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Risk prediction 
of inappropriate implantable 
cardioverter‑defibrillator therapy 
using machine learning
Ryo Tateishi 1, Makoto Suzuki 1*, Masato Shimizu 1, Hiroshi Shimada 1, Takahiro Tsunoda 1, 
Hiroko Miyazaki 1, Yoshiki Misu 1, Yosuke Yamakami 1, Masao Yamaguchi 1, Nobutaka Kato 1, 
Ami Isshiki 1, Shigeki Kimura 1, Hiroyuki Fujii 1, Mitsuhiro Nishizaki 2 & Tetsuo Sasano 3

We aimed to develop machine learning‑based predictive models for identifying inappropriate 
implantable cardioverter‑defibrillator (ICD) therapy. Our study included 182 consecutive cases 
(average age 62.2 ± 4.5 years, 169 men) and employed 14 non‑deep learning models for prediction 
(hold‑out method). These models utilized selected electrocardiogram parameters and clinical features 
collected after ICD implantation. From the feature importance analysis of the best ML model, we 
established easily calculable scores. Among the patients, 25 (13.7%) experienced inappropriate 
therapy, and we identified 16 significant predictors. Using recursive feature elimination with cross‑
validation, we reduced the features to six with high feature importance: history of atrial arrhythmia 
(Atr‑arrhythm), ischemic cardiomyopathy (ICM), absence of diabetes mellitus (DM), lack of cardiac 
resynchronization therapy (CRT), V3 ST level at J point (V3 STJ), and V5 R‑wave amplitudes (V5R 
amp). The extra‑trees classifier yielded the highest area under receiver operating characteristics 
curve (AUROC; 0.869 on test data). Thus, the Cardi35 score was defined as [+ 5.5*Atr‑arrhythm − 
1.5*CRT + 1.0*V3STJ + 1.0*V5R − 1.0*ICM − 0.5*DM], which demonstrated a hazard ratio of 1.62 
(P < 0.001). A cut‑off value of the score + 5.5 showed high AUROC (0.826). The ML approach can yield a 
robust prediction model, and the Cardi35 score was a convenient predictor for inappropriate therapy.

Implantable cardioverter-defibrillators (ICDs) are highly effective in reducing mortality rates due to ventricular 
tachyarrhythmia among high-risk cardiac  patients1,2. Several previous studies have reported prediction models 
for appropriate ICD therapy and prevention of sudden cardiac death with  ICDs3,4. However, inappropriate ICD 
therapy occurs in 8–40% of patients with  ICDs5. Inappropriate ICD therapy not only undermines the quality 
of life but also increases the risk of all-cause  mortality6. Nearly 80% of inappropriate ICD shocks are caused by 
atrial fibrillation (AF) or supraventricular  tachycardia5, and various predictors of inappropriate ICD shock, such 
as the absence of diabetes mellitus (DM), have also been indicated in previous  studies7. Nevertheless, till date, no 
prediction model or scoring system has been able to accurately predict inappropriate ICD therapy.

Recently, machine learning (ML)-based studies have been published in the field of arrhythmia. Using several 
ML techniques, one such study attempted to predict future ventricular arrhythmia using ventricular  signals8, 
and another attempted to estimate the risk of recurrence after AF ablation using data from cardiac computed 
 tomography9. Moreover, the enhanced predictive capabilities of ML-based models over conventional clinical 
models have also been demonstrated. In one study, non-deep learning ML-based models, which combined 
12-lead electrocardiogram (ECG) data and clinical features in a table data, further improved the prediction of 
patient  outcome10. Concerning research on ICDs, a previous study attempted to predict electrical storms through 
machine learning using remote monitoring  data11. However, to our knowledge, no studies have employed ML to 
predict inappropriate ICD therapy. We hypothesized that ML-based models trained using clinical features and 
non-invasive examinations, such as 12-lead ECG and ultrasound echocardiography (UCG) data, could provide 
superior prediction models. Furthermore, we attempted to extract the factors considered significant in the ML 
models to create a more practical scoring system for clinical application.
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Methods
Patient population
This was a retrospective analysis of consecutive adult patients who underwent ICD implantation between January 
2001 and December 2021 at a single center. To be included, patients were required to have undergone a 12-lead 
ECG within one week and echocardiography within 3 months before ICD implantation. Patients with inappropri-
ate ICD therapy due to lead-related noise, subcutaneous ICDs, ventricular pacing prior to ICD implantation, and 
data deficits were excluded from the analysis. Initially, in this study, 201 patients underwent ICD implantation. 
Four patients were excluded due to lead-related noise, four due to subcutaneous ICDs, nine due to ventricular 
pacing prior to implantation, and ten due to missing data. Finally, 182 patients (62.2 ± 14.5 years, 169 men) were 
enrolled. The mean follow-up period was 2917 ± 2101 days. The study protocol adhered with the Declaration of 
Helsinki, and Yokohama Minami Kyosai Hospital Institutional Review Board approved this study with an opt-
out option for the patients or proxy. The need for informed consent was waived by Yokohama Minami Kyosai 
Hospital Institutional Review Board owing to the retrospective nature of this study. The corresponding author 
had full access to all the data in the study and took responsibility for its integrity and data analysis.

