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Multicenter evaluation 
of gut microbiome profiling 
by next‑generation sequencing 
reveals major biases 
in partial‑length metabarcoding 
approach
Hugo Roume 1,3, Stanislas Mondot 2, Adrien Saliou 4, Sophie Le Fresne‑Languille 5 & 
Joël Doré 1,2*

Next‑generation sequencing workflows, using either metabarcoding or metagenomic approaches, 
have massively contributed to expanding knowledge of the human gut microbiota, but 
methodological bias compromises reproducibility across studies. Where these biases have been 
quantified within several comparative analyses on their own, none have measured inter‑laboratory 
reproducibility using similar DNA material. Here, we designed a multicenter study involving seven 
participating laboratories dedicated to partial‑ (P1 to P5), full‑length (P6) metabarcoding, or 
metagenomic profiling (MGP) using DNA from a mock microbial community or extracted from 10 
fecal samples collected at two time points from five donors. Fecal material was collected, and the 
DNA was extracted according to the IHMS protocols. The mock and isolated DNA were then provided 
to the participating laboratories for sequencing. Following sequencing analysis according to the 
laboratories’ routine pipelines, relative taxonomic‑count tables defined at the genus level were 
provided and analyzed. Large variations in alpha‑diversity between laboratories, uncorrelated with 
sequencing depth, were detected among the profiles. Half of the genera identified by P1 were unique 
to this partner and two‑thirds of the genera identified by MGP were not detected by P3. Analysis of 
beta‑diversity revealed lower inter‑individual variance than inter‑laboratory variances. The taxonomic 
profiles of P5 and P6 were more similar to those of MGP than those obtained by P1, P2, P3, and 
P4. Reanalysis of the raw sequences obtained by partial‑length metabarcoding profiling, using a 
single bioinformatic pipeline, harmonized the description of the bacterial profiles, which were more 
similar to each other, except for P3, and closer to the profiles obtained by MGP. This study highlights 
the major impact of the bioinformatics pipeline, and primarily the database used for taxonomic 
annotation. Laboratories need to benchmark and optimize their bioinformatic pipelines using 
standards to monitor their effectiveness in accurately detecting taxa present in gut microbiota.
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MSP  Metagenomic species
PCoA  Principal coordinate analysis

The development of next-generation high-throughput sequencing technologies has facilitated significant 
advances in microbial ecology, allowing the study of microbial communities at an unprecedented level of reso-
lution, through the ability to profile their diversity and characterize their genetic information, without prior 
 cultivation1. In addition to their significant impact on our understanding of life forms, DNA sequencing tech-
nologies, including metabarcoding and metagenomics, have opened up a new area of genomics for studying 
microbial ecosystems. Metabarcoding uses amplicon PCR sequencing, most often of the 16S rRNA gene as a 
phylogenetic marker that is restricted to bacteria and archaea. Metagenomics allows analysis of collective micro-
bial genomes in their natural habitat, using shotgun sequencing, which captures the entire genetic information 
of a sample. While single-gene amplicon sequencing only allows exploration of the taxonomic diversity of 
prokaryotic taxa, sequencing the entire genomic content allows exploration of gene-encoded functions as well 
as information about the genomes of microorganisms from multiple prokaryotic taxa.

Both sequencing approaches have common biases and limitations, which have been  reviewed2, such as those 
linked to sample  collection3,  biobanking4,  contaminants5, the selection of DNA extraction  protocols6,7, library 
preparation  methods8–10approach over metabarcoding in detecting low-abundance  bacteria36.

None of these studies measured inter-laboratory reproducibility, using similar DNA material to measure 
biases generated by sequencing protocols and bioinformatics pipelines or sequencing protocols only. Here, 
we report an inter-laboratory reproducibility study of metabarcoding (P1 to P6) versus metagenomic profil-
ing (MGP) approaches using similar DNA material extracted in triplicate following the Human Microbiome 
Standards (IHMS) protocol from 10 fecal samples collected from five donors at two time points as well as one 
mock DNA community sample. In order to assess specific biases due to sequencing protocols, raw sequences 
delivered by partners were reprocessed using a single bioinformatics pipeline.

Methods
Study design, participants, and sampling
Five healthy adult subjects (S1–S5) were enrolled. All research was performed in accordance with guidelines 
approval for the Institut Nationale de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) 
to manage human-derived biological samples granted by the Ministry of Research and Education under approval 
number DC-2012-1728. Informed consent was obtained from all five donors. Their fecal samples were collected 
at two time points in October 2018 (Sx_1) and January 2019 (Sx_2) following the IHMS protocols (SOP 05_V2) 
(Fig. 1A). The samples were collected by the subjects at home and stored at room temperature in a stabilizing 
solution (RNAlater® Stabilization Solution, Thermo Fisher Scientific, Waltham, USA), and transported within 
24 h to our facilities.

DNA extraction, standard solution, and transfer to partner laboratories
DNA extraction from stool samples was performed as recommended by IHMS SOP 06_V2 (MGP SOP 06_V3), 
in triplicate using a QIAsymphony® DSP Virus/Pathogen Midi Kit (Qiagen). ZymoBIOMICS™ Microbial Com-
munity DNA Standard was used as an internal positive control (ref. D6306; Zymo Research) (Fig. 1A). It contains 
a mixture of genomic DNA extracted from 10 microbial species comprising 8 bacteria (12% genomic DNA 
abundance each), a yeast, and a protist (2% genomic DNA abundance each), altogether covering a wide range 
of GC contents (from 15 to 85%). Before further processing, the extracted DNA was quantified using Qubit™ 
Fluorometric Quantitation (Qubit™ dsDNA HS kit, ref Q32851, Thermo Fisher Scientific) and qualified using 
DNA size profiling on a Fragment Analyzer™ (Genomic DNA 50 kb kit, ref DNF-467-O500, Agilent Technolo-
gies, Santa Clara, USA). Multiple DNA extracts obtained from similar fecal samples were pooled and mix as a 
unique solution that was shared in equal amount among partner laboratories. Partner laboratories (P1 to P6) 
received 1 µg of the DNA extracted in triplicate from the 10 fecal samples as well as triplicate solutions of the 
mock community DNA. Partner laboratories were not able to visually differentiate mock community DNA from 
human fecal DNA samples, allowing us to use this mock community DNA as internal control. The transfer was 
done in a box by mail in 2 mL Eppendorf tubes maintained at 4 °C using cold packs.

