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Doubly elastic net regularized 
online portfolio optimization 
with transaction costs
Xiaoting Yao  & Na Zhang *

Online portfolio optimization with transaction costs is a big challenge in large-scale intelligent 
computing community, since its undersample from rapidly-changing market and complexity from 
varying transaction costs. In this paper, we focus on this problem and solve it by machine learning 
system. Specifically, we reformulate the optimization problem with the minimization over simplex 
containing three items, which are negative expected return, the elastic net regularization of 
transaction costs controlled term and portfolio variable, respectively. We propose to apply linearized 
augmented Lagrangian method (LALM) and the alternating direction method of multipliers (ADMM) 
to solve the optimization model in a higher efficiency, meanwhile theoretically guarantee their 
convergence and deduce closed-form solutions of their subproblems in each iteration. Furthermore, 
we conduct extensive experiments on five benchmark datasets from real market to demonstrate 
that the proposed algorithms outperform compared state-of-the-art strategies in most cases in six 
dimensions.

Online portfolio optimization has become a hot topic in the intelligent computing and machine learning 
 community1–4. It always obtains high return in the short time with extensive calculation. Hence, there are lots 
of difficulties such as the undersample in the short time for calculation and the transaction cost problem, which 
we attack in this paper based on machine learning system.

Portfolio optimization originates from the Markowitz mean-variance (MV)  theory5. However, the online 
portfolio problem can not be managed by most extended MV theories, since its instantaneous transaction 
data can not provide a stable and reliable distribution to estimate significant financial parameters. Besides, it is 
difficult to guarantee the generalization of the optimization model, since online portfolio selection problem is 
in the rapidly-changing circumstance. In this case, we usually have only a small window to make decision and 
always undersample for training. Nevertheless, online portfolio optimization is attractive and more general in 
reality, since its timely and sensitive response to the dynamic market. One common way to solve above prob-
lems is decomposing raw data structure to extract the return or risk information. Chen et al.6 exploited wavelet 
feature engineering to transform stock price data, which resulted in higher Sharpe ratio in long-short portfolio 
trading. Lai et al.7 extracted instantaneous risk structure from price covariance matrix, to improve profit by lost 
control. Another common way to manage online portfolio problem is using machine learning methods. Kelly’s 
criterion in the information  theory8–10 brings out the exponential growth rate (EGR) approach, which focuses 
on the wealth change integrated with online learning  frameworks1,11,12. The EGR approach is suitable for online 
portfolio optimization for the reason that it always works via data-driven rather than requiring strict statistical 
assumptions. Recently, researchers focus more on various machine learning  schemes13–16 in the basis of EGR 
approach. Zou et al.17 proposed that elastic net (the linear combination of L1 norm and the square of L2 norm) 
leads to sparsity while maintaining a higher accuracy. Ho et al.18 applied elastic net for portfolio optimization, and 
Shen et al.19 constructed sparse portfolio with doubly norm regularized terms, showing an excellent performance. 
Hence, elastic net interests us and we illustrate it in the following text. Furthermore,  researches20,21 indicate that 
regularized the portfolio variable contributes to the generalization of the optimization model, which we would 
also elaborate in the following. Lai et al.22 applied L1 regularized on the portfolio variable and resulted sparse 
and stable portfolios in the case of short-term investment. Moreover, Luo et al.23 regularized portfolio variable 
by L0 norm while showing higher sparsity and better return in online portfolio selection.

However, above strategies even most portfolio strategies do not consider transaction costs, which could not 
be ignored (especially in online portfolio problem) in reality. It is worth noting that transaction costs can be 
classified into explicit and implicit. Implicit transaction costs are usually caused by market impact or liquidity 
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 risk24,25, and the explicit is from the transaction. Particularly, we only focus on explicit transaction costs, such as 
 taxes26, buying and selling transaction fees, since they influence more on retailers while we incline to research 
the online portfolio for retailers.

The first explicit extension was proposed by Bauer et al.27 that Cover’s Universal  Portfolio9 is still suitable 
for imposing transaction costs. However, they did not take transaction costs into the decision process. Albev-
erio et al.28 proposed a new transaction costs optimization model, where reformulated transaction costs as the 
distance between portfolios. Certainly, it is widely to manage transaction costs via machine learning system. 
Györfi et al.29 augmented the original Markowitz objective function by adding a penalty term proportional to 
the sum of the absolute of the portfolio weights, which encourage sparse portfolios and allow transaction costs 
to be considered. Das et al.30 applied machine learning method to study transaction costs problem, and solve it 
by GP algorithm. Furtherly, Li et al.31 solve portfolio selection problem with transaction costs by proposing a 
TCO framework, which can get closed-form formulae for portfolio update, and they also found the relationship 
between transaction costs and portfolios.

Although online portfolio optimization have been studied for decades, it lacks of models considering both 
transaction costs and sparsity as well as correlations of portfolio variables, simultaneously. Thus, we aim to 
design in this paper a mathematical model concerning transaction costs as well as regularization of portfolios to 
enhance the cumulative net wealth and the generalization ability of the model. Noting that elastic net regulariza-
tion can perform automatic variable selection and maintain related variable groups, we propose a doubly elastic 
net regularized model for portfolio selection problems. We then apply the linearized augmented Lagrangian 
method (LALM) and alternating direction method of multipliers (ADMM) to solve the proposed model. It is 
worth mentioning that guaranteeing the solving algorithm converging to the corresponding model is difficult. 
A number of  researches18,19,31 did not prove the convergence of the algorithm theoretically, but we do that. 
Numerical experiments show the efficiency of the proposed algorithms. The innovations and main contributions 
of this paper are as follows:

• We propose a minimization problem over simplex which concerns transaction costs and regularization of 
portfolios simultaneously. The objective of the problems contains three terms: the negative expected return, 
the elastic net regularization of the difference between the portfolios of the next and last periods to control 
the transaction cost, the elastic net regularization (reduces to the square of L2 norm due to the simplex) of 
the portfolio vector to improve the generalization of the model. Thanks to the properties of the elastic net, 
the proposed model considers the transaction cost, the sparse property and the correlation between variables 
simultaneously.

• In order to solve the proposed model, we apply the LALM to the model and demonstrate the sequence gen-
erated by the algorithm converges to a solution of the proposed model. Further, the closed-form solution of 
the subproblem in each iteration is established, enabling the computational efficiency of the algorithm. We 
point out that LALM does not need to project any vector to the simplex set in each iteration, which may save 
computational time in practice.

• We further apply ADMM to solve the proposed model by appropriately splitting the variable into two vari-
ables. The convergence of ADMM is established through proving the existence of saddle point of the cor-
responding augmented Lagrangian function. Different from LALM, each update of ADMM is restricted to 
the simplex set, which may improve the accuracy of the algorithm.