Patient background, clinical features, and non‑invasive examinations
The patient background, extracted from electronic health records, included patient age at the time of ICD implan-
tation, sex, and body mass index. Clinical comorbidities included hypertension, dyslipidemia, DM, chronic 
kidney disease, history of appropriate ICD therapy, atrial arrhythmia, and current smoking. We also checked 
for the worsening of heart failure and the new appearance of ischemic cardiomyopathy after ICD implanta-
tion. Underlying heart diseases were categorized as ischemic cardiomyopathy (ICM), dilated cardiomyopathy, 
hypertrophic cardiomyopathy, valvular heart disease, and channelopathy. The use of antiarrhythmic and car-
dioprotective drugs, and electrolyte status were also identified. If inappropriate ICD therapy was observed, the 
medication used by the patient and electrolyte status at that stage was included in the analysis; if no inappropriate 
ICD therapy was observed, the last follow-up medications were included. An automated system (ECAPs12c; 
Nihon-Koden, Tokyo, Japan) was used to measure the 12-lead ECG data, which were measured at the microvolt 
level, and the wave amplitude was defined as the absolute distance from the apex of each wave to the baseline. 
ECG variables were measured using 10-s waveforms. The rate-corrected QT interval (QTc) was calculated using 
the modified Framingham (ECAPs12C) formula (QTc = QT + [1000 – R-R]/7)12. The automatically measured 
data of < 100 ECG cases were excluded. All echocardiographic examinations were performed using the Vivid™ 
system (GE Healthcare, Chicago, Illinois, USA).

ICD therapy
The ICD systems included systems that were manufactured by Biotronik (Berlin, Germany), Medtronic (Min-
neapolis, MN, USA), Boston Scientific (Marlborough, MA, USA), Sorin (Saluggia, Italy), and Abbott (Abbott 
Park, Illinois, USA). Since this study was a retrospective study, the choice of single- or dual-chamber devices, 
with or without LV leads, and ICD settings was according to the attending physician’s judgment. The choice of 
single- or dual-chamber devices, cardiac resynchronization therapy (CRT), number of detection zones, and detec-
tion cycle length were included in the statistical analysis. Following previous studies, appropriate ICD therapy 
was defined as anti-tachycardia pacing or shock for ventricular arrhythmias, and inappropriate ICD therapy was 
for atrial  arrhythmias5,7. Two board-certified Japanese Heart Rhythm Society members evaluated whether the 
therapy was appropriate or inappropriate.

Statistical analysis
Fisher’s exact test was used to evaluate the differences in categorical variables. Continuous variables are displayed 
as the median value (interquartile range: 25–75% value), and the Student’s t-test or Mann–Whitney U test was 
used as appropriate. The cut-off values for continuous variables were calculated using receiver operating char-
acteristic (ROC) curves at the point closest to the top-left corner. The Kaplan–Meier curve was used to evaluate 
the ML-based scoring systems. Statistical significance was set at p < 0.05. All statistical analyses were performed 
using EZR version 1.61 (Saitama Medical Center, Jichi Medical University, Saitama, Japan)13, which is a graphical 
user interface for R (The R Foundation for Statistical Computing, Vienna, Austria)14.

Predictive model construction and validation by ML
To construct ML models, we adopted PyCaret 3.0 (https:// pycar et. org), which is an open-source wrapper that is 
used over several ML libraries in Python in a low-code environment. We simultaneously built multiple non-deep 
learning  models15. Statistically significant parameters were used in the creation of these ML models. In our ML 
analysis, we utilized hold-out method. The 182 cases were randomly divided into 65% for train-validation data 
(118 cases) and 35% for test data (64 cases). As a screening step, we compared fourteen ML methods on the 118 
cases using the default hyperparameter for each ML model. or all procedures were performed on these 118 cases, 
tenfold cross-validation with 106 used as train data and 12 as validation data. Next, among the top 5 models with 
the highest area under receiver operating characteristics curve (AUROC), various optimizations were applied. 
For each model in the top 5 ML models, we primarily executed the following five optimization procedures. Due 
to the dataset’s imbalance, when evaluating performance, our performance evaluation was centered on AUROC 
and F1-score, which represents the harmonic mean of precision (= positive predictive value) and recall (= sen-
sitivity). Models with an F1-score ≤ 0.30 were excluded from consideration.

