOBEC3B expression) (Table 1). HCC patients were classi-
fied into two groups (high-risk group and low-risk group) according to the median risk score (Fig. 3C,D). The 
results of the KM curve showed that the prognosis of the high-risk group was significantly worse than that of the 
low-risk group (p < 0.001), which suggested that risk score was negatively correlated with prognosis (Fig. 3E). 
The time-dependent ROC analysis showed that the AUC values of 1, 2, and 3 years were 0.713, 0.66, and 0.674 
respectively, indicating the accuracy of the model in predicting patient prognosis (Fig. 3F).

External validation of the prognostic model
We divided HCC patients into low-risk and high-risk groups in the ICGC cohort based on relevant coefficients 
of 7 IRCRs. The results showed the distribution of survival status of each HCC patient and the heatmap of 7 
IRCRs in ICGC database (Fig. 4A,B). The results of Kaplan–Meier (p = 0.023) analysis showed consistency with 

https://cistrome.shinyapps.io/timer/)
http://www.cancerrxgene.org/)
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the TCGA cohort (Fig. 4C). In addition, the ROC curve showed AUC values of 0.713 (1 year), 0.66 (2 years) 
and 0.674 (3 years) (Fig. 4D).

Correlation between the risk score and clinical characteristics
To analyze whether the prognostic model participated in the development and progression of HCC, we used 
the Chi-square test to compare the risk score in different clinical characteristics. The result (Fig. 5) showed that 
there were significant differences between high- and low-risk groups in pathological stage (p = 0.023) and T 
stage (p = 0.032). Moreover, we further analyzed the prognostic significance of the signature in subgroups. The 
result suggested that IRCR-based signature showed excellent performance in predicting outcome in age ≤ 65 
(p = 0.009), age > 65 (p = 0.010), male (p = 0.002), female (p = 0.049), G1-G2 (p = 0.008), T1-T2 stage (p = 0.016), 
N0 (p < 0.001), M0 (p < 0.001) and Stage I-II (p = 0.019). While IRCR-based signature showed poor performance 
in predicting outcome in G3-G4 (p = 0.050), T3-T4 stage (p = 0.217) and Stage III-IV (p = 0.260) (Fig. 6).

Construction of nomogram model
Univariate COX regression analysis showed that risk group and pathologic stage were significantly relevant to 
the survival of HCC patients (p < 0.001) (Fig. 7A). In multivariate COX regression analysis, the risk group and 
pathologic stage were still remarkably related to the survival of HCC patients (p < 0.01) (Fig. 7B). Which dem-
onstrate that IRCR-based signature was an independent prognostic factor for HCC patients.

To further forecast the survival of HCC patients, we structured a nomogram comprised of risk group, gender, 
tumor grade and pathologic stage. Nomography predicted the prognostic survival probability of HCC patients 
at 1, 2, 3 years (Fig. 7C). The calibration curve indicated that there was a good consistency between the actual 
survival probability and the predicted probability (Fig. 7D).

Figure 1.   Identification and mutation profile analysis of IRCR DEGs from the TCGA-HCC cohort. (A) 
Volcano plot of 4274 differentially expressed genes. (B)The Venn diagram of DEGs, CRs, and immune-related 
genes were downloaded from the InnateDB. (C) Oncoplot displaying the situation of the SNV of IRCR DEGs in 
HCC samples from TCGA database. (D) The SNV classes of IRCR DEGs in TCGA-HCC cohort.
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Immune infiltration analysis of the IRCR‑based signature
According to the analyses of TIMER, CIBERSORT, CIBERSORTABS, XCELL, QUANTISEQ, EPIC, and MCP-
counter, the relationship between the IRCR-based signature and immune infiltration was displayed in the heat-
map (Fig. 8A). The result of XCELL indicated that the proportions of CD8 + naïve T cells, CD8 + central memory 
T cells, granulocyte-monocyte progenitor cells, hematopoietic stem cells, M2 macrophages, and Tregs were higher 
in the low-risk group, whereas myeloid dendritic cells, NK cells, Th1 cells and Th2 cells were higher in the high-
risk group (Supplementary Fig. 1). We also investigated the correlation between risk groups and key immune 
checkpoints. The result showed that there was a difference in the expression of CD48, CTLA4, HHLA2, IDO2, 
TNFSF9, and TNFSF15 between the two groups. In addition, CD48, CTLA4, HHLA2, TNFSF9, and TNFSF15 
were elevated in high-risk group, suggesting that the high-risk group are more likely to show immunosuppressive 
phenotype in tumor microenvironment (Fig. 8B).