Metagenomic and metabarcoding DNA sequencing
Metagenomic analysis was performed in MetaGenoPolis unit at the INRAE facilities by shotgun DNA sequencing 
(Fig. 1B, MGP). The libraries were generated from 1 µg of high-molecular-weight DNA (> 20 kbp). Shearing of 
the DNA into fragments of approximately 150 bp was performed using an ultrasonicator E220 system (Covaris, 
Woburn, USA), and DNA fragment library construction was performed using the 5500 SOLiD™ Fragment 48 
Library Core Kit (Thermo Fisher Scientific). Purified and amplified DNA fragment libraries were sequenced 
using an Ion Proton™ Sequencer (Thermo Fisher Scientific), with a minimum of 20 million high-quality single-
end reads (150 bp) per library.

Metabarcoding sequencing was performed in the partner laboratories (P1 to P6). P1 to P5 performed partial-
length (Fig. 1B, P1 to P5) and P6 full-length metabarcoding sequencing of the 16S rRNA gene (Fig. 1B, P6).

Details of the metabarcoding materials and methods used by each partner are provided in Supplementary 
Table 1. Upon reception, all partners performed DNA quantity control, P1 and P2 additionally performed DNA 
purity control, which also included DNA size control using dedicated methodologies. P1 to P5 sequenced the 
V3–V4 regions of the 16S rRNA gene 2 × 250 bp, or 2 × 300 bp for P2, using a MiSeq sequencer (Illumina, San 
Diego, USA). P1 and P2 used the same pair of primers, while the other partners such as P3, P4, and P5 used 
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different primer pairs but with few differences (Supplementary Table 2). P6 built libraries using the LUMI-Seq® 
methodology, enabling the sequencing of full-length 16S rRNA genes using the Illumina short-read platform. 
The method incorporated randomized unique molecular barcodes on the 5ʹ ends of individual 16S rRNA gene 
template molecules. After molecular barcoding, the full-length 16S gene V1–V9 was PCR amplified in order to 
make multiple copies and to increase the signal. The full-length fragments were then enzymatically tagmented 
while keeping the UMI tag on all pieces. The library was then sequenced using a NextSeq500 sequencer, in 
2 × 150 bp, using the classical Illumina sequencing workflow. Each partner committed to produce a minimum 
of 40 k reads per DNA sample. Following sequencing, the number of total raw reads per partial-length metabar-
coding partner varied from 3.64 (P3) to 18.99 (P5) million reads (Supplementary Fig. 1, raw reads number). P6 
sequenced an average of 6,625 full-length 16S rRNA reads per sample.

Bioinformatic data analysis
Metagenomic reads were cleaned using Alien Trimmer v0.2.437 to remove resilient sequencing adapters and trim 
low-quality nucleotides at the 3ʹ side using a quality and length cut-off of 20 and 45 bp, respectively. Cleaned 
reads were subsequently filtered from human and other possible food contaminant DNA (using human genome 
RCh37-p10, Bos taurus, and Arabidopsis thaliana with an identity score threshold of 97%). Filtered high-quality 
reads were mapped with an identity threshold of 95% upon mapping on the 10.4 million genes Integrated Gut 
Catalogue 2 (IGC2)38, using Bowtie v2.2.639 included in METEOR v3.2  software40. A table of the gene abundance 
was generated by means of a two-step procedure using METEOR. First, the unique mapped reads (reads mapped 
to a unique gene in the catalogue) were attributed to their corresponding genes. Second, shared reads (reads that 
mapped with the same alignment score to multiple genes in the catalogue) were attributed according to the ratio 
of their unique mapping counts. The gene abundance table was processed for rarefaction and normalization and 
further analysis using the MetaOMineR v1.2 (momr) R  package41. To decrease technical bias due to different 
sequencing depths and avoid any artifacts of sample size on low-abundance genes, read counts were rarefied. 
The gene abundance table was rarefied to 14 million reads per sample by random sampling and removing with-
out replacement. The resulting rarefied gene abundance table was normalized according to the FPKM strategy 
(normalization by the gene size and the number of total mapped reads reported in frequency) to generate the 
gene abundance profile table. The gene count was computed as the number of genes detected (i.e., with a strictly 

Figure 1.  Schematic representation of the main sample preparation steps and follow-up analysis of the 
multi-center evaluation study of gut microbiome profiling. The study design consisted of three parts: (A) 
Consideration of five healthy human (S1 to S5) fecal samples collected at two time points and DNA extraction 
following IHMS standard protocols (http:// www. human- micro biome. org/) as well as consideration of a 
microbial community DNA standard sample. (B) All DNA samples were provided in triplicates to five partners 
(P1 to P5) for partial-length metabarcoding sequencing and one partner for full-length metabarcoding using 
LUMI-Seq® (P6) as well as one partner for metagenomic DNA sequencing, following laboratory routine 
protocols. The genera Bacteroides and Roseburia were chosen as examples (C) Sample alpha- and beta-diversity 
analysis of bacterial genus profiles provided by each partner. Reprocessing of P1 to P5 sequencing data and 
alpha- and beta-diversity analysis performed on the bacterial genus profile.

http://www.human-microbiome.org/
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positive abundance) in a given sample after downsizing. For taxonomic profiling, the IGC2 catalogue was organ-
ized into 1990 Metagenomic Species (MSP), i.e., clusters with a minimum of 100 genes, using  MSPminer42. MSP 
taxonomy was assigned with the Genome Taxonomy  Database43. The relative abundance of an MSP was computed 
as the mean abundance of its 100 ‘marker’ genes (i.e., the genes that correlate the most altogether). If less than 
10% of ‘marker’ genes were seen in a sample, the abundance of the MSP was set to 0. The relative abundances 
at higher taxonomical ranks were computed as the sum of the relative abundances of the MSP that belong to a 
given taxon. The MSP count was assessed as the number of MSP present in a sample (i.e., with a strictly positive 
abundance). The MSP table was then resolved at the genus taxonomical level. For DNA sequences obtained from 
mock community samples, genomes of microbial strains present in the reagent and downloaded from a link 
specified in the instruction manual of the provider (ZymoResearch) were considered to build a catalogue that 
was further used as a reference database to obtain relative abundances of microbial species using Kraken v.2.1.044. 
We acknowledge that the choice to use a genome catalogue of the ten species present in the mock community, 
according to the manufacturer’s recommendation, makes it impossible to identify other species.