• We compare the proposed algorithms with the state-of-the-art methods for portfolio selection on four bench-
mark datasets. Numerical experiments illustrate that the proposed algorithms perform better than other 
compared methods in most cases.

This paper is organized as follows. We present some preliminaries and related works in section “Preliminaries”. 
The whole portfolio selection system and its solving algorithms are illustrated in section “Portfolio optimization”. 
Section “Experiment” focuses on the experimental results to evaluate the efficiency of our proposed algorithms 
and section “Conclusion” summarizes the paper.

Preliminaries
Problem setting
In the real market, transaction costs can not be ignored especially in the short-term investment. Assuming that 
there are m assets invested for T periods in a financial market. The relative prices can be collected as a vector 
xt = (xt,1, . . . , xt,i , . . . , xt,m), t = 1, 2, · · · ,T , where xt,i = Pt,i

Pt−1,i
 denotes the relative price and Pt,i is the closed 

price of i th asset in t th period, respectively. A portfolio vector bt = (xb,1, . . . , xb,i , . . . , xb,m) is restricted in the 
simplex 

�
m = {b : b ∈ R

m
+,

∑m
i=1 bi = 1} with assumptions of self-financed and non-margin and non-shorting, 

where bt,i indicates the proportion of total wealth invested in i th asset of t th period.
At the beginning of t th period, the portfolio is set to bt , thus the wealth allocation at the end is changed to 

b̂t =
bt�xt

<bt ,xt>
 , where < · , · > is the inner product and · is the element-wise product, since the fluctuation of mar-

ket without rebalancing the portfolio during tth period. Supposing transaction costs denoted as γ ,  researches27–29,31 
proposed the relationship of γ and wealth:

where wt−1 denotes the net proportion wealth after transaction costs, and || · ||p denotes the �p norm. Further-
more, Li et al.31 pointed out that final cumulative wealth implicated transaction costs should be updated as:

(1)1 = wt−1 + γ ||b̂t−1 − btwt−1||1
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where S0 is always normalized to 1. ST is also called net cumulative wealth, which possesses more computing 
and comparing significance.

Related works
Brenchmarks systems
Uniformly buy-and-hold (UBAH), Beststock (BEST) and Best Constant Rebalanced Portfolios (BCRP) are three 
benchmark portfolio strategies. UBAH is a simple but widely-used system, which invests evenly at the beginning 
and holds until the whole period: b1 =

(

1
m , . . . , 1

m

)

 . Thus, it is obviously that the cumulative wealth of UBAH is 
ST = b1

(

⊙T
i=1xt

)

 , where ⊙ denotes the element-wise product. Similarly but differently, BEST invests totally in 
the best outperformance asset in hindsight and remains unchanged: b1 = argmax

b∈
�

m

b
(

⊙T
i=1xt

)

 and 

ST = max
b∈

�
m

b
(

⊙T
i=1xt

)

 . Besides, BCRP updates portfolio to b∗ = argmax
b∈

�
m

∑T
t=1 log(b

Txt) in each period, where 

b∗ denotes the portfolio maximizing return in hindsight. Therefore, the cumulative wealth of BCRP is 
ST =

∏T
t=1

(

b∗Txt
)

.

Related works on transaction costs
GyRorfi et al.29 extended the Markowitz portfolio framework by adding penalty term to allow proportional trans-
action costs considered. The model is widely adopted and attracts an amount of attraction in the area of control-
ling transaction costs by using penalty term in the portfolio selection problem. They denoted transaction costs 
related factor as the ratio of net wealth after rebalancing to wealth before rebalancing, that is, wt−1 =

Nt−1
St−1

 . The 
rate of proportional transaction costs during sales and buys were denoted by 0 < cs < 1 and 0 < cb < 1 , which 
are controlled by the following formula

They proposed the recursive portfolio strategy as follows

where Fδ(b,X) is the recursive function formulated by the discounted Bellman equation:

where δt is a discount factor such that δt → 0 , Xt is the homogeneous and first order Markov process, and 
v(b, b′, x) is the inner function defined  in29.

Li et al.31 considered another proportional transaction cost model named Transaction Cost Optimization 
(TCO), which is a sparse portfolio selection model by adding norm penalized. They took transaction costs as 
the regularization term of the portfolio model by L1 norm penalized, and obtained the closed-form solution of 
portfolio update through proximal gradient descent method. Li et al. theoretically guaranteed that transaction 
cost is related to ||b− b̂t ||1 by proving

for which indicated that the net proportion is inversely related to ||b− b̂t ||1 . Thus they proposed the following 
model:

where x̃t+1 denotes the predicted price relative vector and � is a regularization parameter. They acquired the 
closed-form solution in the following:

where ηt is an inner variable, [v]+ = max(0, v) , and sign(v) denotes the sign of v.

(2)ST = S0

T
∏

t=1

(< bt , xt > wt−1)

(3)1 = wt−1 + cs

m
∑

i=1

(

bt−1,ixt−1,i

bt−1 · xt−1
− bt,iwt−1

)+

+ cb

m
∑

i=1

(

bt,iwt−1 −
bt−1,ixt−1,i

bt−1 · xt−1

)+

.

(4)bt+1 = argmax
b′

v(bt , b
′,Xt)+ (1− δt)E{Fδt (b

′,Xt+1)|Xt},

(5)Fδ(b,X) = max
b′

v(b, b′, x)+ (1− δ)E{Fδ(b
′,X2)|X1 = x},

(6)
1− γ

1− γ + γ ||b̂t−1 − bt||1
≤ wt−1 ≤

1+ γ

1+ γ + γ ||b̂t−1 − bt||1

(7)
bt+1 = argmin

b

−E{log b · x̃t+1} + �||b̂t−1 − bt||1

s.t. b · 1 = 1, b ≥ 0

(8)b̃
t+ 1

2
= ηt

(

E

{

x̃t+1

b̂t · x̃t+1

}

−
1

m
1 · E

{

x̃t+1

b̂t · x̃t+1

})

,

(9)bt+1 = b̂t + sign
(

b̃t+ 1
2

)[

|b̃t+ 1
2
| − �ηt+ 1

2

]

+
,
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Portfolio optimization
Price information
We should consider price forecasting method to achieve the data-driven ideology, which can lessen the influ-
ence by irrational  factors32–34 in the market. Specifically, we formulate the expected return by price forecasting 
method based on historical information.