Figure 2.   Functional annotation of IRCR DEGs. (A) KEGG enrichment analysis and the top 4 GO enrichment 
significance items of IRCR DEGs sorted by adjusted p value in BP, CC and MF. (B) The gene–gene interaction 
network of IRCR DEGs were constructed using GeneMania. (C) Chord plot showed the distribution of the top 
15 GO enrichment in BP.
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TIMER database was used to explore the relationship between immune cells and above 7 prognostic IRCRs. 
The results showed HMGB2 was positively associated with all immune cells. APOBEC3A and APOBEC3B 

Figure 3.   Prognostic value of risk model in HCC patients. (A) Ten-time cross-validation for tuning parameter 
selection in the LASSO model.(B) LASSO coefficient profiles.(C) Distribution of survival status based on the 
median risk score. (D) Heatmap of 7 IRCR genes in HCC patients.(E) Kaplan–Meier survival analysis of HCC 
patients between high-risk group and low-risk group. (F) Time-independent receiver operating characteristic 
(ROC) analysis of risk scores predicting 1,2,3-year overall survival.
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were positively associated with multiple immune cells such as B cells, CD8 + T cells, macrophage, neutrophil, 
and dendritic cells. HDAC11 was positively associated with B cells, CD4 + T cells, macrophage, and neutrophil. 
DUSP1 was positively associated with neutrophil. (Supplementary Fig. 2).

Drug sensitivity analysis
We further investigated the differences in sensitivity of common chemotherapy drugs between the two groups 
in HCC patients. The results indicated that IC50 values of drugs including Axitinib, Docetaxel, Erlotinib, and 

Table 1.   Seven IRCR DEGs list and coefficient.

Gene Coefficient

PPARGC1A − 0.1335

DUSP1 0.0302

APOBEC3A 0.1716

AIRE 0.3182

HDAC11 0.2219

HMGB2 0.1269

APOBEC3B 0.0219

Figure 4.   Validation of the prognostic model in ICGC cohort. (A) Distribution of survival status based on the 
median risk score. (B) Heatmap of 7 IRCR genes in ICGC LIRI-JP dataset. (C) Kaplan–Meier survival analysis 
of HCC patients in different risk groups. (D) Time-independent ROC analysis of risk scores predicting 1,2,3-
year overall survival.
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Metformin were higher in the high-risk group than those of the low-risk group, which suggested that HCC 
patients in the high-risk group were much more sensitive to these drugs (Fig. 9). While IC50 values of Bleomy-
cin, Bortezomib, Doxorubicin, Etoposide, and Gemcitabine were significantly lower in the low-risk group than 

Figure 5.   Correlation between risk score and clinical characteristics.
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those of the high-risk group, suggesting that HCC patients in the low-risk group were much more sensitive to 
these drugs.

Comparison with other risk prognostic models in HCC
To evaluate the prognostic ability of our model for HCC, we compared other three prognostic models: the four-
gene model43, the seven-CRs model44, and the four-immune-related-gene model45. For the TCGA-LIHC dataset, 
we used methods of externally validating our model to calculate the corresponding risk scores. The results showed 
that the AUC values for 1,3, and 5-year survival of the four-gene model were lower than our model, the AUC 
values for 1-year survival of the seven-CRs model and four-immune-related-gene model were slightly higher 
than our model, but the AUC values for five-year survival were lower (Fig. 10). These results suggested that our 
model was advantageous in predicting the long-term survival (5-year) of HCC patients.