1. Five oversampling methods: ADASYN, BorderlineSMOTE, RandomOverSampler, SMOTE, SVMSMOTE.

https://pycaret.org
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2. Search the best number of features: Boruta method, Relief filter method (using scikit-rebate), Recursive 
feature elimination with cross validation (RFECV).16

3. Hyperparameter tuning by Optuna method (on some models).17

4. Ensemble of boosting and bagging.
5. Blend of two models.

In all tuned models, all the 118 cases were utilized to build the last models. And the diagnostic performance 
was evaluated on the test data (64 cases) by the last models. The details of the five last models were described in 
Supplemental Table S1.

The feature importance was calculated in decision tree models, which was obtained by summing up the Gini 
impurity reductions for that feature across all the nodes in which it is used for  splitting18. The feature importance 
of the models was ranked to estimate the contribution of the predictors to the ML model. In addition to feature 
importance, the SHAP (SHapley Additive exPlanations) method was introduced for evaluation of the  features19. 
The SHAP method theory is based on “the game optimal Shapley values”, and the summary plot of the SHAP 
combines feature importance with feature effects. Different color points indicate patients who did not receive 
inappropriate ICD therapy (blue point, in Fig. 2) and those who did (red point, in Fig. 2). The Shapley value of 
each feature is displayed on the x-axis (defined as the SHAP value), where a large (right side) value indicates a 
positive contribution to the model. The SHAP method is briefly explained in Supplemental Fig. S1.

Finally, we extracted important features from both feature importance and SHAP findings. Important fac-
tors were assigned a score based on the feature importance score and the mean absolute SHAP value and were 
summed and multiplied by 10. To simplify the calculation, we assigned the score of each factor the closest value 
in increments of ± 0.5 from 0. We added “ + ” to a score for each factor when a positive correlation with inap-
propriate ICD therapy was found and added “–” when a negative correlation was found.

Results
Baseline patient characteristics and inappropriate ICD therapy
A total of 25 patients (13.7%) received inappropriate ICD therapy. Baseline characteristics were displayed in 
Table 1, and ECG and UCG data were shown in Table 2. There were no significant differences of age and follow-
up period between the two groups (inappropriate ICD therapy group and no therapy group). Sixteen statistically 
significant factors were extracted, which included the absence of DM, history of atrial arrhythmia, lack of CRT, 
ICM, and verapamil administration. The two groups had no difference in the number of ICD detection zones 
and chambers or maximum detection cycle length. Of the 25 patients who received inappropriate ICD therapy, 
13 (52.0%) received shock therapy and 15 (60.0%) experienced anti-tachycardia pacing; three patients experi-
enced both. Inappropriate ICD therapy was caused by AF in 16 patients (64.0%), supraventricular tachycardia, 
including atrial flutter, in six patients (24.0%), and sinus tachycardia in three patients (12.0%). Although this 
study incorporated both primary and secondary prevention, the median LVEF was low (38%). However, the two 
groups showed no significant differences in echocardiographic findings. Five factors of baseline characteristics 
(in Table 1) and 11 parameters of ECG (in Table 2) showed significant differences, and were incorporated into 
the ML model. All comprehensive ECG findings are listed in Supplemental Table S2.