PAMR35 and  CWMR12 showed that the predicted relative price in next period is inversely to the current 
period: xt+1 =

1
xt

 , which utilized the properties of single-period mean reversion to balance risk and return. 
Besides,  OLMAR3 exploited muti-period mean reversion to solve the moving case. It proposed that the relative 
price in next period will revert to the moving average:

where w is the window size, and it smooths the price volatility in online portfolio problem.
Moreover, above mean reversion strategies may be sub-optimal subject to the noise from real market, due 

to the real market is not normally  distributed36. Meanwhile, the robust median reversion (RMR)37 is robust to 
real market and can withstand nontrivial transaction costs, which utilizes L1 median  estimator38,39 and online 
machine learning. RMR can solve the long tail distribution of real market and is shown below:

On the other hand, most investors will follow the trend and keep purchasing rising stocks, thus they always con-
sider PMAX as a potential level that the future price can probably reach. Consequently, a generalized logarithmic 
return (GLR)22 was proposed to predict the relative price in next period:

In order to illustrate the adaptability to various price processes of the optimization model, and comprehensively 
predict the relative price, we adopt in the paper above methods to further consider the online portfolio optimi-
zation with transaction costs.

The proposed doubly elastic net regularized online portfolio optimization with transaction 
costs
Considering the goals of maximizing cumulative wealth and minimizing transaction costs, the portfolio model 
we build in this paper as follows

where � > 0 , f  is the predicted relative price in the next period. Here, we consider the following four cases: f = 1
xt

 , 

f = 1
w

(

1+ 1
xt
+ · · · + 1

⊙w−2
i=0 xt−i

)

 , f = (argmin
p

∑w−1
i=0 ||Pt−i − P||2)/xt and f = 1.1 log

(

PMAX
Pt

)

+ 1 . Since model 

(13) involves in the elastic net regularization terms for b− b̂t and b , which will be explained below, we call model 
(13) the doubly elastic net regularized portfolio optimization (DENRPO) model.

It can be found that fTb represents the predicted wealth increasing factor, implying expected return potential 
of the whole portfolio. Therefore, the goal of maximizing cumulative wealth can be reformulated to this item and 
negative expected return can change the maximization to a minimization.

Further, we implement the proposed model to manage transaction costs with better generalization. On one 
hand, transaction costs can be reflected by the wealth growth denoted by net asset proportion. Inspired by the 
research in that transaction costs influent the net proportion by the distance of bt and b̂t−1 , we innovatively apply 
elastic net for this term, since it makes a difference in the following aspect. Firstly, elastic net tends to preserve 
the highly correlated variables by L2 norm structure while maintaining sparsity by L1 norm, thus it can avoid 
extreme positions and improve the diversification and stability. Besides, it is according to regression analysis 
that elastic net is particularly useful when assets are large-scale, since it overcomes poor sample sentiments. The 
above analyses lead to minimize

to trade off transaction costs, in which � and η are the regularization parameters controlling transaction costs. 
The smaller the � and η are will the smaller the regularization strength is, meanwhile indicating that the model 
is more inclined to obtain high returns. When the � and η are larger, these regularization terms will make bt+1 
more inclined to b̂t , that is the number of rebalanced assets is reduced, thus lessens the transaction cost.

On the other hand, researches show that the portfolio variable regularization ||b|| makes sense in the portfolio 
optimization. Fan et al.40 showed that L1 norm penalty on portfolio variable is equivalent to constraining the 
risk or utility cumulative statistical estimation error, since constraints on individual assets limits total exposure, 

(10)xt+1 =
1

w

(

1+
1

xt
+ · · · +

1

⊙w−2
i=0 xt−i

)

,

(11)xt+1 =

(

argmin
p

w−1
∑

i=0

||Pt−i − P||2

)

/xt .

(12)xt+1 = 1.1 log

(

PMAX

Pt

)

+ 1.

(13)bt+1 ∈ argmin
b∈

�
m

−fTb+ �||b− b̂t ||1 +
η

2
||b− b̂t ||

2
2 +

τ

2
||b||22

�||b− b̂t ||1 +
η

2
||b− b̂t ||

2
2
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thus controlling for risk approximation errors as well as closer the empirical and actual risk. In addition, Brodie 
et al.20 proposed that portfolio weights can represent transaction costs. Furthermore,  Li41 proposed that penal-
izing portfolio weights favors the sparsity and stability of portfolio, since shifting and scaling the portfolio weights 
derived from the sample estimates towards zero allows small portfolio weights to be set to zero and extremely 
large positions to be regulated, resulting in sparse and stable portfolios. Besides, DeMiguel et al.42 showed that 
the global minimum variance of a portfolio can be generated through the portfolio regularization term. The 
above researches provide us with ideas for constructing the model, since this regularization contributes to the 
generalization of the portfolio model can be theoretically guaranteed. Thus we apply elastic net for b , which 
the form is the combination of L1 norm and the square of L2 norm for the portfolio vector with some tuning 
parameters, as the regularization term of the proposed model. Since b is restricted to the simplex, the first term 
of the elastic net is equivalent to the constant 1. Therefore, we need to minimize τ2 ||b||

2
2 to control the sparsity 

and stability of our model, in which τ is the regularization parameter controlling the generalization of the model. 
Based on above discussions, we propose optimization model (13).

The next theorem establishes the existence of solutions to the problem (13).

Theorem 1 For �, η, τ ≥ 0 , problem (13) has optimal solutions. Further, if η > 0 or τ > 0 , problem (13) has a 
unique optimal solution.

Proof It is easy to know that the objective function in model (13) is continuous and the constrain 
�

m is closed 
and bounded. Thus we can obtain that problem (13) has optimal solutions. If η > 0 or τ > 0 , the objective func-
tion is strongly convex. Therefore, problem (13) has a unique optimal solution.   �

Solving algorithms
In this section, we develop algorithms to solve the problem (13) in a higher efficiency.

Linearized augmented Lagrangian method
Augmented Lagrangian method (ALM) is an excellent algorithm due to its efficiency for solving the linear equal-
ity constrained optimization problem. Hence, we apply the ALM to solve the proposed model (13). Since the 
nonlinear term in the model will increase the solving difficulty of using general ALM, we develop a linearized 
augmented Lagrangian method (LALM), which linearizes the quadratic term of ALM, to solve the problem in 
a higher efficiency.

We first introduce the notion of indicator function on Rm
+ , denoted by IRm

+
 , which is defined at b ∈ R

m by

By this way, the augmented Lagrangian function of problem (13) is

where ξ ∈ R is the Lagrange multiplier and ρ > 0 is a penalty parameter. Then, the LALM updates bk+1 and 
ξ k+1 in each iteration by

where g(b) = −fTb+ �||b− b̂t ||1 +
η
2 ||b− b̂t ||

2
2 +

τ
2 ||b||

2
2 + IRm

+
(b) , and α is a parameter which will be 

described in the following text.
The following lemma tells us that the problem (16) can be computed in an easy way. Specifically, the closed-

form solution of problem (16) only involves in the soft-thresholding operator and the projection onto Rm
+.