The key steps of the bioinformatic pipeline used to analyze the metabarcoding data are described in Sup-
plementary Table 2. P1 and P5 used  mothur45 as the data analysis software, while P3 and P4 used  QIIME46, P2 
used  FROGS47 and P6  DADA248. Only DADA2 used ASV as the clustering strategy, while the others used OTU. 
Among the partners using OTU clustering, we noticed the use of different software, except for P1 and P5, who 
used a similar one,  OptiClust49. P2 used  Swarm50, P3 used  UCLUST51, P4 used  USEARCH51. OptiClust, UCLUST, 
and USEARCH use a clustering approach based on centroid selection and a global clustering threshold (set to 
97% similarity), where closely related amplicons can be placed into different OTUs, while Swarm clusters itera-
tively by using a small user-chosen local clustering threshold, allowing OTUs to reach their natural  limits49. All 
partners used FastQC for read quality control. The partners used different read merging software, except P1 and 
P3, who used  FLASH52. Following reads merging, we noticed that P1 obtain merged reads shorter (~ 150 bp) 
than those obtained by the other partners (~ 450 bp). Different thresholds were used for sequence removal 
(Supplementary Table 1). P1, P3, and P5 removed chimeric sequences, P2, P4, and P5 removed rare OTUs, P2 
and P6 removed sequences based on read size, P3 based on read quality, and P1 was the only partner removing 
homopolymers. P3 and P4 did not use sequence denoising software. Except for P3 and P4, who used the same 
RDP classifier  tools53, the other partners used different taxonomic affiliation methods. P5 used  Greengenes54, 
P2 used NCBI Blast + 55, and P6 a naive Bayesian  classifier56. For partial-length metabarcoding, three different 
reference databases for taxonomic annotation were used. P1 and P3 used  Greengenes54, P2 and P4 used  SILVA57, 
and P5 used RDP. P2 returned all taxonomies considering all blast best hits and a consensus taxonomy with 
tagging of ambiguous taxons as “Multi-affiliation”, which were considered as unclassified taxons in the follow-
ing analysis. P6 using full-length metabarcoding used an in-house database. Bacterial and archaeal genomes at 
all assembly levels (Complete, Chromosome, Scaffold, Contig) were downloaded from the RefSeq  database58 
in May 2019, using ncbi-genome-download version 0.2.959. The taxonomic information of the genomes were 
retrieved from the NCBI Taxonomy database taxdump files downloaded from the Taxonomy FTP  site60. The 16S 
rRNA sequences were extracted from the genomes using barrnap version 0.961. For each genome, the extracted 
sequences were compared with each other using the clustering tool CD-HIT version 3.162,63 to keep only the 
unique sequences in each genome. The database was complemented by a curated collection of prokaryotic 16S 
rRNA sequences from the 16S rRNA RefSeq Targeted Loci  Project64 download in April 2019. Sequences con-
taining non-standard nucleotides or having unclear species identity (e.g., containing “sp.”) were removed. All 
the remaining sequences were then clustered at 100% using CD-HIT. For each cluster, the longest sequence was 
defined as the representative sequence and the taxonomy of the sequences making up the cluster was checked if 
there is a majority (with a threshold of 90%). The majority taxonomy would be selected as the cluster annotation. 
Otherwise, the cluster annotation would move up the taxonomic rank. For example, if 50% of the sequences in a 
cluster are annotated to the species Staphylococcus epidermidis and 50% annotated to Staphylococcus aureus, we 
will go up to the genus level by assigning Staphylococcus to the cluster, leaving the annotation of the species level 
empty. The final database contains 72,954 sequences that represent 15,041 species, 3151 genera, 510 families, and 
52 phyla. Following data trimming using a dedicated metabarcoding partner bioinformatic protocol, the number 
of sequences obtained by the partners varied from 1.7 to 8.2 million sequences (Supplementary Fig. 1, trimmed 
read). Sequence trimming removed more than 43% of the generated raw sequences in P2, which used stricter 
trimming conditions (read size, chimeric sequences, and rare OTUs) compared to the other partners such as P1 
and P5, with 25% of the original raw sequences removed and P3 and P4 with less than 2%.

In order to measure biases with partial-length metabarcoding partners due to the bioinformatics pipeline 
only, the data analysis was repeated from demultiplexed raw sequence data provided by P1 to P5, using a single 
and new bioinformatics pipeline. The key steps of the bioinformatics pipeline used to analyze the metabarcod-
ing data are described in Supplementary Table 3. Briefly, we used  cutadapt65 to remove primers and  SPAdes66 
to correct for sequencing errors. The paired-end reads were merged using  PEAR67, chimeric sequences were 
removed using UCHIME  368, and the remaining sequences were clustered into ASV using Vsearch (v2.15.1). 
Importantly, ASVs with numbers of sequences below 8 counts were removed (default parameter). For phylogeny 
identification, RDPTools suit v2.1169 was used. Following data trimming, approximately 30% of original raw 
sequences were removed for P5, which is in a similar range as what the partner previously obtained, and 50% 
for P1, P2, and P3, which is two times higher for P1 and twenty-five times higher than P3 compared to what the 
partners previously obtained and in a similar range for P2. More surprisingly, 85% of the raw sequences gener-
ated by P4 were removed (Supplementary Fig. 1, reprocess trimmed read) when less than 2% of the sequences 
were removed by this partner.
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Statistical and data analysis
The total number of bacterial genera identified in all samples, by each partner, was summed to calculate the 
genus richness. This count was performed in case genera were present in at least two replicates out of three. The 
partners provided the Shannon diversity index, calculated at the species taxonomic or OTU level, as a measure 
of the alpha-diversity. Both measurements of alpha-diversity were used to draw the boxplot visualization carried 
out with the ggplot function from the ggplot2 R package. Venn diagrams were plotted using the draw.pairwise.
venn function of the VennDiagram R package. The bacterial genera relative abundance count tables provided by 
the partners were concatenated into a single table (Fig. 1C). A list of all bacterial genera provided by the partners’ 
relative count tables was made into a single entity and then re-associated with relative abundances provided 
by individual partners using the VLOOKUP function in Excel. Bray–Curtis indexes were calculated using the 
vegdist function of the vegan R package as a measure of the beta-diversity. Stacked bar plots with hierarchical 
clustering for visualization in a dendrogram form were drawn based on the Bray–Curtis index values, using the 
as.dendogram, upgma and gglplot functions of the ggplot2 R package. PCoA (principal coordinate analysis) visu-
alizations were carried out using the pcoa and s.class functions of the ade4 and ape R package from Bray–Curtis 
dissimilarity matrices. Common and partner-specific bacterial genera were visualized using UpSet plots with the 
UpSet R package. All statistical analyses were performed using R v.4.1.2 software (http:// cran.r- proje ct. org/). For 
phylogenetic tree visualization, 16S rRNA genes sequence alignment was carried out with ClustalOmega (using 
default parameters), and the alignment files were then submitted to a phylogenetic analysis using Phylogeny.
fr customized workflow  service70 including alignment curation with Gblocks (using default parameters)71, tree 
construction with PhyML (boostrap 100)72, and visualization by TreeDyn73.