ML prediction model construction and evaluation
The ML model incorporated the statistically significant 16 predictors using PyCaret. Through screening analy-
sis, we identified five ML models with high AUROC values (Extra trees classifier, Gradient boosting Classifier, 
CatBoost classifier, Extreme gradient boosting, and Light gradient boosting machine, shown in Table 3). The 
five models were fine-tuned to achieve higher AUROC using tenfold cross-validation on 118 train-validation 
data, and their final performances was evaluated on 64 test data. Ultimately, we selected the Extra-trees classifier 
(model_ET) as the best model. This classifier is an exceptional ensemble learning method that employs numer-
ous random decision trees to create a majority vote-like  system16. In the model_ET, the 16 predictors (referred 
to as features) were reduced to the optimal number 6 using RFECV with high feature importance (the history 
of atrial arrhythmia, CRT, ischemic cardiomyopathy (ICM), DM, and V3 ST level at J point (V3STJ), and V5 
R-wave amplitudes (V5R amp). The model_ET achieved an AUROC of 0.869 and the F1-score was 0.533 on test 
data. The feature importance of the model_ET was depicted in Fig. 1. We also evaluated the importance of the 
features by another procedure using the SHAP method (Fig. 2). The six features extracted by RFECV procedure 
showed high importance in both methods. Because the ML-based model verified two numeric variables (V3 
STJ and V5R amp) as significant, we performed ROC curve analysis for them to determine these cut-off values 
on the train-validation data. The cut-off value of the V3 STJ was 20 μV, and that of V5R amp was 1400 μV with 
relatively high AUROC (V3 STJ: 0.699, V5R amp: 0.717, respectively). The ROC curves of them are shown in 
Supplemental Fig. S2.

Scoring system
Based on the feature importance score and SHAP value from the train-validation data using model_ET, we 
developed a scoring system for predicting inappropriate ICD therapy. The scoring system relied on six specific 
features that were selected by RFECV procedure shown in Supplemental Fig. S3. The definition of the score was 
illustrated in Fig. 3, and further details about its foundation could be found in Supplemental Table S3. In brief, 
the score was computed by summing the feature importance score and the mean SHAP value for each feature. The 
value were as follows: 0.563 for a history of atrial arrhythmia, 0.135 for CRT, 0,112 for V5R amp, 0,103 for V3 STJ, 
0.095 for ICM, and 0.067 for DM. These values were then multiplied by 10 and rounded to the nearest number in 
0.5 increments for easier calculation of scores. Additionally, positive and negative correlations were considered, 
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Table 1.  Baseline characteristics of the population. Values are presented as numbers, mean ± SD, or median 
(interquartile range). Categorical variables were compared using Fisher’s exact test; continuous variables 
were compared using Student’s t-test or Mann–Whitney U test if data were not normally distributed. ACE-I 
angiotensin-converting enzyme inhibitor, ARB angiotensin receptor blocker, ARVC arrhythmogenic right 
ventricular cardiomyopathy, CRT-D cardiac resynchronization therapy, ICD implantable cardioverter-
defibrillator, IVT idiopathic ventricular tachycardia, IVF idiopathic ventricular fibrillation, MRA 
mineralocorticoid receptor antagonists. Significant values are in bold.

All patients (n = 182)
Inappropriate therapy ( +) 
(n = 25)

Inappropriate therapy (−) 
(n = 157) p value

Follow-up duration (days) 2917.2 (± 2101.1) 3040.9 (± 1792.5) 2897.5(± 2150.5) 0.752

Patient background

 Male (n) 150 (82.4%) 20 (80.0%) 130 (82.8%) 0.778

 Age (years) 62.3 (± 14.5) 63.2 (± 11.9) 62.1 (± 14.9) 0.736

 Body mass index (kg/m2) 22.8 [19.6–25.3] 22.8 [19.6–24.6] 22.9 [19.6–25.4] 0.573

Comorbidities

 Hypertension (n) 65 (35.7%) 7 (28.0%) 58 (36.9%) 0.502

 Diabetes (n) 73 (40.1%) 5 (20.0%) 66 (42.0%) 0.046

 Dyslipidemia (n) 56 (30.8%) 8 (32.0%) 48 (30.6%) 1.000

 Chronic kidney disease (n) 69 (37.9%) 11 (44.0%) 58 (36.9%) 0.513

 Appropriate ICD therapy (n) 50 (24.7%) 4 (16.0%) 49 (31.2%) 0.156

 History of atrial arrhythmia (n) 77 (42.3%) 23 (92.0%) 54 (34.4%)  < 0.001

 Current smoking (n) 64 (35.2%) 7 (28.0%) 57 (36.3%) 0.503

Cardiac event after implantation of ICD

 Aggravation of heart failure (n) 49 (26.9%) 5 (20.0%) 44 (28.0%) 0.475

 New appearance of ischemic 
cardiomyopathy (n) 23 (12.6%) 1 (4.0%) 22 (14.1%) 0.209