Lemma 1 The closed-form solution for the optimization problem (16) is

where ([x]+)i = max{xi , 0} for i = 1, . . . ,m and x ∈ R
m
+,

and PRm
+

 is the projection onto Rm
+.

Proof We derive from (16) that

(14)IRm
+
(b) =

{

0, b ∈ R
m
+,

+∞, otherwise.

(15)L(b, ξ) =− fTb+ �||b− b̂t ||1 +
η

2
||b− b̂t ||

2
2 +

τ

2
||b||22 + IRm

+
(b)+ ξ(1Tb− 1)+

ρ

2
(1Tb− 1)2

(16)bk+1 ∈ argmin
b

g(b)+ ξ k(1Tb− 1)+ < b− bk , ρ1(1Tbk − 1) > +
1

2α
||b− bk||22

(17)ξ k+1 = ξ k + ρ(1Tbk+1 − 1)

(18)bk+1 = PRm
+

{

b̂t + sign(q)

[

|q| −
�

τ + η + 1
α

]

+

}

q =
η

τ + η + 1
α

b̂t +
1
α

τ + η + 1
α

bk −
ρ

τ + η + 1
α

1(1Tbk − 1)+
1

τ + η + 1
α

f −
1

τ + η + 1
α

1ξ k − b̂t
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where d = ρ1(1Tbk − 1)− f + 1ξ k . Then the formula (19) can be further changed into

where w =
η

τ+η+ 1
α

b̂t +
1
α

τ+η+ 1
α

bk − 1
τ+η+ 1

α

d . Afterwards, let u = b− b̂t , then we can find that

where PT is the projection onto the set T , q = w − b̂t , that is

and T = {u ∈ R
n : u +Obt ∈ R

m
+}.

Then

  �

The above iterative update process is summarized into Algorithm 1. We point out that our proposed algorithm 
does not need to compute the projection onto the simplex set. This enables the computationally efficiency of 
our proposed algorithm.

(19)

bk+1 ∈ argmin
b∈Rm

+

�||b− b̂t||1 +
η

2
||b− b̂t||

2
2 +

τ

2
||b||22 +

1

2α
||b− bk||22+ < b, ρ1(1Tbk − 1)− f + 1ξ k >

= argmin
b∈Rm

+

�||b− b̂t||1 +
η

2
||b− b̂t||

2
2 +

τ

2
||b||22 +

1

2α
||b− bk||22+ < b, d >

(20)

bk+1 ∈ argmin
b∈Rm

+

�||b− b̂t||1 +
1

2

(

τ + η +
1

α

)

||b−
ηb̂t

τ + η + 1
α

−

1
α
bk

τ + η + 1
α

+
d

τ + η + 1
α

||22

= argmin
b∈Rm

+

�||b− b̂t||1 +
1

2

(

τ + η +
1

α

)

||b− w||22

(21)

uk+1 ∈ argmin
u∈T

�||u||1 +
1

2

(

τ + η +
1

α

)

||u − (w − b̂t)||
2
2

= argmin
u∈T

�

τ + η + 1
α

||u||1 +
1

2
||u − (w − b̂t)||

2
2

= argmin
u∈T

�

τ + η + 1
α

||u||1 +
1

2
||u − q||22

=PT

{

sign(q)

[

|q| −
�

τ + η + 1
α

]

+

}

q =
η

τ + η + 1
α

b̂t − b̂t +
1
α

τ + η + 1
α

bk −
1

τ + η + 1
α

1ξ k −
ρ

τ + η + 1
α

1(1Tbk − 1)+
1

τ + η + 1
α

f ,

bk+1 =b̂t + uk+1

=PRm
+

{

Obt + sign(q)

[

|q| −
�

τ + η + 1
α

]

+

}

Algorithm 1.  LALM for DENRPO model (13).
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It can be proved that the LALM can be equivalently reformulated as the Chambolle-pock  algorithm43. Thus, 
we can easily get the following theorem regarding the convergence of the proposed algorithm.

Theorem 2 Let {bk : k ∈ N} be generated by Algorithm 1. Then, there exists a b∗ ∈ R
m such that

and b∗ is an optimal solution of problem (13).

In Algorithm 1, Theorem 2 can be established when parameters ρ and α satisfy α < 1
ρm and ρ > 0 , where m 

is the number of assets. Theorem 2 indicates that our portfolio update algorithm outputs an optimal solution of 
model (13), which can be supported by theory.

Alternating direction method of multipliers (ADMM)
From the above discussion, the augmented Lagrangian function of problem  (13) has a quadratic term 
ρ
2

(

1Tb− 1
)2 , which will increase the computational difficulty, that is why we linearize the ALM. To further 

consider this problem, we apply ADMM to solve this problem, since ADMM introduces an auxiliary variable 
to guarantee that variables can be updated alternately, while remains applying gradient ascent to update the 
Lagrangian multiplier, which cleverly avoids the tedious process of solving the quadratic term. Specifically, we 
introduce an auxiliary variable d ∈ R

m to approach b , and decompose the iterative update problem of b into a 
complete quadratic minimum solving problem for b and a soft-threshold solving problem for d . We will illustrate 
the process in the following text.

Besides, since applying ADMM does not require the process of linearization, which leads to a higher accuracy, 
that it can restrict the solution in the simplex through project bt+1 onto the simplex to form an eligible portfolio, 
as instructed by Duchi et al.44.

In addition, not all formulations of ADMM have saddle points. Few methods take bother to figure out and 
prove the existence of saddle point. However, we can prove that the augmented Lagrangian function based on 
the proposed model (13) has a saddle point, which makes the iterative formulae of ADMM appropriate. Next 
we reveal the approach of ADMM applied in the model (13).

We first formulate the problem (13) as

where g1(b) = −fTb+ τ
2 ||b||

2
2 + I�m(b) , g2(b) = �||b− b̂t ||1 +

η
2 ||b− b̂t ||

2
2 , and

By this way, the alternating direction method of multipliers (ADMM) can be applied to the problem (13) and 
its augmented Lagrangian function is

The ADMM generates a new iterate (bk+1, dk+1, yk+1) by

The following lemma gives the closed-form solution to the above problems.

Lemma 2 The closed-form solutions to b and d in the optimization problem (24) are

where D = 1
η+ρ

(

yk + ρbk+1 − ρb̂t

)

 , and P�m is the projection onto the simplex �m.