Ethical approval and consent to participate
Each donor consent to participate in the protocol signing consent form and accepting their samples to be 
conserve in our biobank. Approval for the Institut Nationale de Recherche pour l’Agriculture, l’Alimentation et 
l’Environnement (INRAE) to manage human-derived biological samples was granted by the Ministry of Research 
and Education under approval number DC-2012-1728, updated DC-2020-1728.

Results
Bacterial profile variations in mock communities at the genus level
While 16S rRNA metabarcoding only identified bacteria and archaea, Saccharomyces cerevisiae and Crypto-
sporidium were only identified by a shotgun metagenomics approach. Only three metabarcoding partners (P1, P4, 
and P5), out of six, detected all eight bacterial species present in the mock sample. Partner P2 missed Escherichia, 
P3 missed Limosilactobacillus, and P6 with LUMI-Seq® missed Pseudomonas. P2 and P6 had the highest count 
of unclassified genera, 10.8% ± 0.4 and 44.2% ± 0.6, respectively. The high proportion of unclassified genera 
identified by P6 led to underestimation of Escherichia, Limosilactobacillus, and Salmonella abundances. P2 and 
P3 overestimated the relative proportion of Bacillus and underestimated the proportion of Pseudomonas. P3 
overestimated the relative proportion of Listeria and underestimated the relative abundance of Staphylococcus. 
Overall, from beta-diversity analysis based on Bray–Curtis dissimilarity indexes (Fig. 2), MGP provided the best 
proximity with the theoretical profile, this result being expected as identification of other species was not possible, 
followed by P1, P4, and P5, while P2, P3, and P6 stood out as outliers. Thus, beta-diversity analysis highlighted 
the lower ability of P2, P3, and P6 to correctly profile the reference sample at the bacterial genus level as well as 
the good performance of P1.

Comparative alpha‑diversity and genus richness analysis in mock and human fecal samples
In mock sample, all metabarcoding partners overestimated the alpha-diversity, due to the identification of addi-
tional bacterial species, compared to the theoretical value (Fig. 3A). For the human fecal samples, P1, P2, and P5 
underestimated while P3, P4, and P6 overestimated the alpha-diversity compared to the indexes calculated by 
MGP. P1 and P6 were outliers in their respective groups. For the human fecal samples, we noticed a substantial 
degree of inter-metabarcoding partner variation for genus richness measured from identical DNA samples, as for 
samples S3_1, partner P3 identified an average of 18.7 ± 0.6 genera while P4 identified 103 ± 4 genera (Fig. 3B). 
Overall, for any sample considered, the difference in the bacterial genus richness between P3 and P4 was the 
highest. P1, P2, P4, and P5 overestimated the bacterial genus richness compared to MGP and P6, who identified 
comparable genus richness, while it was underestimated by partner P3.

While all partners identified unclassified bacterial genera, their average relative abundances varied from 
7.9 for P4 to 61.9% for P6 (Supplementary Fig. 2A). Among the partial-length metabarcoding partners, P1, P2, 
and P4 had the lowest average relative abundances of unclassified bacterial genera, ranging from 7.9% for P4 
to 21.9% for P2, followed by P3 and P5 with 47.7% and 34%, respectively. Unexpectedly, these proportions of 
unclassified bacterial genera among partial-length 16S rRNA were lower than those obtained by laboratories 
using higher sequencing taxonomical resolution such as MGP or full-length sequencing using LUMI-Seq®, with 
51.4% and 61.9%, respectively. Thus, P1, P2, and P4 were using weaker conditions for classification of OTU 
clusters compared to the other partners.

By contrast, with a performance similar to those obtained for bacterial genus profiling using mock samples, 
P3 missed the most abundant human gut genera such as Bacteroides, Parabacteroides, and Prevotella, which were 
not detected or identified at low relative abundance (e.g., Faecalibacterium (< 0.05%)—Supplementary Fig. 3). 
These bacterial genera are core members of the human gut microbiota, and analytical pipelines missing them may 
be identified and flagged as poor service providers in gut microbiota analysis by regulatory and legal agencies.

http://cran.r-project.org/
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Comparative beta‑diversity analysis in human fecal samples
Following the aggregation of counting tables, at the bacterial genus level, provided by the partners after sequenc-
ing of DNA isolated from stool samples, a total of 429 unique genera were identified. For human fecal samples, 
the dissimilarity between all pairs of partners, as measured by Bray–Curtis indexes at the bacterial genus level, 
was such that we observed lower inter-individual variance than inter-partner variance (Fig. 4). The microbiota 
profiles depicted by partners P5 and P6 were the most similar to those obtained by MGP. P2 and P4, which 
clustered together, as well as the P3 and P1 partners, provided microbiota profiles that were the most dissimilar 
to those of the other partners. We also noticed that this clustering was markedly influenced by the taxonomic 
database that was used for the phylogenetic annotation (Supplementary Table 1). The number of confounding 
factors exceeding the number of laboratories, all conclusions should be taken with caution.

Considering bacterial genera identified as shared between the metabarcoding partners and MGP or exclu-
sively identified by a single partner (Supplementary Fig. 4A), we observed three groups of partners. The first 
cluster comprised P1, P2, and P4, for which most of the identified bacterial genera were only identified by 
metabarcoding. The average total relative abundance of these partner-exclusive bacterial genera ranged from 
10.6 to 29.8% for P1 and 30.8 to 65% for P2 and P4, with a high variance between samples. For P1 and P4, these 
results confirm their use of weaker parameters for OTU classification at the genus level, as described earlier. The 
second cluster comprised P3, for which most of the identified bacterial genera were only identified by MGP, and 
these bacterial genera represented an average total relative abundance between 20.1 and 28.4%, depending on the 
samples. This confirms the tendency of P3 to miss bacterial genera classification. The third cluster, comprising 
P5 and P6, had most of its identified bacterial genera shared between the partners and MGP, which explained 
their similarity as measured by the Bray–Curtis distance. For the two latter partners (P5 and P6), the bacterial 
genera identified by MGP only represented a low average total relative abundance, ranging from 2.2 to 8.2% for 
P5 and 0.3% to 5.7% for P6. Overall, the bacterial genera exclusively identified by the metabarcoding partners 
represented a higher average total relative abundance compared to those exclusively identified by MGP.