Discussion
There are about 906,000 new cases and 830,000 deaths of primary liver cancer worldwide in 2020, severely 
threaten human health and life46. Hepatocellular carcinoma (HCC) is still the most common pathological type. 
Cancer immunotherapies has greatly changed the clinical treatment of HCC in recent years, but it remains one 

Figure 6.   Kaplan–Meier curves of OS differences stratified by age, gender, tumor grade, N stage, T stage, M 
stage, or pathologic stage between the high-risk group and low-risk group.
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of the worst prognosis diseases due to the heterogeneity. Epigenetic alterations can influence the interactions 
between tumor cells and liver tumor microenvironment (TME), so the epigenetics study can enhance anti-tumor 
immunity and better combat HCC47. A growing number of studies have shown that CRs plays an important role 
in HCC. Therefore, the analysis of HCC sequencing data by combining CRs and immune-related genes could 
be beneficial in the search for new biomarkers to predict the response to immunotherapy, and provide potential 
therapeutic targets for the treatment of HCC.

In this study, we innovatively analysed CRs with immune-related genes in HCC, established a risk model 
associated with 7 IRCR and verified in ICGC LIRI-JP cohort. Univariate and multivariate COX analysis showed 
that the risk score based on 7 IRCR was an independent prognostic indicator for HCC patients. Compared with 
other prognostic models, our model is advantages in predicting long-term survival of HCC patients. In addition, 
we also analysed the relationship between the signature and immune cells infiltration in HCC.

GO analysis showed that IRCRs were mainly related to biological processes (BP), such as DNA methylation 
or demethylation, cytidine catabolic process, cytidine deamination, cytidine to uridine editing, and cytidine 
metabolic process. The result of KEGG pathway enrichment analyses indicated that IRCRs were mainly involved 
in the longevity regulating pathway and viral life cycle-HIV-1. Aging was a universal feature of organisms and 
tumorigenesis was also closely associated with cellular senescence, including HCC, and was regulated by longev-
ity signaling pathways48,49. APOBEC3A and APOBEC3B were involved in most biological processes, and the 

Figure 7.   Forest plot and nomogram of the prognostic risk model. (A) Forest plot of univariate Cox regression 
analysis in HCC. (B) Forest plot of multivariate Cox regression analysis in HCC. (C)The nomogram for 
predicting 1-, 2-, and 3-year OS of HCC patients. (D) The calibration plots for predicting 1-, 2-, and 3-year OS.
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Figure 8.   Immune infiltration and immune checkpoints analysis. (A) Immune cells infiltration between 
high-risk group and low-risk group. (B) The relationship between the IRCR-based signature and immune 
checkpoints.
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relationship between the APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) family 
members was the most significant according to the gene- gene interaction network. APOBEC family was the 
main source of DNA modification of cancer genome, participated in immune response and antiviral response 
in human body with specific mutation pattern50.

Among the APOBEC protein family members, APOBEC3A and APOBEC3B are able to restrict the infec-
tion of multiple viruses, including parvovirus, hepatitis B virus (HBV), human papillomavirus, human immu-
nodeficiency virus 1 (HIV-1) and carcinogenesis51–54. HBV is the main risk factor for HCC, but epigenetic 
factors are also involved in the underlying pathogenesis of HCC. APOBEC3A is an editing molecule of HBV 
DNA, APOBEC3A and APOBEC3B play crucial roles in inducing HBV DNA degradation55. Duowei found that 
APOBEC3B increased transcriptional expression through the non-classical NF-κB signal pathway, while the 
increased expression of APOBEC3B significantly increased CCL2 chemokine, thus recruiting myeloid-derived 
suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) to participate in the development of 
HCC56. HMGB2, as a member of high-mobility group box(HMGB) proteins family, is involved in DNA repli-
cation, repair, transcription, differentiation, proliferation, cell signaling, inflammation, tumor migration, and 
cellular senescence57,58. It has been reported that HMGB2 gene knockout can induce cell senescence and inhibit 
the growth of tumor cells59. Cyclic cGMP-AMP synthase (cGAS) promotes inflammatory senescence-associated 
secretory phenotype (SASP) by recognizing cytoplasmic chromatin during cellular senescence. HMGB2 can 
retain the function of topoisomerase 1-DNA covalent cleavage complex (TOP1cc) in cytoplasmic chroma-
tin. HMGB2-TOP1cc-cGAS axis functionally regulates SASP and immune checkpoint blocking response60. 