Underlying heart disease

 Ischemic cardiomyopathy (n) 72 (39.6%) 4 (16.0%) 68 (43.3%) 0.014

 Dilated cardiomyopathy (n) 40 (22.0%) 9 (36.0%) 31 (19.7%) 0.115

 Hypertrophic cardiomyopathy 
(n) 13 (7.1%) 3 (12.0%) 10 (6.4%) 0.393

 Valvular heart disease (n) 5 (2.7%) 2 (8.0%) 3 (1.9%) 0.140

 Brugada syndrome (n) 24 (13.2%) 3 (12.0%) 21 (13.4%) 1.000

 Long QT syndrome (n) 3 (1.6%) 0 (0.0%) 3 (1.9%) 1.000

 ARVC (n) 1 (0.1%) 0 (0.0%) 1 (0.1%) 1.000

 IVF/IVT (n) 8 (4.4%) 2 (8.0%) 6 (3.8%) 0.302

 Others (n) 16 (8.8%) 2 (8.0%) 14 (8.9%) 1.000

Medication

 Class Ia (n) 7 (3.8%) 0 (0.0%) 7 (4.5%) 0.596

 Class Ib (n) 17 (9.3%) 4 (16.0%) 13 (8.3%) 0.260

 Class Ic (n) 2 (1.1%) 0 (0.0%) 2 (1.3%) 1.000

 Amiodarone (n) 42 (23.1%) 7 (28.0%) 35 (22.3%) 0.609

 β-blocker (n) 121 (66.5%) 17 (68.0%) 104 (66.2%) 1.000

 Bepricol (n) 11 (6.0%) 1 (4.0%) 10 (6.4%) 1.000

 Verapamil (n) 7 (3.8%) 4 (16.0%) 3 (1.9%) 0.007

 ACE-I/ARB (n) 52 (28.6%) 3 (12.0%) 49 (31.2%) 0.057

 MRA (n) 46 (25.3%) 6 (24.0%) 40 (25.5%) 1.000

Electrolyte status

 Sodium (mEq/L) 139.4 (± 3.4) 139.3 (± 3.3) 139.4 (± 3.4) 0.887

 Potassium (mEq/L) 4.3 (± 0.5) 4.3 (± 0.5) 4.2 (± 0.6) 0.439

 Chlorine (mEq/L) 108.7 (± 7.4) 104.1 (± 3.6) 109.5 (± 8.0) 0.735

ICD programing settings

 Dual-chamber device (n) 109 (59.9%) 17 (68.0%) 92 (58.6%) 0.510

 Ventricular pacing rate (%) 0.1 [0.0–5.0] 0.2 [0.1–1.0] 0.1 [0.0–6.0] 0.978

 CRT-D (n) 36 (19.8%) 1 (4.0%) 35 (22.3%) 0.032

 Detection cycle length (ms) 333.0 [320.0–373.8] 330.0 [320.0–370.0] 355.0 [320.0–400.0] 0.301

ICD detection zones 0.185

 1 zone (%) 95 (52.2%) 9 (36.0%) 86 (54.8%)

 2 zones (%) 67 (36.8%) 13 (52.0%) 54 (34.4%)

 3 zones (%) 20 (11.0%) 3 (12.0%) 17 (10.8%)
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with " + " and "−" signs. This final sum resulted in the following assignments: + 5.5 points for a history of atrial 
arrhythmia, − 1.5 for CRT, + 1.0 for V3 STJ ≥ 20 μV and V5R amp ≥ 1400 μV, − 1.0 for ICM, and − 0.5 for DM.

The predictive scores, calculated using this linear combination formula, was referred to as the Cardi35 score, 
which includes CRT, atrial Arrhythmia, DM, ICM, and V3 STJ and V5R amp, as shown in Fig. 3(a). ROC curve 
analysis demonstrated + 5.0 as cut-off value on the train-validation data, and the AUROC of the score was 0.826 
(specificity: 0.920, sensitivity: 0.732). The prognostic value of Cardi35 was validated on the test data. Hazard ratio 

Table 2.  Non-invasive examination. Values are presented as numbers, mean ± SD, or median (interquartile 
range: 25%, 75%). Continuous Numeric variables were analyzed using Student’s t-test or Mann–Whitney U 
test if the data were not normally distributed. IVS interventricular septum, LAD left atrial diameter, LVDd left 
ventricular end-diastolic diameter, LVDs left ventricular end-systolic diameter, LVEF left ventricular ejection 
fraction, LVPW left ventricular posterior wall. Significant values are in bold.