Proof For the iteration of b in the problem (24), we can find that

lim
k→∞

bk = b∗

bk+1 ∈ argmin
b

g1(b)+ g2(d)

s.t. b = d

(22)I�m(b) =

{

0, b ∈ �m,
+∞, otherwise.

(23)L(b, d, y) = g1(b)+ g2(d)+ yT (b− d)+
ρ

2
||b− d||22

(24)















bk+1 ∈ argmin
b

L(b, dk , yk)

dk+1 ∈ argmin
d

L(bk+1, d, yk)

yk+1 = yk + ρ(bk+1 − dk+1)

bk+1 =P�m

{

1

τ + ρ

(

f − yk + ρdk
)

}

,

dk+1 =b̂t + sign(D)

[

|D| −
�

η + ρ

]

+

,
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For the iteration of d in the problem (24), we can solve it in the following:

Let w = d − b̂t , then the formula (26) is equal to

where D = 1
η+ρ

(yk + ρbk+1 − ρb̂t) , then we can acquire the result:

  �

The ADMM solving problem (13) is summarized in Algorithm 2.
We next establish the convergence of ADMM applied to problem (13) for the existence of a saddle point for 

the Lagrangian function (23). We show this result in the following proposition.

Proposition 3 The Lagrangian function (23) has a saddle point, i.e., there exists (b∗, d∗, y∗) such that

(25)

bk+1 ∈ argmin
b∈�m

−fTb+
τ

2
||b||22 + yk

T
(b− dk)+

ρ

2
||b− dk||22

= argmin
b∈�m

< b,−f > + < b, yk > +
τ

2
||b||22 +

ρ

2
||b− dk||22

= argmin
b∈�m

1

2
(τ + ρ)||b−

1

τ + ρ

(

f − yk + ρdk
)

||22

=P�m

{

1

τ + ρ

(

f − yk + ρdk
)

}

(26)

dk+1 ∈ argmin
d

�||d − b̂t ||1 +
η

2
||d − b̂t ||

2
2 + yk

T
(bk+1 − d)+

ρ

2
||bk+1 − d||22

= argmin
d

�||d − b̂t ||1+ < d,−yk > +
η

2
||d − b̂t ||

2
2 +

ρ

2
||d − bk+1||22

= argmin
d

�||d − b̂t ||1 +
1

2
(η + ρ)||d −

1

η + ρ

(

yk + ηb̂t + ρbk+1
)

||22

(27)

wk+1 ∈ argmin
w

�||w||1 +
1

2
(η + ρ)||w −

1

η + ρ
(yk + ρbk+1 − ρb̂t)||

2
2

= argmin
w

�

η + ρ
||w||1 +

1

2
||w −

1

η + ρ
(yk + ρbk+1 − ρb̂t)||

2
2

=sign(D)

[

|D| −
�

η + ρ

]

+

(28)
dk+1 =b̂t + wk+1

=b̂t + sign(D)

[

|D| −
�

η + ρ

]

+

Algorithm 2.  ADMM for the DENRPO model (13).
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for all b, d, y ∈ R
m.

Proof By Theorem 1, we suppose b∗ is an optimal solution of problem (13). That is

Then, the Fermat’s rule leads to 0 ∈ ∂(g1 + g2)(b
∗) . Besides, it is obviously that g1 and g2 can be easily proved 

their convexity in Theorem 1. Since g1 and g2 are convexity and

we have 0 ∈ ∂g1(b
∗)+ ∂g2(b

∗) . Thus, there exists

Set d∗ = b∗ . We next show (b∗, d∗, y∗) is a saddle point of L(b, d, y∗) . First, let L(b, d, y∗) take the partial deriva-
tive of b at b∗ and take the partial derivative of d at d∗ , then we can get

which leads to (b∗, d∗) is a minimizer of L(b, d, y∗) due to the convexity of L(b, d, y∗) . This implies that

for all b, d ∈ R
m . Second, the proposed model (13) is strongly convex if the regularization parameters satisfy. By 

Slater’s  theorem45, strongly duality holds and there guarantees that

for any y ∈ R
m as b∗ = d∗ . Combining (29) and (30), we complete the proof.   �

To integrately illustrate the ADMM applied in the proposed model (13), we are now ready to establish the 
convergence result in the following theorem, which is a direct consequence of Proposition 3 and Proposition 
5.4.1  in46.

Theorem 4 Let {
(

bk , dk , yk
)

: k ∈ N} be generated by Algorithm 2. Then, {bk , dk , yk} is a convergent series, 
{bk − dk} converges to 0 , and {bk} converges to an optimal solution of problem (13).

Experiment
Data-sets
We compare the performance of DENRPO and other strategies in four datasets, which are NYSE (O)9, NYSE 
(N)12,21,  TSE47,  MSCI35 and DJIA. These datasets collect the historical relative price information, where the ele-
ment in i th row and j th column denotes the relative price of j th asset in i th period. NYSE (O) and NYSE (N) 
are the data collected from the New York Exchange, NYSE(O) contains 36 stocks ranging from 7 March 1962 
to 31 December 1984 and NYSE(N) contains 23 survived till 30 June 2010. TSE comes from Toronto Stock 
Exchange and contains 88 stocks ranging from 4 January 1994 to 31 December 1998. MSCI contains 24 indices 
that represent the equity markets of 24 countries around the world, ranging from 1 April 2006 to 31 March 
2010. The finally dataset DJIA collects the Dow Jones Industrial index of 30 stocks in the whole 2010. The first 
four datasets mainly test the performance of algorithms in the stock market, and the last dataset is applied for 
testing algorithms in the long-short transaction. These datasets are publicly available from the real market, so it 
is effective and comparable to evaluate the proposed optimization model in these datasets.

Experimental setting
Parameter setting
In the proposed model, there are three regularized parameters of model, namely � , η and τ , and four parameters 
for algorithm which are ξ , y , α and ρ . Thereinto, α is an inner variable, ξ is alternately updated by dual ascent 
method in LALM and y is the Lagrangian multiplier updated by ADMM applied in the proposed model. There-
fore, the above variables will not affect the performance of the methods so that we do not discuss them. In order 
to control the iteration, we set the tolerance ǫ = 10−8 and the max_iteration = 108 . We take α = 0.999

ρm  , ρ = 0.618 
and discuss � , η and τ in the following to control the regularization.