Figure 9.   Drug sensitivity analysis.
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Dual-specificity protein phosphatase 1(DUSP1) expression declined in HCC tissue and was significantly associ-
ated with HCC progression and aggressiveness. DUSP1 down-regulation depends on promoter hypermethylation 
associated with loss of heterozygosity or ERK/SKP2/CKS1-dependent ubiquitination61. Hao revealed that DUSP1 
expression correlated with the activation of p53, which in turn positively regulated DUSP1 transcription. If this 
destruction of the positive regulatory loop could contribute to HCC development and progress62. Autoimmune 
regulatory factor (AIRE) was a transcription factor mainly expressed in thymic medulla epithelial cells. AIRE 
expression was also found in other tissues outside the thymus63. Zhu showed that AIRE deficiency in mice led to 
increased immune response to melanoma and increased infiltration of CD4 + and CD8 + in tumor tissue, spleen 
and tumor draining lymph nodes64. HDAC11 was the sole class IV member of the histone deacetylases (HDAC) 
family and the smallest HDAC enzyme identified to date65. HDAC11 induced deacetylation of p53 transcription 
factor Egr-1 (early growth response 1), which prevented p53 transcription and promoted the development of 
HCC66. In a murine model, T cells lacking HDAC11 showed proinflammatory cytokine production and effec-
tor molecule expression67. PPARGC1A (peroxisome proliferator activated receptor gamma coactivator 1 alpha, 
PGC-1 α) was a transcriptional coactivator with important roles in mitochondrial biosynthesis, homeostasis, 
and energy metabolism68. PPARGC1A had oncogenic and tumor suppressive features, and high and low levels of 
PPARGC1A expression associated with the prognosis of different cancers. Compared with normal liver tissue, the 

Figure 10.   The comparison of our prognostic model and other models. (A) Time-dependent ROC analysis 
for our prognostic model. (B) Time-dependent ROC analysis for four-gene model. (C) Time-dependent ROC 
analysis for seven-CRs model. (D) Time-dependent ROC analysis for the four-immune-related gene model.
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expression of PPARGC1A in HCC tissue is downregulated and acted as a tumor inhibitory role in the occurrence 
and development of HCC69. Additionally, TIMER database showed that 7 IRCRs of the model were related to 
immune cells, which revealed that IRCRs might regulate HCC progression by influencing immune infiltration.

There were significant differences in immunotherapy among different patients, which was caused by the 
heterogeneity of immune environment in tumor microenvironment. Our results showed that the proportion 
of CD8 + T cells were higher in low-risk group, and the expressions of CD48, CTLA4, HHLA2, TNFSF9 and 
TNFSF15 in high-risk group were higher than those in the low-risk group, which suggested that the poor 
prognosis of HCC patients in high-risk group might be related to the immunosuppressive microenvironment. 
Moreover, HCC patients in high-risk group might benefit from checkpoint inhibitor immunotherapy. Also, we 
found that HCC patients in high-risk group might benefit from the treatments of Axitinib, Docetaxel, Erlotinib, 
and Metformin, while HCC patients in low-risk group might benefit from the treatments with Bleomycin, Bort-
ezomib, Doxorubicin, Etoposide, and Gemcitabine.

Although the study could provide excellent aid for accurately treating HCC patients, there are still some 
shortcomings. First, although there is a large amount of high-throughput data stored in the TCGA database, 
the number of samples related to HCC is still insufficient. Second, the above results need to be further verified 
in vitro and in vivo. Therefore, further research is necessary to address the possible limitations in terms of results 
and conclusions.

Conclusion
We identified differentially expressed IRCRs and found that IRCRs are important for predicting the prognosis 
of HCC patients, and targeting IRCRs could be expected as an effective treatment for HCC. In conclusion, our 
prognostic model could provide new ideas and research directions for the accurate treatment of HCC.

Data availability
The datasets generated analysed during the current study are available in the UCSC Xena repository, we can 
download liver cancer related RNA sequencing and phenotype data from the link below, https://​xenab​rowser.​
net/​datap​ages/?​cohort=​GDC%​20TCGA%​20Liv​er%​20Can​cer%​20(LIHC)​&​remov​eHub=​https%​3A%​2F%​2Fxena.​
treeh​ouse.​gi.​ucsc.​edu%​3A443.
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