All patients (n = 182) Inappropriate therapy (+) (n = 25)
Inappropriate therapy (−) 
(n = 157) p value

Echocardiography

 LAD (mm) 40.8 (± 8.42) 41.1 (± 7.33) 40.8 (± 8.61) 0.850

 LVDd (mm) 57.0 (± 9.88) 56.0 (± 8.55) 57.1 (± 10.1) 0.600

 LVDs (mm) 44.5 (± 12.3) 43.5 (± 11.4) 44.6 (± 12.5) 0.692

 IVS (mm) 9.7 [8.4–10.9] 9.8 [8.2–11.1] 9.7 [8.5–10.9] 0.595

 LVPW (mm) 9.5 [8.4–10.6] 9.3 [8.0–11.0] 9.5 [8.5–10.5] 0.731

 LVEF (%) 38.0 [31.0–55.0] 37.0 [30.0–52.0] 38.0 [31.0–55.0] 0.980

Significant factors of ECG characteristics

 II T-wave amplitude (μV) 119.6 (± 190.3) 26.7 (± 232.4) 134.0 (± 179.6) 0.012

 aVR T-wave amplitude (μV) −94.2 (± 144.1) −23.9 (± 165.9) −105.8 (± 137.4) 0.013

 V3 ST J (μV) 45.0 [5.0–85.0] 15.0 [−30.0 to 40.0] 50.0 [5.0–95.0] 0.001

 V3 ST MID (μV) 120.0 [40.0–180.0] 60.0 [35.0–115.0] 130.0 [45.0–185.0] 0.019

 V4 R-wave amplitude (μV) 1158.3 (± 872.4) 1781.2 (± 1119.6) 1054.5 (± 781.5)  < 0.001

 V4 QRS area (40 ms μV) 171.5 [−608.0 to 574.8] 394.0 [37.0–820.0] 133.0 [−669.0 to 497.0] 0.028

 V4 ST J (μV) −2.5 [−43.8 to 40.0] −40.0 [−90.0 to 10.0] 0.0 [−35.0 to 45.0] 0.004

 V4 ST MID (μV) 55.0 [0.0–115.0] 15.0 [−50.0 to 65.0] 55.0 [5.0–120.0] 0.017

 V5 R-wave amplitude (μV) 1403.1 (± 920.2) 2098.6 (± 1145.8) 1289.5 (± 828.3)  < 0.001

 V5 QRS area (40 ms μV) 171.5 [−608.0 to 574.8] 805.0 [565.0–1489.0] 516.0 [75.0–940.0] 0.011

 V6 R-wave amplitude (μV) 1139.9 (± 686.6) 1539.8 (± 904.6) 1074.9 (± 624.3) 0.002

Table 3.  Results of machine learning predictive models built by PyCaret. The upper table shows the results top 
5 area under the receiver operating characteristic curve (AUROC) of screening on train-validation data (after 
tuning), and the lower table demonstrates the diagnostic performance of the tuned models on the test data. The 
results of upper table were selected to produce the highest AUROC on the test data, and the data was sorted by 
AUROC on the test data. All results of first screening for the models on train-validation data were described 
in Supplemental Table S4. The details of the top five models were explained in Supplemental Table S1. ACC  
accuracy, AUROC area under the receiver operating characteristic curve, F1 F1-score (harmonic mean of 
precision and recall), NPV negative predictive value, PPV positive predictive value (identical to precision), Sens 
sensitivity (identical to recall), Spec specificity.

AUROC ACC Spec Sens (recall) PPV (prec.) NPV F1

Train-validation

 Extra trees classifier 0.891 0.836 0.873 0.650 0.425 0.942 0.487

 CatBoost classifier 0.875 0.820 0.861 0.550 0.325 0.930 0.397

 Gradient boosting classifier 0.846 0.871 0.901 0.650 0.533 0.948 0.577

 Light gradient boosting machine 0.860 0.769 0.792 0.600 0.300 0.936 0.387

 Extreme gradient boosting 0.841 0.821 0.871 0.500 0.342 0.921 0.380

Test

 Extra trees classifier 0.869 0.781 0.764 0.889 0.381 0.977 0.533

 CatBoost classifier 0.848 0.766 0.764 0.778 0.350 0.955 0.483

 Gradient boosting classifier 0.830 0.813 0.873 0.444 0.364 0.906 0.400

 Light gradient boosting machine 0.815 0.813 0.873 0.444 0.364 0.906 0.400

 Extreme gradient boosting 0.779 0.797 0.855 0.444 0.333 0.904 0.381
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of this score was calculated as 1.62 by Cox regression analysis (95% confidence interval: 1.32–1.98, p < 0.001). 
Furthermore, Kaplan–Meier curve analysis demonstrates a significantly worse inappropriate therapy outcome 
in the group with a Cardi35 score ≥  + 5.0 compared to the group with a score <  + 5.0 (log-rank: p < 0.001), as 
depicted in Fig. 3(b).

