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The use of a Mamdani‑type 
fuzzy model for assessing 
the performance of a boom 
stabilization systems in a field 
sprayer
Zdzisław Kaliniewicz *, Piotr Szczyglak , Adam Lipiński , Piotr Markowski  & Seweryn Lipiński 

Fuzzy logic models are increasingly used to control simple and complex devices, as well as entire 
operating systems. In this study, a fuzzy logic model was applied to assess the performance a boom 
stabilization system in a field sprayer. The model was tested on a field sprayer with a trapezoid 
system for stabilizing the sprayer boom with a length of 21 m. Measuring cables for registering the 
displacement of the boom’s terminal segments (right and left) in the vertical and horizontal plane 
were installed on the sprayer. The field sprayer was connected to a tractor. The model was based 
on two linguistic variables: "absolute displacement of the boom’s terminal segments" and "boom 
stability index". It was assumed that the sprayer boom was stable when the displacement of the 
boom’s terminal segments did not exceed 0.25% of boom length. The study demonstrated that the 
proposed model can be reliably used to assess boom stability in real time (during field operations). 
The time required to achieve boom stability was more than 2.5 times shorter in the vertical than in 
the horizontal plane, which can be attributed mainly to the structure of the stabilization system. The 
proposed model is universal, and it can be applied to evaluate other boom stabilization systems in 
field sprayers.

Ambiguous and imprecise objects, phenomena, and processes can be formally described with the use of the fuzzy 
set  theory1–3. This is because real-world phenomena are much easier to describe with qualitative than quantita-
tive variables. Fuzzy qualitative concepts such as a "tall" man, a "young" woman, or "low" temperature represent 
a certain range of contextual values, and they can be differently interpreted. This theory was put into practice by 
 Mamdani4,5 who proposed a fuzzy inference control system. Numerous Mamdani-type fuzzy controllers have 
been developed over the years, and they are widely used in technical sciences and engineering. A fuzzy control 
system is based on a set of fuzzy logic rules, and it relies on precise measurements or ambiguous linguistic vari-
ables from an expert knowledge  base1–3,6,7.

The main advantage of fuzzy models over conventional mathematical models is that they require far less 
information about the modeled system. The collected data do not have to be precise or certain. Fuzzy systems 
convert quantitative input values into linguistic variables, use a set of rules to describe the analyzed phenomena, 
and convert fuzzy output signals into quantitative variables. A typical fuzzy model consists of three units: fuzzi-
fication, inference, and  defuzzification1–3,7,8 (Fig. 1). Inference calculations are conducted with the use of a set of 
logic rules that are created based on expert knowledge (linguistic modeling) or analytical data from measurement 
systems or mathematical models. The results are used to determine cause and effect relationships between fuzzy 
sets of input and output  values1–3,6,7,9,10.

Fuzzy controllers are widely used in various systems, objects, machines, and devices, including household 
equipment, autonomous vehicles, and complex operating  systems3,8,11–15. Fuzzy controllers are also applied 
in  agriculture3, mainly to control agricultural  robots16,17, but also to manage  greenhouses18, sort fruit and 
 vegetables19–21, monitor soil  parameters22, control irrigation  systems23–25, and provide decision-making support 
in planning and performing farming  operations26–31.
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The application of crop protection chemicals is one of the most important treatments in intensive agricul-
ture that is usually performed with field sprayers. This operation should involve technically sound machinery 
to ensure that the applied chemicals are uniformly distributed over the  field32,33. According to Reynaldo et al.34 
and Kappaun et al.35, effective delivery of crop chemicals is influenced not only by the type of field sprayer, but 
also by the structure and position of the sprayer boom, as well as the manner in which the boom is attached to 
the sprayer frame. During field operations, the displacement of all boom segments relative to the field should 
be minimal (the boom should be positioned at a height of around 0.5 m), and displacement in the horizontal 
plane should also be controlled. For this reason, modern agricultural sprayers are equipped with various boom 
stabilization systems to minimize displacement when the tractor moves on uneven terrain and to restore the 
boom to its original, neutral  position36.