In a genus intersection count analysis performed between all partners (Fig. 5), P1 had the highest number of 
genera exclusively identified by a single partner, between 27 and 45, which accounted for approximately 34.6% 
(S3_1) to 47.4% (S1_2) of the total number of genera identified by this partner and represented between 2.9 and 
10.2% of the total relative abundances of the bacterial genera identified by this partner. P1 thus accounted for 
a total of 159 partner-exclusive bacterial genera, representing a low proportion of the total relative abundance 
(Supplementary Table 4). The tendency of P1 to identify such a high number of partner-exclusive bacterial genera 
contributes to the high genus richness and β-diversity dissimilarity measured compared with the other partners 
(Figs. 3B and 4). On the other hand, P3 did not identify any partner-exclusive bacterial genera, except one in 

Figure 2.  Stacked bar plot with hierarchical clustering (dendrogram), based on calculation of the Bray–Curtis 
dissimilarity index of mock samples. Microbial genera relative abundance is averaged from triplicate samples 
obtained by shotgun (MGP) and 16S rRNA (P1 to P6) sequencing strategy and compared to the theoretical 
profile (The).
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S4_2. This observation confirms the low genus richness previously reported (Fig. 3B) as well as the tendency 
of this partner to misidentify the core gut bacterial genera. In most samples, P5, P6, and P4 identified between 

Figure 3.  Boxplots of the alpha-diversity comparative analysis base on microbial genus number identified 
in samples for all partners (MGP, P1 to P6). (A) Average Shannon index calculated by partners on the basis 
of bacterial species diversity. (B) Average number of bacterial genera identified per triplicate sample with the 
standard deviation.
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12 and 26 partner-exclusive bacterial genera, which is higher than MGP, and P2, which identified 10 partner-
exclusive bacterial genera. P2 and P4 shared the highest number of bacterial genera (32 to 37), varying between 
24.3 and 60.3% of the total relative abundances of the bacterial genera identified by these partners. P2 and P4 
thus accounted for a total of 43 partner-exclusive bacterial genera, representing a high proportion of the total 
relative abundance (Supplementary Table 5). We noticed that most of the exclusive bacterial genera common 
to P2 and P4 were different taxonomic sub-divisions of genera, such as Ruminococcus sub-divided in Rumino-
coccaceae NK4A214 or UCG-002, -003, -004, -005, -009, -010, -013, -014, Ruminococcus 1 and 2 or Prevotella, 
Ruminiclostridium, or Lachnospira. All these taxonomic intermediate names present in the SILVA database used 
by both partners (Supplementary Table 1) largely contributed to the β-diversity similarity of the bacterial genera 
profiles observed between P2 and P4 and their dissimilarity with the other partners (Fig. 4). This also explains 
why P2 and P4 overestimated the bacterial genus richness. However, these sequences associated with genera 
sub-groups or intermediate taxonomic ranks mainly corresponded to yet uncultured bacterial groups and were 
not well defined at the genus level (Supplementary Fig. 5). Partner P5 identified between 14 and 22 partner-
exclusive bacterial genera, which represented between 1.5 and 8.1% of the total diversity. P6 identified between 
12 and 21 partner-exclusive bacterial genera, which represented between 4.9 and 9.7% of the total diversity. MGP 
identified between 6 and 14 partner-exclusive bacterial genera, which represented between 0.5 and 6.7% of the 
total diversity. This relatively low amount of partner-exclusive bacterial genera accounting for a low total relative 
abundance contributed to the low dissimilarity of the bacterial genera profile as measured by β-diversity analysis 
between P5, P6, and MGP (Fig. 4). The number of shared bacterial genera among all partners was between 7 
and 15, depending on the samples, representing from 3.1 to 34.8% of the total relative abundances of bacterial 
genera, depending on the partners.

A summary of the criteria used for classification by the metabarcoding partners based on their capacity to 
approximate bacterial genus profile as measured by the use of metagenomic is presented (Table 1).

Comparative analysis of the bacterial profiles obtained after reanalysis of partial‑length meta‑
barcoding datasets
To measure the specific impact of bioinformatic pipelines on the bacterial genera profiles obtained from the 
partial-length metabarcoding partners (P1 to P5), we reanalyzed the raw sequence datasets issued from all 
partners with the use of a single bioinformatic pipeline (Supplementary Table 3).

For the mock samples, the bacterial genus profiles were similar to those obtained previously, except that P2 
displayed a lower prevalence of unclassified genus and identified Escherichia. P3 still missed the Limosilactoba-
cillus genus (data not shown). For the human fecal samples, the average relative abundances of the unclassified 
bacterial genera varied from 20.4 to 22% for P1, P2, P4, and P5 and 37.2% for P3 (Supplementary Fig. 2B). A 
higher proportion of the sequences provided by P5 was classified following the new analysis. Only the sequencing 
data provided by P3 had a high proportion of unclassified bacterial genera, while for the other metabarcoding 
sequencing partners the proportion of unclassified bacterial genera was rather uniform. The reprocessing of 
sequencing data identified a total of 180 bacterial genera, so less than half of those identified previously. Variation 

Figure 4.  Scatter plot of the two first principal components obtain using PCoA based on Bray–Curtis 
dissimilarity indexes calculated between the genus bacterial profiles. Beta-diversity analysis of the microbiota 
profiles at the genus level and provided by the partners (P1-P6) and MGP.
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of the alpha-diversity, measured by the Shannon diversity index at the species level and genus richness, between 
the partners was lower than that measured previously. The average Shannon diversity index varied between 3.5 
and 6 in the original datasets and between 4 and 5 upon reanalysis, depending on the partners (Supplementary 
Fig. 6A). The average genus richness varied between 23.2 and 102.1 in the original datasets, while the new 

Figure 5.  UpSet plot representing number of bacterial genera in the human fecal samples (S1_1 to S5_2) 
exclusively identified by one partner or shared between multiple partners (MGP, P1, P2, P3, P4, P5, and P6).
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Partners Mock Feces