We apply the method that fixes two parameters and then change the other to determine the value of each 
parameter. Assuming that the transaction cost is denoted to γ , for the value of � , referring to � = 10γ in the TCO 
 framework31, we fixed η = τ = 0 and search around � = 10γ . Our experiments show that cumulative wealth is 
relatively high in the same running time when � = 10γ for which we take � = 10γ . For η and τ , we still fix one 
in 0 and change values of the other. We arrange and combine η and τ performing better in above step and select 

L(b∗, d∗, y) ≤ L(b∗, d∗, y∗) ≤ L(b, d, y∗)

b∗ ∈ argmin
b

g1(b)+ g2(b).

dom(g2) := {x ∈ R
m : g2(x) < +∞} = R

m,

y∗ ∈ ∂g2(b
∗) such that − y∗ ∈ ∂g1(b

∗).

{

0 ∈ ∂g1(b
∗)+ y∗ + ρ(b∗ − d∗),

0 ∈ ∂g2(d
∗)− y∗ + ρ(d∗ − b∗),

(29)L(b∗, d∗, y∗) ≤ L(b, d, y∗)

(30)L(b∗, d∗, y∗) ≥ L(b∗, d∗, y)
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the combination making the cumulative wealth higher in the same running time. For simplicity, Table 1 are the 
results of DENRPO1-OLMAR parameters debugging meanwhile Table 2 are the results of DENRPO2-OLMAR 
parameters debugging in γ = 0.5% , the value of the parameter result can be understood as the convergence speed 
of the solving algorithms. It is observing from the experimental result that η = 0.00025 and τ = 0.00005 obtains a 
relatively outstanding comprehensive performance, thus we decided to apply these two values in all experiments.

Comparison approaches
We employ DENRPO method to solve the online portfolio selection problem based on the above four benchmark 
data sets. As a comparison, 12 other online portfolio selection algorithms also run in our experiment. Specifi-
cally, UBAH, BEST and BCRP are three benchmark approaches, where UBAH is able to reflect the stock price 
trend of real financial market. SSPO, S1, S2 and S3 are sparse strategies based on short-term investment. TCO1 
and TCO2 are excellent approaches considering transaction costs, furtherly, TCO-RMR and TCO-GLR utilize 
RMR and GLR price prediction on the base of transaction cost optimization framework, respectively. WFDA is 
the portfolio strategy considering the long-short transaction, which is executed by wavelet feature engineering. 
The details of the algorithms and their parameter value, which are taken from the original paper or derived from 
numerical experiments based on the original paper, we list below: 

Table 1.  Cumulative wealth achieved by DENRPO1-OLMAR about different permutations and combinations 
of η and τ with transaction costs rates is 0.5%.

η

τ:
NYSE(O)

τ:
NYSE(N)

0 0.000025 0.00005 0.00025 0.0005 0.0025 0 0.000025 0.00005 0.00025 0.0005 0.0025

0 5.97E+04 5.98E+04 5.97E+04 5.81E+04 5.15E+04 4.65E+04 763.70 763.70 772.93 879.00 913.13 1139.95

0.0001 5.97E+04 5.98E+04 6.04E+04 6.07E+04 5.40E+04 4.93E+04 958.02 946.80 937.77 893.85 885.40 1134.85

0.00025 6.55E+04 6.57E+04 6.59E+04 6.22E+04 5.15E+04 5.41E+04 926.93 908.29 893.22 851.52 863.37 1125.12

0.0005 5.95E+04 5.92E+04 5.89E+04 5.56E+04 5.11E+04 6.09E+04 799.16 798.30 798.24 830.95 970.20 1101.40

0.001 4.91E+04 4.94E+04 4.96E+04 5.37E+04 5.57E+04 6.47E+04 1084.07 1083.87 1084.05 1091.84 1125.76 1025.02

0.0025 7.33E+04 7.32E+04 7.32E+04 7.21E+04 6.95E+04 5.45E+04 850.13 849.59 849.03 857.17 877.98 944.05

η

τ:
TSE

τ:
MSCI

0 0.000025 0.00005 0.00025 0.0005 0.0025 0 0.000025 0.00005 0.00025 0.0005 0.0025

0 1.47 1.47 1.47 1.48 1.51 2.25 0.90 0.90 0.90 0.90 0.93 0.97

0.0001 1.50 1.50 1.50 1.50 1.55 2.20 0.90 0.90 0.90 0.93 0.95 0.97

0.00025 1.53 1.53 1.53 1.56 1.63 2.12 0.96 0.96 0.96 0.97 0.97 0.98

0.0005 1.65 1.67 1.69 1.76 1.76 1.99 1.01 1.01 1.01 1.00 0.99 0.98

0.001 1.72 1.72 1.71 1.67 1.65 1.82 1.03 1.03 1.03 1.02 1.01 0.99

0.0025 1.27 1.27 1.27 1.28 1.29 1.51 1.05 1.05 1.05 1.04 1.04 1.01

Table 2.  Cumulative wealth achieved by DENRPO2-OLMAR about different permutations and combinations 
of η and τ with transaction costs rates is 0.5%.

η

τ:
NYSE(O)

τ:
NYSE(N)

0 0.000025 0.00005 0.00025 0.0005 0.0025 0 0.000025 0.00005 0.00025 0.0005 0.0025

0 5.98E+04 6.00E+04 5.99E+04 5.84E+04 5.13E+04 4.61E+04 758.25 758.25 772.41 872.58 904.87 1130.91

0.0001 5.98E+04 6.00E+04 6.08E+04 6.08E+04 5.44E+04 4.97E+04 951.31 940.15 932.08 888.76 879.25 1132.67

0.00025 6.56E+04 6.59E+04 6.61E+04 6.24E+04 5.13E+04 5.37E+04 920.54 902.00 886.46 843.87 857.22 1118.13

0.0005 5.97E+04 5.91E+04 5.91E+04 5.56E+04 5.14E+04 6.22E+04 791.93 790.25 791.95 807.45 963.15 1099.58

0.001 4.91E+04 4.92E+04 4.95E+04 5.38E+04 5.57E+04 6.53E+04 1075.81 1075.41 1075.38 1078.95 1118.15 1014.98

0.0025 7.46E+04 7.47E+04 7.46E+04 7.40E+04 7.07E+04 5.66E+04 840.15 839.16 837.41 825.62 871.43 936.81

η

τ:
TSE

τ:
MSCI

0 0.000025 0.00005 0.00025 0.0005 0.0025 0 0.000025 0.00005 0.00025 0.0005 0.0025