The sprayer boom is controlled with the use of specialist devices that register the movement of all boom 
 segments33,34,37. These measurements can be conducted in laboratory track simulators or in the field. Changes 
in boom position are registered by cameras or  sensors35,38–42. A relatively simple method for monitoring boom 
displacement from a neutral position was proposed by Kaliniewicz et al.43. The cited authors developed a system 
of four measuring cables (to calculate the threshold displacement of all boom segments in the horizontal and 
the vertical plane) that are wound on the spools of measuring reels and are connected to sensors that measure 
the reel’s angle of rotation (Fig. 2). Each reel’s angle of rotation is measured by an encoder connected to a rapid 
data acquisition system, and signals are registered with the same sampling frequency of 1 kHz. The proposed 
system can also be used to measure the speed and acceleration of the boom’s terminal segments in both planes, 
and to determine the resultant values of the examined parameters. To minimize the noise caused by cable vibra-
tion, the moving average is calculated from 10 successive measuring points. The registered data can be plotted 
to visualize the displacement of the boom’s terminal segments (Fig. 3). However, the periods when the boom 
remains in a stable position and the time needed to restore the boom’s stability cannot be clearly inferred from 
the results. Therefore, the aim of the present study was to develop a fuzzy rule-based model for identifying the 
stability states of a field sprayer boom.

Model for identifying the stable operation of a sprayer boom
The model for identifying a sprayer boom’s stability states was developed based on a Mamdani-type fuzzy infer-
ence system. The linguistic variable "absolute displacement of the boom’s terminal segments" ǀdlǀ (right and left 
arm) was analyzed in the horizontal and vertical plane. Three linguistic spaces were assigned to the above variable:

– Admissible displacement,
– Threshold displacement,
– Excessive displacement.

The membership function of admissible displacement of the boom’s terminal segment was described with an 
Z-curve (external left) presented in Fig. 4a. This function can be described with the following equation:

where: a1 – coefficient (0 < a1 < 1), |d| – absolute displacement of the boom’s terminal segment [m], dl – threshold 
displacement [m].
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Figure 1.  Fuzzy control  diagram5.
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The membership function of threshold displacement of the boom’s terminal segment was described with a 
t-curve (triangular) presented in Fig. 4b. This function can be described with the following equation:

where: a2, a3 – coefficients (0 < a2 < 1; 1 < a3 < 2).
The membership function of excessive displacement of the boom’s terminal segment was described with a 

curve presented in Fig. 4c. This function can be described with the following equation:

The linguistic variable "boom stability index" S was applied to identify the boom’s stability states. Three lin-
guistic spaces were assigned to the above variable:

– Stable boom,
– Threshold boom stability,
– Unstable boom.

The membership function of a stable boom state is presented in Fig. 5a. This function can be described with 
the following equation:

where: p1 – function parameter (0 < p1 < 1), S – boom stability index.
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Figure 2.  System for measuring the sprayer boom’s displacement from a state of equilibrium: (a) general view; 
(b) support arms with reel spools and cable tension springs; (c) loop screws for attaching measuring cables.
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Figure 3.  Displacement of the boom’s terminal segments in two planes (speed – 8 km  h−1, without an air 
sleeve): A—point of contact between the tractor’s rear wheel and the obstacle, B—point of contact between 
the sprayer unit’s wheel and the obstacle, C—point at which the sprayer boom was stabilized, t1—time directly 
before the tractor’s rear wheel came into contact with the obstacle, t2—time interval between points at which the 
tractor wheel and the sprayer wheel came into contact with the obstacle, t3—time of unstable boom operation 
after the sprayer wheel came into contact with the obstacle, t4—time of stable boom operation.

Figure 4.  Membership functions: (a) admissible displacement, (b) threshold displacement, (c) excessive 
displacement; a1, a2, a3—coefficients, dl—threshold displacement.
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A fuzzy implication of the stable boom state can be defined with the use of an equation for calculating the 
bounding coordinate on the y-axis based on the registered displacement of the boom’s terminal segments (left 
and right) at a given moment:

where: μpl(|d|) – value calculated from the membership function of admissible displacement of the boom’s left 
terminal segment, μpr(|d|) – value calculated from the membership function of admissible displacement of the 
boom’s right terminal segment.

The resulting function is presented in Fig. 5b, and it can be described with the following equation:

where: Ss – coordinate on the x-axis, μsmax – bounding coordinate on the y-axis.
The coordinate on the x-axis can be calculated with the use of the following equation:

The membership function of threshold boom stability is presented in Fig. 6a, and it is described with the 
following equation:

where: p2 – function parameter (p3 < p2 < p4), p3 – function parameter (0 < p3 < p2), p4 – function parameter 
(p2 < p5 < 1).