Total scoring Rank  RemarksCriteria

Genus 
presence/
absence

α-diversity β-diversity Genus 
presence/
absence

α-diversity β-diversity

Shannon 
index

Genus 
richness

Shannon 
index

Genus 
richness

P1 2 2 2 2 0 0 1 0 9 2nd

Despite good 
performance 
to profile 
mock bacte-
rial commu-
nity samples, 
P1 identifies 
too high a of 
number of 
partner-exclu-
sive bacterial 
genera at low 
abundances, 
which may 
be explained 
by the use of 
thresholds 
that are too 
low for genus-
level sequence 
assignment 
for taxonomic 
annota-
tion and/
or outdated 
database, as 
Greengenes, 
for taxonomi-
cannotation

P2 0 2 1 0 1 1 1 0 6 5th

Counting 
too high of a 
proportion of 
unclassified 
sequences 
in mock 
bacterial 
community 
samples, miss-
ing Escheri-
chia, P2 also 
identifies 
too high of a 
proportion of 
partner-exclu-
sive bacterial 
genera, which 
may be 
explain by use 
the taxonomic 
database 
SILVA, 
accounting 
for numerous 
sub-genera or 
intermedi-
ate genus 
taxonomical 
groups

Continued
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Partners Mock Feces

Total scoring Rank  RemarksCriteria

Genus 
presence/
absence

α-diversity β-diversity Genus 
presence/
absence

α-diversity β-diversity

Shannon 
index

Genus 
richness

Shannon 
index

Genus 
richness

P3 0 1 2 0 0 2 0 0 5 6th

Failing to 
identify 
numerous 
important 
members of 
the mock 
bacterial com-
munity and 
gut micro-
biota, P3 also 
provided the 
lowest genus 
richness and 
the highest 
proportion of 
unclassified 
sequences. 
Bacterial pro-
filing remains 
as an outlier 
following use 
of a single 
bioinformatic 
pipeline. We 
make the 
assump-
tion that the 
choice of 
primers for 
16S rRNA 
amplification 
combined 
with the use 
of outdated 
database such 
as Greengenes 
greatly 
impacts the 
outcome of 
the analysis

P4 2 0 0 2 1 2 0 0 7 4th

Overestimates 
species diver-
sity and genus 
richness, P4 
also identi-
fies a lower 
proportion of 
unclassified 
sequences, 
which may be 
due to the use 
of thresholds 
that are too 
low for genus-
level sequence 
assignment 
for taxonomic 
annotation. 
P4 also identi-
fies a higher 
proportion of 
partner-exclu-
sive bacterial 
genera, which 
may be 
explain by use 
the taxonomic 
database 
SILVA, 
accounting 
for numerous 
sub-genera or 
intermedi-
ate genus 
taxonomical 
groups

Continued
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assessments varied from 51.0 to 91.5, depending on the partners (Supplementary Fig. 6B). The bacterial species 
profiles obtained by P1 had the lowest average Shannon diversity index in the original datasets (3.7 ± 0.2). Fol-
lowing reanalysis, it had one of the highest average Shannon diversity indexes (4.8 ± 0.2). This increase in species 
alpha-diversity was also observed for P2 and P5, albeit to a lower extent. For P1 and P2, the reanalysis measured a 
lower richness at the genus level. The P1 and P2 partners had an increase in the bacterial species diversity index, 
which did not translate into an increase in the genus richness. In contrast, the bacterial species profiles obtained 
by P3 had the highest average Shannon diversity index in the original datasets (5.5 ± 0.4), whereas reanalysis led 
to the lowest average Shannon diversity index (4.3 ± 0.3). This decrease in species diversity following reanalysis 
was associated with an increase in the genus richness, which varied from 23.2 ± 3.1 to 50.9 ± 3.8. Thus, for this 
partner, a decrease in the bacterial species diversity index did not translate into a decreased genus richness. This 
decrease in the species alpha-diversity was also observed, albeit at a lower extent, for P4, which, in this case, also 
translated into a decreased genus richness upon reanalysis. The changes in the alpha-diversity index and genus 
richness for partner P5 were very small.

Following reanalysis and measurement of the beta-diversity as defined by the Bray–Curtis index, we found 
a higher similarity of the profiles obtained at the genus level between P1, P2, P4, and P5, but P3 remained as 
an outlier (Fig. 6). However, considering comparative analysis between the metabarcoding and metagenomic 
partners, we still found lower inter-individual variance than inter-laboratory variances, as previously observed. 
Considering the richness of bacterial genus identified as shared between metabarcoding and metagenomic or 
exclusively identified by a single partner (Supplementary Fig. 4B), the first group of partners (P1, P2, and P4), 
previously identified as the one with the highest number of bacterial genera exclusively identified by a single 
metabarcoding partner, was now the group with the most abundant shared bacterial genera. The metabarcoding 
partners-exclusive bacterial genera represented an average total relative abundance ranging from 8.4 to 26.9%, 
depending on the partners and samples. The values were of the same order of magnitude as those previously 
measured for P1, but they were lower for P2 and P4. The second group, represented by P3, was still dominated by 

Partners Mock Feces

Total scoring Rank  RemarksCriteria

Genus 
presence/
absence

α-diversity β-diversity Genus 
presence/
absence

α-diversity β-diversity

Shannon 
index

Genus 
richness

Shannon 
index

Genus 
richness

P5 2 2 1 2 2 1 1 2 13 1st

Considering 
the bacterial 
profiles 
obtained 
compared 
to MGP, this 
partner per-
forms the best 
compared 
to all other 
for almost 
all criteria 
expect the 
α-diversity, 
which appears 
to be slightly 
overestimated 
but represent-
ing a low 
proportion 
of bacterial 
genus relative 
abundance

P6 0 0 2 0 2 0 2 2 8 3rd

Despite a ten-
dency for the 
identification 
of unclassified 
bacteria both 
in mock and 
fecal samples, 
which may 
be due to the 
scarcity of 
full-length 
16S rRNA 
gene in the 
database used, 
P6 provides a 
good similar-
ity with bacte-
rial profiles 
as measured 
by shotgun 
metagenomics

Table 1.  Summary table of the metabarcoding partners’ individual performances compared to the results 
obtained in shotgun metagenomic bacterial profiling based on genus presence/absence, α- and β-diversity 
indexes. 0: poor performer, 1: medium performer, 2: good performer.