Discussion
We developed an ML-based model that achieved an AUROC of 0.869 on the test data for predicting inappropriate 
ICD therapy. While the adverse consequences of inappropriate ICD therapy are well-known, there are limited 
data regarding its prediction. Notably, several of the factors identified as significant in our study align with find-
ings from prior research. For instance, atrial arrhythmias have consistently been identified as a common trigger 
for inappropriate ICD  therapy5. The absence of DM as a significant factor might be attributed to the possibility 
that patients with DM could be more immobile and might exhibit autonomic  dysfunction7. Additionally, indi-
viduals with ICM are less likely to experience inappropriate ICD therapy compared to those without ICM. A 
previous study demonstrated that inappropriate ICD shocks triggered by atrial arrhythmias were more prevalent 
in patients without ICM than in those with  ICM20. Furthermore, it is established that appropriate settings can 
effectively suppress atrial fibrillation (AF), which could account for the decreased occurrence of inappropriate 
ICD therapy in patients with a history of cardiac resynchronization therapy (CRT)21. However, no previous 
study has demonstrated a clear link between V3 ST segment level at the J point and V5 R-wave amplitudes with 
inappropriate ICD therapy. We have considered two plausible theories to explain this association. Firstly, the 
V5R amplitude may be correlated with left ventricular hypertrophy, which in turn could potentially trigger atrial 
fibrillation (AF)22. The inclusion of V5R amplitude as a diagnostic criterion for left ventricular hypertrophy on 
an electrocardiogram (ECG) lends support to this hypothesis. Secondly, the V3 ST segment level at the J point, 
a marker associated with Brugada syndrome, might influence the occurrence of atrial arrhythmias. In a prior 
study, inappropriate ICD therapy in Brugada syndrome patients and its relationship with atrial arrhythmias 
were  reported23.

Machine learning applied to 12-lead ECG data has primarily been developed using deep learning techniques, 
which utilize numeric data from ECGs represented as time–voltage plots in CSV  format24. While deep learning 
offers the advantage of achieving high accuracy, it demands a substantial amount of data and high-performance 
computing resources to attain superior diagnostic performance. Notably, ECG data in CSV format is not readily 
available in general hospitals and clinics, which can limit the generalizability of results and models. Conversely, 
non-deep learning methods, as employed in the present study, may not reach the same level of performance. 
However, they do offer the advantage of being able to construct predictive models with relative ease, even with 
a smaller number of samples, while maintaining good robustness and  reproducibility12.

While various predictors, including patient background, have been explored in previous  research25, the devel-
opment of predictive models has remained a challenge. Employing machine learning (ML), we have introduced 
the Cardi35 score, serving as a predictive model with an AUROC of 0.826. This performance is comparable to 
that of complex ML models, which often surpass the accuracy of clinical scoring systems. This difference is evi-
dent when considering established clinical scores for atrial fibrillation (AF) ablation, where AUROCs typically 

Figure 1.  Feature importance of extra trees classifier on train-validation data. Feature importance on train-
validation data in predicting inappropriate implantable cardioverter-defibrillator (ICD) therapy using the extra-
trees classifier. The feature importance was calculated in decision tree models, which was obtained by summing 
up the Gini impurity reductions for that feature across all the nodes in which it is used for splitting. The features 
were sorted in order to value of the importance. * amp amplitude.
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range from 0.55 to 0.65, and models achieving an AUROC of 0.75 are considered  rare26,27. In the context of ML 
models, Shade et al. achieved an AUROC of 0.82 using contrast-enhanced  MRI28, and Tang et al. obtained an 
AUROC of 0.86 by utilizing an ML model that incorporated ECG and intracardiac ECG  data10. Our study has 
demonstrated an AUROC that is comparable, indicating sufficient accuracy. We believe that this ML model can 
be effectively employed as a scoring system for predicting inappropriate ICD therapy.