A fuzzy implication of threshold boom stability was defined with the use of an equation for calculating the 
bounding coordinate on the y-axis based on the product of registered displacements (absolute values) of the 
boom’s terminal segments (left and right) at a given moment:

(5)µsmax = min
{

µpl(|d|),µpr(|d|)
}

,

(6)µs′(S) =







0 ↔ S ≤ p1
S−p1
1−p1

↔ S > p1 ∩ S < Ss
µsmax ↔ S ≥ Ss

,

(7)Ss = µsmax ·
(

1− p1
)

+ p1.

(8)µl(S) =











0 ↔ S ≤ p3 ∪ S ≥ p4
S−p3
p2−p3

↔ S > p3 ∩ S ≤ p2
p4−S
p4−p2

↔ S > p2 ∩ S < p4

,

Figure 5.  Membership function of the stable boom state (a) and the result function (b): p1—parameter, Ss—
coordinate on the x-axis, μsmax—coordinate on the y-axis.

Figure 6.  Membership function of threshold boom displacement (a), the result function (b), and the 
membership function of unstable boom state: p2… p5—coefficients; Sl1, Sl2—coordinates on the x-axis; μlmax—
bounding coordinate on the y-axis.
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where: μll(|d|) – value calculated from the membership function of threshold displacement of the boom’s left 
terminal segment, μlr(|d|) – value calculated from the membership function of threshold displacement of the 
boom’s right terminal segment.

The resulting function is presented in Fig. 6b, and it can be described with the following equation:

where: Sl1, Sl2 – coordinates on the x-axis, μlmax – bounding coordinate on the y-axis.
The coordinates on the x-axis can be calculated with the use of the following equation:

The membership function of the unstable boom state is presented in Fig. 6c, and it is described with the 
following equation:

where: p5 – function parameter (0 < p5 < 1).
A fuzzy implication of the unstable boom state can be defined with the use of an equation for calculating the 

bounding coordinate on the y-axis based on the registered displacement of the boom’s terminal segments (left 
and right) at a given moment:

where: μel(|d|) – value calculated from the membership function of excessive displacement of the boom’s left 
terminal segment, μer(|d|) – value calculated from the membership function of excessive displacement of the 
boom’s right terminal segment.

The discussed coordinate can assume only two values for the adopted membership function of excessive 
boom displacement: 0 – when the displacement of the boom’s each terminal segment does not exceed threshold 
displacement, or 1 – when the displacement of at least one terminal segment is equal to or exceeds threshold 
displacement.

The results of rule aggregation are presented for a scenario where the displacement of the boom’s left terminal 
segment is somewhat greater than the displacement of the right terminal segment, and both displacements do 
not exceed threshold displacement (Fig. 7). The bounding coordinate on the y-axis will assume the following 
values: 0—for excessive displacement; the product of the membership functions of threshold displacement of the 
boom’s right and left terminal segments—for threshold displacement; the membership function of admissible 
displacement of the boom’s left terminal segment—for admissible displacement. The final value of the boom 
stability index is calculated with the center of gravity  method2,9,44,45 using the following formula:

(9)µlmax = µll(|d|) · µlr(|d|),

(10)µl ′(S) =
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S−p3
p2−p3
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,

(11)Sl1 = µlmax ·
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(12)Sl2 = p4 − µlmax ·
(
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.

(13)µn(S) =

{

1− S
p5

↔ S < p5
0 ↔ S ≥ p5

,

(14)µnmax = max{µel(|d|),µer(|d|)},

Figure 7.  Membership functions of boom stability states (a) and the result of rule aggregation (b) for a 
field sprayer boom: |dl|, |dr|—absolute values of threshold displacement of the boom’s left and right terminal 
segments; μlmax, μnmax, μsmax—bounding coordinates on the y-axis for: threshold displacement, unstable boom 
state, and stable boom state.
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where: n – number of characteristic points on the rule aggregation curve (n = 6 in the analyzed scenario), 
Si – coordinate of the i-th point on the x-axis, μ’(Si) – coordinate of the i-th point on the y-axis.

Results and discussion
The ISO 14,131  standard46 does not include any coefficients for assessing the stability of a field sprayer’s boom. 
Therefore, the parameters of the model for identifying boom stability were selected on the assumption that the 
distance between spray nozzles should not exceed 0.1 m or 0.5% of the boom’s total  length47. It was assumed 
that the threshold displacement of each terminal segment in the vertical plane should not exceed 0.25% of the 
boom’s working width. This parameter was set at 52.5 mm for the tested boom with a length of 21 m. The same 
threshold displacement was used to determine the boom’s stability in the horizontal plane. The parameters of all 
equations for calculating the boom’s displacement and stability states are presented in Table 1.