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22593  | https://doi.org/10.1038/s41598-023-46062-7

www.nature.com/scientificreports/

bacterial genera exclusively identified by MGP, but their average total relative abundance ranging between 13.9 
and 25.1%, depending on the samples, was slightly decreased. Among these genera, we still noticed the absence of 
the most abundant human gut bacterial genera, such as Bacteroides and Prevotella. The third group, represented 
by P5, was still dominated by bacterial genera shared between the metabarcoding and metagenomic partners. For 
this partner, the bacterial genera exclusively identified by metagenomics were still low, representing an average 
total relative abundance ranging from 2.5 to 7.8%, depending on the samples. In this reanalysis, the number of 
bacterial genera shared between all partners was higher, between 21 and 33 (Supplementary Fig. 7), representing 
20.4% to 62.1% of the total relative abundances of the bacterial genera, followed by the metabarcoding partners-
exclusive genera, accounting for 16 to 22 members or 7.1% to 29.6% of the total relative abundances. We noticed 
that exclusive bacterial genera were dominant in P5 and MGP, with 8 to 19, representing less than 0.2% of the 
relative abundances, and 14 to 20 genera, representing between 2.4 and 7.8% of the relative abundances, respec-
tively. The data reprocessing did not shift bacterial genus profiles obtained by P5 compared to the other partners. 
This may be due to the fact that the taxonomic annotation database used in this reprocessing analysis was the 
same as the one used by P5. All partners, excluding P3, tended to share between 6 and 10 genera, accounting for 
6.3% to 45.4% of the total relative abundances.

Discussion
In this multicenter study, a similar DNA standard solution or DNA isolated from human feces samples were 
provided in triplicates to partners who are experts in gut microbiome profiling by shotgun metagenomics or 
metabarcoding with the aim of comparing the impact of their routine sequencing methods and bioinformatic 
pipelines in resolving bacterial profiles at the genus and OTU, ASV, or species level. To differentiate the impact 
of sequencing protocols from bioinformatic strategies, all raw sequencing data from the partial-length metabar-
coding partners was reanalyzed using a single bioinformatic pipeline. The reasonable expectation is that inter-
individual (inter-sample) differences should be the primary driver of microbiome profile stratification. Our work 
shows that this is not the case for metabarcoding pipelines, hence questioning the possibility of standardization of 
16S rRNA-based approaches. Our findings highlight significant differences in the bacterial species alpha-diversity 
index, and genus richness, as well as significant differences in the beta-diversity index showing a lower inter-
individual variance than inter-laboratory variances. Our study also reports a dominance of genera exclusively 
identified by a single metabarcoding partner. These differences in the bacterial genus profiles between partners, 
quantifying methodological biases, are seldom documented and appear greater in magnitude compared to the 
perceived expectations and to what has been reported to date in the literature.

The sequencing strategy, including the choice of primers for metabarcoding, greatly affects the analysis 
outcomes. P3 failed to identify a few common bacterial genera, such as Limosilactobacillus or the predominant 
human gut commensals Bacteroides or Prevotella, or identified them but at a too low proportion, such as Fae-
calibacterium, even following data reprocessing with a single and different bioinformatic pipeline. In the original 
dataset, while providing a high species α-diversity index, this partner is also the one with the lowest genus rich-
ness compared to the others. It has been claimed on the USEARCH website (https:// drive5. com/ usear ch/ manual/ 

Figure 6.  Scatter plot of the two first principal components obtain using PCoA based on Bray–Curtis 
dissimilarity indexes calculated between the genus bacterial profiles following reanalysis of the raw dataset with 
a single bioinformatic pipeline. Beta-diversity analysis between the 16S rRNA sequencing partners (P1-P6) and 
MGP.

https://drive5.com/usearch/manual/uclust_algo.html
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uclust_ algo. html) that UCLUST, which was the clustering method used by this partner, is not designed for OTU 
clustering, and such observation has also been reported in an empirical study and may explain such inflating 
α-diversity. Following data reprocessing, these two alpha-diversity indices became among the lowest and more 
consistent with each other. This partner, providing the lowest number of raw sequences, also accounted for the 
highest proportion of unclassified sequences compared to the other partial-length metabarcoding partners, which 
is still impactful upon data reprocessing. Unlike the other partial-length metabarcoding partners, the change of 
bioinformatic pipeline does not allow correction of this outlier position highlighted by beta-diversity analysis of 
the original dataset. The absence or underestimation of a few of the most abundant human gut bacterial genera 
explains the outlier position of this partner and highlights the importance of the sequencing strategy. We can 
hypothesize that the primers and/or the PCR amplification protocol chosen by P3 do not amplify the V3-V4 
region of the 16S rRNA gene of these bacterial genera.

The settings for genus-level sequence assignment will matter greatly in the final outcome of metabarcoding 
analysis. P1 presents the particularity of identifying many partner-exclusive bacterial genera, for most at a low 
proportion, but that together accounted for up to 10% of the total bacterial diversity. These were not identified 
following reprocessing of the raw sequences with a new bioinformatic pipeline. We hypothesize that the sequence 
homology threshold for bacterial genus identification in the bioinformatics pipeline was set too low to allow 
accurate bacterial genus identification, hence resulting in over-estimation of the diversity.

The choice of the reference database markedly influenced the genus-level sequence assignment, and thereby 
the outcome of metabarcoding analysis. P1 and P3 both used the Greengenes database for taxonomic classifica-
tion. Unlike other the databases used in this study, such as SILVA and RDP, Greengenes taxonomy is assigned 
based on automatic de novo 16S rRNA gene tree construction and rank mapping from other taxonomic sources, 
mainly the NCBI, which is not curated. Although still included in some metabarcoding analysis packages, such 
as QIIME, the database has not been updated for the past ten  years74. Although the Greengenes database website 
recommends use of more updated sources for taxonomical annotation, this database is still used and referenced 
in more than a thousand publications each year.  Greengenes275, a reference tree that unifies genomic and 16S 
rRNA databases, recently published, should give a real chance of standardization across methods. In beta-
diversity analysis, P2 and P4 displayed similar microbiota profiles, which may be partly due to use of a common 
database for taxonomic identification. The use of the SILVA database and the presence of numerous sub-genera 
or intermediate taxonomical groups explains the high amount of partner-exclusive bacterial genera identified 
for these two partners, accounting for almost half of the retrieved total bacterial genera diversity. Most of the 
observed differences were due to the identification of bacterial genera sub-taxa, belonging to Ruminococcus, 
Prevotella, Ruminiclostridium, or Lachnospira, which are mostly represented by uncultured bacteria. As previously 
reported, this observation may be due to the high amount of sequences present in the SILVA database, with few 
of them being associated with intermediate taxonomical ranks that are not present in other  databases76. In this 
case, we assume that the presence of hypothetical sub-groups of bacterial genera in the reference database is the 
main driver of the dissimilarity measured. To a lesser extent, a similar trend was also observed for partner P5, 
using the RDP database. However, only the genus, Clostridium, was divided into different sub-genera or inter-
mediate ranks, which impacted the measurement of beta-diversity compared to MGP. Use of the RDP database 
nevertheless allowed the highest level of similarity to be obtained to the bacterial profiles obtained by MGP or 
full-length metabarcoding.