The pivotal aspect of the Cardi35 score is that it does not designate any high-risk factors unless there is 
a history of atrial arrhythmia. This observation may stem from the inherent difficulty in predicting AF and 
supraventricular tachycardia through non-invasive examinations. Previous studies have explored the use of 
echocardiography and deep learning ECG to forecast  AF24,29,30. However, these studies either achieved an AUROC 
of less than 0.7 or relied on vast amounts of data (over 450,000 datasets). Therefore, in a study of this scale, 
predicting atrial arrhythmia in patients without a prior history of such conditions would have presented a for-
midable challenge. Nonetheless, it is valuable to assess whether patients with a history of atrial arrhythmia are at 
elevated risk. A recent study has presented discouraging long-term prognosis data concerning ICD implantation 
for primary  prevention31. Consequently, it becomes pivotal to evaluate the presence of diabetes mellitus (DM), 
cardiac resynchronization therapy (CRT), and V5R amplitude in individuals with a history of atrial arrhyth-
mia, especially in those without ischemic cardiomyopathy (ICM), to gauge the potential risk of inappropriate 
ICD therapy. Considering the accuracy of this score, it could aid in determining the necessity for an aggressive 
rhythm control strategy in high-risk patients or assessing whether ICD implantation should be considered on 
a case-by-case basis.

This study has several limitations. Firstly, it involved a small cohort, and the findings have not undergone 
external validation. While we were able to showcase high diagnostic performance through the hold-out method, 
the ML model which constructed with all 182 cases was not assessed externally. Both the model and our Cardi35 
score require validation with additional external datasets. Secondly, due to the retrospective nature of the study, 
there was limited available information. For instance, factors such as the left atrial volume  index29 and left 
ventricular diastolic dysfunction are known to be associated with atrial fibrillation (AF)32. However, these data 
were frequently absent from older datasets, and the outcomes might have differed if these variables had been 

Figure 2.  SHAP method on extra trees classifier. Interpretation of feature importance using the SHapley 
Additive exPlanation (SHAP) method for Extra trees classifier on the train-validation data, which is based on 
“the game optimal Shapley values”. Blue color points indicate patients who did not receive inappropriate ICD 
therapy, and those who did (red points). The Shapley value of each feature is displayed on the x-axis (defined 
as the SHAP value), where a large (right side) value indicates a positive contribution to the model. The six 
features showing the highest absolute SHAP value were a history of atrial arrhythmia, cardiac resynchronization 
therapy (CRT), ischemic cardiomyopathy (ICM), V5 R-wave amplitudes, V3 ST level at J point, and verapamil 
administration. The interpretation of SHAP method is briefly explained in Supplemental file S2. * amp 
amplitude.
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included in the analysis. Thirdly, there is currently no standardized method for generating clinical scores from 
ML models. In this study, we devised scores using feature importance scores and SHAP values, and the number 
of selected factors was determined with consideration for practical clinical application. However, this decision 
was somewhat arbitrary, and the possibility of a more optimal scoring system cannot be dismissed. Despite these 
limitations, the Cardi35 score maintains a high level of accuracy, underscoring its value in clinical practice.

History of atrial arrhythmia
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Cardiac resynchronization therapy
(CRT) -1.5

V3 ST level at J point 20µV +1.0
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Figure 3.  Cardi35 score for predicting inappropriate ICD therapy. (a) Definition of Cardi35 score and cut-
off value of receiver operating characteristic curve analysis. On train-validation data, the predictive scores, 
calculated using this linear combination formula, was referred to as the Cardi35 score, which includes CRT, 
atrial Arrhythmia, DM, ICM, and V3 STJ and V5R amp. The six features were selected from the search the 
best number of features: Recursive feature elimination with cross validation method (RFECV). The score was 
weighted coefficient (= “point” in the table) derived from evaluation of features by Extra trees classifier on 
train-validation data. The score takes the values from − 3.0 to + 7.5. The cut-off value was + 5.0, with sensitivity 
and specificity of 0.732 and 0.920, respectively. The AUROC was 0.826 and the 95% confidence interval (CI) 
was 0.745–0.906. Asterisk area under the receiver operating characteristic curve. (b) Validation of Cardi35 score 
on the test data. The prognostic value of Cardi35 was validated on the test data. Hazard ratio of this score was 
calculated as 1.62 by Cox regression analysis (95% confidence interval: 1.32–1.98, p < 0.001). Furthermore, 
Kaplan–Meier curve analysis demonstrates a significantly worse inappropriate therapy outcome in the group 
with a Cardi35 score ≥  + 5.0 compared to the group with a score <  + 5.0 (log-rank: p < 0.001).
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Conclusions
Our study has demonstrated the effectiveness of the machine learning (ML) approach in developing resilient 
prediction models for inappropriate ICD therapy. The Cardi35 score, derived from this model, offers a conveni-
ent means of assessing whether an aggressive rhythm control strategy should be pursued or if ICD implantation 
should be considered for specific patients.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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