The displacement of the boom’s terminal segments in each stage of movement during a single test run are 
presented in Figs. 8 and 9. Similar values were reported by other  authors48. At the tested speed, the displacement 
of the boom’s left arm was somewhat smaller than the displacement of the right arm despite the fact that the 
obstacle was positioned on the left side of the sprayer unit. After the sprayer unit crossed the obstacle, boom 
displacement was greater in the horizontal than the vertical plane, probably because modern stabilization systems 
are designed to attenuate vibration only in the vertical  plane36,49,50. However, according to many  researchers39,51,52, 
boom displacement in the horizontal plane has a more adverse effect on spray quality than vertical displacement. 
When the boom is displaced from the sprayer frame in the horizontal plane, the dose applied to some plants 
could be insufficient, whereas other plants could be excessively sprayed with the chemical  agent53,54.

Boom displacement was relatively small in the vertical plane, but significant in the horizontal plane when the 
rear wheel of sprayer unit came into contact with the obstacle. The peak-to-peak value of the greatest displace-
ment in the boom’s right terminal segment was estimated at 45 mm in the vertical plane and 230 mm in the 
horizontal plane. When the tractor crossed the obstacle, the trailer connector was lifted up and sideways, and 
a small rotation of the sprayer frame was observed, mainly in the vertical axis. Immediately after crossing the 
obstacle, the trailer connector returned to its initial position, and the sprayer boom was displaced once again. 
The horizontal displacement of the boom’s terminal segments (not attenuated by the stabilization system) was 
considerable, and it was not reduced until the wheel of the sprayer unit came into contact with the obstacle. 
When the wheel came into contact with the obstacle, the left boom arm was lifted and rotated in the vertical 
and horizontal axis. This sudden movement generated high peak-to-peak values of threshold displacement. 
Right-side displacement was similar in both planes (approx. 160–180 mm), whereas left-side displacement was 
around 240% greater in the horizontal than in the vertical plane (approx. 20 mm and 65 mm, respectively). In 
both planes, terminal boom segments were not displaced far from the neutral position, but the return to the 
neutral position occurred more rapidly in the vertical than in the horizontal plane. Similar observations were 
made by Pochi and  Vannucci48 who analyzed changes in the position of a spray boom with a working width of 
12 m on uneven terrain. As previously mentioned, these differences can be attributed to the specificity of the 
stabilization system which reduces boom displacement mainly in the vertical plane, whereas displacement in 
the horizontal plane is only minimally  attenuated36,49,50.

In the proposed model for identifying the stability states of a sprayer boom, instantaneous values of the boom 
stability index S were determined in both planes, and the duration of each stability state is presented in Figs. 8 
and 9. Periods of unstable boom operation were also identified. These periods coincided with the moments when 
the displacement of at least one boom arm exceeded threshold values, which implies that the model correctly 
identified boom instability states. For comparison, Figs. 8 and 9 also present the values of the boom stability 
index in the conventional model which can be described with the following equation:

(15)S =

∑n
i=1 Si · µ′(Si)
∑n

i=1 µ′(Si)
,

(16)S =

{

0 ↔ |d| > dl
1 ↔ |d| ≤ dl

.

Table 1.  Parameters of the model for identifying the stability states of a field sprayer boom.

Parameter Value

Threshold displacement [mm] 52.5

Coefficient a1 [ −] 0.5

Coefficient a2 [ −] 0.9

Coefficient a3 [ −] 1.1

Coefficient p1 [ −] 0.5

Coefficient p2 [ −] 0.5

Coefficient p3 [ −] 0.25

Coefficient p4 [ −] 0.75
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This model can be used to identify two boom stability states. The boom is unstable when the stability index 
S equals 0, and it is stable when S equals 1. In the Mamdani model, the stability index can assume intermediate 
values in the range of 0 to 1 in a continuous manner. Threshold values of S (0 and 1) denote unstable and stable 
states, but the intermediate state is also possible. Therefore, the value of S describes the intermediate state relative 
to threshold states (stable or unstable boom). The differences between the models are marked in green in figure 
drawings. The stability index calculated in the Mamdani model has greater practical value because it can be used 
in boom stabilization systems as a parameter that predicts changes in boom position. The system’s sensitivity can 
be modified by changing the parameters in the model.