0 1.46 1.46 1.46 1.48 1.51 2.25 0.90 0.90 0.90 0.90 0.93 0.97

0.0001 1.49 1.50 1.50 1.51 1.55 2.21 0.90 0.90 0.90 0.93 0.95 0.97

0.00025 1.53 1.52 1.52 1.56 1.63 2.15 0.96 0.96 0.96 0.97 0.97 0.98

0.0005 1.65 1.67 1.69 1.76 1.76 1.99 1.01 1.01 1.01 1.00 0.99 0.98

0.001 1.72 1.72 1.71 1.67 1.64 1.82 1.03 1.03 1.03 1.02 1.01 0.99

0.0025 1.27 1.27 1.28 1.29 1.29 1.51 1.05 1.05 1.05 1.04 1.04 1.01
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(a) UBAH: Uniformly buy-and-hold strategy;
(b) BEST: Beststock in hindsight;
(c) BCRP9: Best Constant Rebalanced Portfolios in hindsight;
(d) TCO131: Transaction Cost Optimization with parameters � = 10γ , η = 10;
(e) TCO231: Transaction Cost Optimization with parameters � = 10γ , w = 4 , η = 10;
(f) TCO-RMR31: Transaction Cost Optimization utilizing robust L1 median reversion with parameters 

� = 10γ , η = 10;
(g) TCO-GLR31: Transaction Cost Optimization utilizing GLR price prediction with parameters � = 10γ , 

w = 4 , η = 10;
(h) SSPO22: Short-term Sparse Portfolio Optimization with parameters η = 0.005 , ζ = 500 , w = 5 , � = 0.5 , 

γ = 0.01;
(i) S123: w = 5 , ǫ = 0.001 (NYSE(O), NYSE(N)), ǫ = 0.01 (TSE), ǫ = 0.003 (MSCI), where ǫ = 0.003 (MSCI) 

is derived from the data range of the original paper and our experimental effect and S2, S3 take the value 
in the same way;

(j) S223: w = 5 , ǫ = 0.001 (NYSE(O), NYSE(N)), ǫ = 0.01 (TSE), ǫ = 0.003 (MSCI);
(k) S323: w = 5 , st = 3 , ǫ = 0.001 (NYSE(O), NYSE(N)), ǫ = 0.01 (TSE), ǫ = 0.003 (MSCI).
(l) WFDA6: Risk Assessment with Wavelet Feature Engineering for High-Frequency Portfolio Trading.

Cumulative wealth
Cumulative wealth with fixed transaction costs
We fix the transaction cost rate to show the daily cumulative return trend of the proposed algorithms imple-
mented on the NYSE(O) and MSCI for simplicity, by observing the trend of wealth growth under fixed trans-
action costs facilitates evaluating the performance of the algorithms. Figures 1 and 2 are the daily cumulative 
return trend of the proposed algorithms compared with TCOs in the transaction cost rate fixed in 0.25% . It can 
be found that the wealth growth structures of DENRPO and TCO strategies are roughly the same, but the daily 
return of DENRPO can always be a little higher than that achieved by TCO in most cases. Thus after investing 
for a period, DENRPO can always obtain higher cumulative wealth, which demonstrates the superiority and 
practicality of the proposed method.

Cumulative wealth with varying transaction costs
To better show the effectiveness of the introduced elastic net term for non-zero transaction costs and portfolio 
variable, meanwhile analyze the trend of the cumulative wealth in the condition of changing transaction costs, 
Figs. 3 and 4 as well as Table 3 compare the cumulative wealth achieved by the proposed DENRPO strategies 
and other methods we list above.

We can draw several observations in them. Firstly in Figs. 3 and 4, the cumulative wealth obtained by the 
three benchmark algorithms almost distributes in a straight line as transaction costs increase, indicating that the 
cumulative wealth obtained by these benchmark algorithms is less affected by transaction costs. Since UBAH 
and BEST will not rebalance the portfolio in the transaction period so that they will not produce the rebalancing 

Figure 1.  Log Daily Return obtained by DENRPO1s and TCOs with γ = 0.25% in the NYSE(O) and MSCI.

Figure 2.  Log Daily Return obtained by DENRPO2s and TCOs with γ = 0.25% in the NYSE(O) and MSCI.
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cost, while BCRP fixes daily rebalancing and is less affected by transaction costs. Certainly for above reasons, 
they only can obtain less wealth.

Moreover, SSPO, S1, S2 and S3 perform better when transaction cost is 0 in Table 3. However, obviously find 
that their performance greatly reduces when operating in the non-zero transaction costs. In most data-sets, the 
cumulative wealth close to 0 when transaction costs only close to 0.5% . It is because that the goal of short-term 
investment is to obtain high return in a short time, thus frequent transactions are required, which will produce 
a amount of transaction costs. Hence, transaction costs have a greater impact on short-term investment, that 
leads to cumulative wealth decreases rapidly as transaction costs increase.

In addition, comparing TCO and DENRPO both transaction costs optimization strategies in Figs. 3 and 4, 
it can be found that the cumulative wealth of DENRPO is significantly higher than that of TCO in most cases. 
As transaction costs increase, DENRPO strategy can also achieve two small peaks of cumulative wealth in TSE 
when around γ = 0.3% to γ = 0.7% , indicating that DENRPO strategy has the ability to counteract transaction 
costs, which ensures the stability and the better out-of-sample performance of the proposed method. Furtherly 
comparing TCO and DENRPO in Table 3, it is obviously that DENRPO obtains 8.02E+06, 893.22, 7.84, 1.30 in 
NYSE(O), NYSE(N), TSE and MSCI in γ = 0.5% , respectively, which indicates that DENRPO survives better 

Figure 3.  Cumulative wealth obtained by DENRPO1s and compared with cumulative wealth obtained by the 
listed algorithms in variable transaction costs in the four data-sets.

Figure 4.  Cumulative wealth obtained by and DENRPO2s compared with cumulative wealth obtained by the 
listed algorithms in variable transaction costs in the four data-sets.
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than TCO in high transaction costs environment. It explains the stability of DENRPO and the significance of 
elastic net in the data angle.

Mean excess return
To measure the daily return performance of each algorithm, we first need to know whether proportion of total 
wealth gained or lost on this day. Due to the existence of transaction costs, we develop to represent this concept 
as a term related to the net proportion wealth:

it can be understood as the net proportion gained or lost wealth. Mean excess return (MER)48 is defined as the 
average value of the daily excess returns compared with the UBAH strategy in the paper, which is given as follows:

where rs,t and rm,t are the daily excess returns of the compared portfolio strategy and the UBAH on the tth day, 
respectively.

It is obviously by the definition of MER that a superior portfolio strategy should have a larger MER value, 
and the larger the MER leads to the better the performance of the strategy. Certainly even a small gap in MER 
can indicate a larger difference in portfolio strategies, especially for the long-term  investments22. We present the 
MERs for our proposed methods and the TCO strategy, which both consider the transaction cost, in Table 4.