Separating the impact of sequencing platforms and bioinformatic pipelines in metabarcoding analysis shows 
that both will influence the outcome. Although the analysis of sequences derived from various sequencing plat-
forms using a single unique pipeline allowed greater similarities to be obtained and diminished the “laboratory-
effect” (inter-laboratory differences), it still did not allow inter-platform differences to be completely masked. 
Overall, both sequence production and bioinformatics influence the distribution of samples, and both should 
be rigorously standardized if we are to expect distributions whereby samples from the same individual cluster 
irrespective of who runs the analysis. Reprocessing of partial-length metabarcoding partner 16S rRNA sequence 
files with a single bioinformatic pipeline highlighted the biases due to the use of different databases for taxo-
nomical annotation. The results highlighted that these profiles dissimilarities between P1, P2, P4, and P5 are 
due to bioinformatic differences in the way taxonomical annotation is carried out, which explains why the use 
of a single bioinformatic procedure homogenizes the alpha- and beta-diversity outputs. It has been previously 
shown that in many instances Greengenes, SILVA, and RDP cannot be mapped reliably to one  another74, thus 
explaining much of the dissimilarity observed before reprocessing of sequences using only the RDP database 
for taxonomic annotation. However, despite the use of a single bioinformatic pipeline and similar taxonomic 
annotation databases, none of the bacterial genus profiles allow an inter-individual variance to be reached that 
is lower than the inter-laboratories variances.

The use of full-length 16S rRNA gene in LUMI-Seq® allows minimization of the presence of exclusive bacterial 
genera and improvement of the identification of unclassified reads, which tends to provide profiles with higher 
similarity with the ones provided by MGP and P5 compared to other partial-length metabarcoding partners. 
As previously demonstrated, the average bacterial species alpha-diversity as measured by the Shannon index in 
full-length was higher than that in the partial-length metabarcoding  partners23. However, the relative proportion 
of unclassified bacterial sequences was high, which may be due to the missing information in the full-length 16S 
rRNA gene database used. We also noticed the absence of the genus Pseudomonas in the mock samples as well as 
Alistipes in S1_1 and Bifidobacterium in all samples except for S1_1 and S5_2, while they were identified by all 
other partners. These latter results contradict what has been reported by Jeong et al. using a similar methodology 
applied to gut microbiota profiling. Here again, the primer choice may have had a strong impact.

https://drive5.com/usearch/manual/uclust_algo.html
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Conclusions
Previous inter-laboratories studies reported biases in bacterial taxonomic profiling, following the transfer of dif-
ferent raw  biospecimens77, human stool  samples36, to raw 16S rRNA sequences obtained from mock microbial 
community  samples78. Here, technical replicates of DNA extracted from human stool samples were transferred 
as aliquots to different laboratories, for sequencing and analysis. This approach allowed us for the first time to 
characterize specific biases due to library preparation and sequence production all the way to the bioinformatics 
steps, without having to consider the sample collection or DNA extraction protocols. Reprocessing of raw 16S 
rRNA sequences using a single bioinformatic pipeline also allowed measurement of biases specifically due to 
the bioinformatics pipeline.

This multi-center evaluation study of gut microbiome profiling reveals major biases mainly due to library 
preparation and the databases used for taxonomic annotation in bioinformatic pipelines for partial-length meta-
barcoding. Whereas biases due to library preparation have been  evaluated8, the impact of the choice of databases 
only for bacterial genus taxonomic annotation has not been investigated much to date. To our knowledge, stud-
ies reporting bioinformatic pipeline benchmarks for metabarcoding profiling of bacteria from mock microbial 
 communities79 or human stool  samples14 were performed using similar reference databases. Yet it is known that 
databases cannot be mapped reliably onto one  another74, and differences between bacterial profiling using mock 
communities have been  evaluated76. This study highlights major differences in bacterial genus identification and 
relative abundance assessment due to the bioinformatic pipeline used, primarily due to the choice of the database 
used for taxonomic annotation. According to the choices made concerning primer design, PCR amplification 
protocol in sequencing strategy as well as taxonomic reference database and sequence homology threshold 
used in bioinformatic pipeline, we recommend the systematic use of in-silico methodology allowing to test the 
relevance of these combinations of choice according to the objective of the study.

This study also reveals that the use of a single bioinformatics pipeline does not allow reduction of the pro-
portion of partner-exclusive bacterial genera in order to allow for a lower inter-individual variance than inter-
laboratories variances between metabarcoding and metagenomic partners. For laboratories to control for the 
presence of false-positive or negative bacterial genera and to accurately evaluate their pipeline or set-up standard 
next-generation sequencing protocols and bioinformatic pipeline, publicly or commercially available reference 
biospecimens, cells, and DNA reagents should be used. Such gut-representative DNA mock community stand-
ards have recently been developed for the microbiome  field80 and others have been made commercially available 
by companies such as ATCC (MSA-1006). Other companies, such as Zymo Research, can also provide gut cell 
microbiome standard and fecal sample references (ZymoBIOMICS). As previously highlighted, the use of these 
standards is critical to build-up clinical microbiota profiling or use in research laboratories to improve publication 
reproducibility as well as transportability of methods and results to routine  practice81. In the near future, raw 
metabarcoding or metagenomics DNA sequences obtained from mock microbial communities representative 
of stool specimens or fecal samples, made available in publications with the pipeline being reported as set by 
the STORMS  initiative82, may also be systematically used by laboratories for pipeline evaluation. If microbiome 
profiling is ever to be made available on the dashboard of clinicians, standardizable and inter-laboratory homo-
geneity of outputs will be crucial features.

Data availability
The datasets supporting the conclusions of this article, Metagenomic and metabarcoding FastQ files, are available 
in NCBI BioProject under accession number PRJNA911046.
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