When the wheel came into contact with the obstacle, the boom was destabilized only in the horizontal plane. 
Five short periods of boom instability were identified up to the moment when the wheel came into contact with 
the obstacle (time interval t2), and these periods accounted for around 48% of the analyzed time. After the sprayer 
unit crossed the obstacle, the stabilization system rapidly attenuated boom vibrations in the vertical plane, prob-
ably because both arms were propelled in the same direction during the maneuver. The boom was lifted when 
the wheels came into contact with the obstacle, after which it rapidly returned to the previous position near the 
boom’s center of gravity. The chronometric analysis (Table 2) revealed that the average time required to stabilize 
the boom at the tested speed was 1.06 s. The threshold displacement of the boom’s terminal segments (when 
S = 0) was exceeded in 30% of that time. Boom stabilization time was significantly longer (by approx. 170%) 

Figure 8.  Time of boom displacement and boom stabilization in the vertical plane (speed—6 km  h−1, without 
an air sleeve): A—point of contact between the tractor’s rear wheel and the obstacle, B—point of contact 
between the sprayer unit’s wheel and the obstacle, C—point at which the sprayer boom was stabilized, t1—time 
directly before the tractor’s rear wheel came into contact with the obstacle, t2—time interval between points at 
which the tractor wheel and the sprayer wheel came into contact with the obstacle, t3—time of unstable boom 
operation after the sprayer wheel came into contact with the obstacle, t4—time of stable boom operation.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18591  | https://doi.org/10.1038/s41598-023-46087-y

www.nature.com/scientificreports/

in the horizontal than in the vertical plane. The proportion of unstable operating time during that period also 
increased because the amplitude of displacement of both terminal segments relative to each other was shifted, 
and threshold displacement was exceeded for a longer period of time (not only for both arms, but also for the left 
and right arm separately). Boom operation was more stable in the vertical than in the horizontal plane directly 
before and after the rear wheel of the sprayer unit came into contact with the obstacle (sampling time of 10 s). 

Figure 9.  Time of boom displacement and boom stabilization in the horizontal plane (speed—6 km  h−1, 
without an air sleeve): A—point of contact between the tractor’s rear wheel and the obstacle, B—point of contact 
between the sprayer unit’s wheel and the obstacle, C—point at which the sprayer boom was stabilized, t1—time 
directly before the tractor’s rear wheel came into contact with the obstacle, t2—time interval between points at 
which the tractor wheel and the sprayer wheel came into contact with the obstacle, t3—time of unstable boom 
operation after the sprayer wheel came into contact with the obstacle, t4—time of stable boom operation.

Table 2.  Chronometric analysis of the sprayer boom’s stability states.

Parameter

Plane

Vertical Horizontal

Registered time of travel [s] 10

Time of stable operation ts [s] 9.10 ± 0.08 3.92 ± 0.35

Time of semi-stable operation th [s] 0.67 ± 0.07 2.90 ± 0.49

Time of unstable operation tn [s] 0.23 ± 0.08 3.18 ± 0.20

Stabilization time t3 [s] 1.06 ± 0.06 2.86 ± 0.25
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During the entire test, the average time of unstable operation was determined at 0.23 s and 3.18 s, respectively, 
which indicates that the stabilization system significantly reduced boom displacement in the vertical plane. 
However, new solutions for stabilizing boom operation should be developed in the future to ensure that boom 
vibrations are effectively damped also in the horizontal plane.

Materials and methods
The proposed model was validated on a mobile test bench (field sprayer with an air sleeve, AGROLA Zdzisław 
Niegowski, Płatkownica, Poland) connected to a Claas AXOS 330 tractor (CLAAS Group, Harsewinkel, Ger-
many). The sprayer was equipped with a 3  m3 tank and a hydraulic sprayer boom with a working width of 21 m. 
The boom was stabilized by a trapezoid suspension  frame30 with a vertically mounted vibration damper (Fig. 10). 
The boom was mounted to the frame with two tension bars, including a hydraulic cylinder with adjustable 
length for changing the boom’s position (in a direction parallel to the crop stand). Boom displacement in the 
vertical plane was controlled with the use of a hydraulic damper. The central segment of the sprayer boom is 
kept in equilibrium by the damper’s sliding arms, which delays and attenuates boom responses to changes in the 
field sprayer’s movement. The bottom bar in the stabilization system was fixed with two slide bushings (on the 
right and left side) to prevent excessive friction and to stabilize the central segment of the sprayer boom in the 
horizontal plane. The sprayer frame was set on two wheels (tire size 270/95R42).

A system for monitoring boom displacement from an equilibrium position was mounted on the field sprayer 
(Fig. 2). The monitoring system was described in detail by Kaliniewicz et al.43. The system consists of two identical 
units installed on both sides of the boom’s central segment. Each unit comprises two supports for registering the 
displacement of the boom’s terminal segments, one in the horizontal plane, and the other in the vertical plane. 
Displacement is measured with the use of cables. One end of the measuring cable is attached to the terminal 
segment of the sprayer boom, and the other end is wound onto one of the spools of the measuring reel connected 
to the motion sensor. One end of the tension cable is wound on the other spool, and the other end is attached to 
a tension spring. Constant tension is maintained on the measuring cable, and the cable is wound or unwound 
from the spool every time the terminal segment of the sprayer boom changes position. The reel’s angle of rotation 
is converted to a digital signal by a rotation sensor. The system comprised four cables because the displacement 
of the boom’s terminal segments was registered in two planes (horizontal and vertical) and on two sides of the 
field sprayer (left and right).

The boom stabilization system was tested and boom displacement was registered on 6 June 2022 according to 
ISO 14,131  guidelines46. A straight-line test track with an estimated length of 50 m was marked on a flat surface 
paved with concrete blocks. A wooden obstacle with the shape of an isosceles trapezoid in the vertical cross-
section was installed on the test track along the path traveled by the sprayer unit’s left wheels. Obstacle dimen-
sions were described by Kaliniewicz et al.43. The obstacle was introduced to the test track to simulate real-world 
conditions and to set the sprayer boom into motion on uneven terrain. The sprayer tank was filled with water up 
to two-thirds of its volume (approx. 2  m3). Tire pressure was 0.35 ± 0.01 MPa, and wheel track width was 1.65 m 
for the tractor and the sprayer unit. The spray boom was positioned 0.7 m above the ground to enable a full range 
of motion during the test. The test was conducted in triplicate. Tractor speed was 6 km‧h−1, and the secondary 
blower system was not activated during the test because the inflatable sleeve could restrict the boom’s movement. 
The test was conducted on a fair day at a temperature of around 22 ± 1 °C and wind speed of around 2 m‧s−1.

Figure 10.  Stabilization system of a field sprayer boom: 1—slide bushings, 2—fixed-length bar, 3—hydraulic 
cylinder with adjustable length, 4—boom displacement damper in the vertical plane.
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During the test, the sprayer unit moved along the test track, and its movement consisted of five successive 
stages: (1) acceleration to the preset speed, (2) movement at the preset speed, (3) crossing the obstacle, (4) move-
ment at the preset speed along a distance of around 10 m, (5) braking. Data from motion sensors were registered 
to calculate the displacement of the boom’s terminal segments in the horizontal and vertical plane with the use 
of the formulas described by Kaliniewicz et al.43. A moving average from 10 measuring points was calculated to 
minimize the impact of cable vibration on the displacement of the boom’s terminal segments. The parameters of 
the model presented in Sect. “Model for identifying the stable operation of a sprayer boom” were chosen based 
on expert knowledge (one of the co-authors) to correlate the registered changes in boom position with each 
stage of the sprayer unit’s movement along the test track. The following parameters were determined based on 
a chronometric analysis of the boom stability index S:

– Time of unstable boom operation tn,
– Time of stable boom operation ts,
– Time of semi-stable boom operation th (for 0 < S < 1),
– Time of boom stabilization t3 (from the moment the wheel came into contact with the obstacle to the moment 

when the displacement of the boom’s terminal segments reached threshold displacement).

Conclusions
The proposed fuzzy logic model can be applied to assess the operation of a field sprayer’s boom and to identify 
the boom’s stability states in real time. The model’s parameters can be changed to modify the sensitivity of the 
measuring system. Subject to need, the model can be used to register the boom’s stability states or to control the 
stabilization system.

The displacement of the boom’s terminal segments is registered in the horizontal and the vertical plane, and 
the time during which the boom is stable, semi-stable, and unstable can be accurately determined based on the 
calculated values of the boom stability index. To simplify data readout, these values can be analyzed jointly to 
identify a common region of stable and unstable boom operation for both planes.

In the future, the developed model can be expanded to include the sprayer unit’s speed and acceleration. The 
instantaneous values of these parameters can be registered together with boom displacement. It appears that 
the parameters describing the movement of the boom’s terminal segment significantly influence the quality of 
spraying operations.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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