It is obviously that DENRPO performs the best in most case, since it always gains the biggest MER. For 
example, the MER are 0.0069, 0.0023, 0.0060, 0.0017 in γ = 0.25% in NYSE(O), NYSE(N), TSE and MSCI, 
respectively, which even many strategies that do not take into account transaction costs can not achieve. This is 
the reason why DENRPO outperforms other systems in cumulative wealth.

α Factor
We evaluate our proposed method whether outperforms the benchmark and the TCO method considering 
transaction costs in a statistical significance. The Capital Asset Pricing Model (CAPM)49 proposed that intrinsic 
excess return composes the part of the expected return, which is usually called α Factor in the finance  industry50. 
α Factor can be improved by a excellent portfolio strategy and it can be represented in the following way:

(31)rs = (bTt xt − 1) ∗ wt−1,

(32)MER = r̄s − r̄m =
1

T

T
∑

t=1

rs,t − rm,t ,

(33)β̂ =
ĉ(rs , rm)

σ̂ 2(rs , rm)
,

Table 3.  Cumulative wealth obtained by various algorithms on the four data-sets with transaction costs. Top 
two achievements on each column excluding benchmarks are highlighted.

Algorithms

NYSE(O) NYSE(N) TSE MSCI

0 0.0025 0.005 0 0.0025 0.005 0 0.0025 0.005 0 0.0025 0.005

UBAH 14.50 14.46 14.43 18.06 18.01 17.97 1.61 1.61 1.60 0.91 0.90 0.90

BEST 54.14 54.01 53.87 83.51 83.30 83.09 6.28 6.26 6.25 1.50 1.50 1.50

BCRP 252.07 181.03 133.52 119.71 98.02 80.23 6.70 6.38 6.12 1.51 1.49 1.48

SSPO 1.06E+18 2.45E+11 5.66E+04 1.62E+09 154.92 0.00 364.94 11.78 0.38 7.51 0.38 0.02

S1 1.24E+18 8.27E+10 5.53E+03 2.97E+09 93.65 0.00 227.29 6.73 0.2 10.17 0.43 0.02

S2 1.29E+18 8.12E+10 5.62E+03 2.87E+09 93.95 0.00 249.08 6.18 0.15 10.35 0.39 0.01

S3 1.24E+18 8.26E+10 5.52E+03 2.97E+09 93.46 0.00 227.66 6.76 0.20 10.16 0.42 0.02

TCO1 1.35E+14 5.57E+09 2.33E+06 9.15E+06 3.81E+03 143.47 149 7.66 0.91 9.68 1.52 1.13

TCO2 1.47E+13 4.34E+07 1.52E+04 2.35E+07 2.14E+03 57.61 152.98 31.71 4.99 5.66 1.42 0.84

TCO-RMR 1.44E+13 6.40E+08 5.40E+04 3.56E+07 2.37E+03 0.40 144.21 10.92 0.86 5.83 1.52 0.53

TCO-GLR 1.15E+13 1.55E+09 3.45E+05 1.08E+07 2.05E+03 0.79 141.56 14.71 1.56 2.74 0.89 0.35

DENRPO1-PARM 5.78E+15 2.10E+11 7.99E+06 9.61E+05 296.58 55.02 1471.29 6.89 1.83 10.84 2.62 1.30

DENRPO1-OLMAR 3.57E+16 7.36E+09 6.59E+04 2.19E+08 2.92E+03 893.22 365.16 3.93 1.53 16.21 2.15 0.96

DENRPO1-RMR 1.87E+17 8.41E+09 9.66E+04 8.29E+08 7.72E+04 403.96 326.54 7.91 7.81 16.73 1.70 0.97

DENRPO1-GLR 1.36E+18 3.91E+11 2.00E+05 2.12E+09 1.15E+04 17.45 212.21 14.29 6.04 8.69 1.12 0.60

DENRPO2-PARM 5.78E+15 2.10E+11 8.02E+06 9.61E+05 297.64 54.27 1471.12 6.89 1.84 10.61 2.48 1.21

DENRPO2-OLMAR 3.57E+16 7.37E+09 6.61E+04 2.19E+08 2.91E+03 886.46 365.18 3.93 1.52 16.21 2.15 0.96

DENRPO2-RMR 1.87E+17 8.42E+09 9.65E+04 8.29E+08 7.72E+04 412.39 326.42 7.91 7.84 16.73 1.70 0.97

DENRPO2-GLR 1.36E+18 3.91E+11 2.00E+05 2.24E+09 1.19E+04 18.88 212.16 14.29 6.06 8.55 1.08 0.63
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where ĉ(·, ·) and σ̂ (·, ·) denote the sample covariance and the sample standard deviation (STD) computed on T 
trading days, respectively. Table 5 represents the α Factor of our proposed method compared to benchmark and 
TCO methods. It is obviously that DENRPO achieves 0.0067, 0.0027, 0.0057 in γ = 0.25% in NYSE(O), NYSE(N) 
and TSE, respectively, which are much higher than TCO. It furtherly guarantees the better performance of the 
proposed methods.

β Factor

In addition to measuring returns, we also need to measure risk indices in order to evaluate a strategy more com-
prehensively. β Factor is a commonly used risk indicator, which measures the volatility of the portfolio strategy 
return with respect to the market benchmark. In the case of β > 0 and β < 1 , shows that the strategy return has 
a positive correlation with the market return, and if β is smaller, then the strategy return fluctuates less greatly 
than the market return. The calculation method of β Factor is given in (33) and Table 6 shows the result of the 
proposed method compared with benchmark and TCO methods. It is obviously that DENRPO obtains 1.0851, 
0.9954 and 1.2146 in γ = 0.5% in NYSE(O), NYSE(N) and TSE, respectively, which are much smaller than TCO, 
indicating that the proposed method can keep the stability as transaction costs increase. This test guarantees the 
generalization ability of DENRPO.

(34)α̂ = r̄s − β̂ ¯rm,

Table 4.  Mean excess return obtained by several algorithms on the four data-sets with transaction costs. Top 
two achievements on each column excluding benchmark are highlighted.

Algorithms

NYSE(O) NYSE(N) TSE MSCI

0 0.0025 0.005 0 0.0025 0.005 0 0.0025 0.005 0 0.0025 0.005

BEST 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0016 0.0016 0.0016 0.0004 0.0004 0.0004

TCO1 0.0056 0.0051 0.0035 0.0024 0.0020 0.0013 0.0047 0.0046 0.0028 0.0024 0.0009 0.0003

TCO2 0.0052 0.0038 0.0020 0.0026 0.0017 0.0010 0.0048 0.0050 0.0034 0.0019 0.0007 0.0001

TCO-RMR 0.0053 0.0052 0.0052 0.0027 0.0027 0.0026 0.0048 0.0048 0.0048 0.0019 0.0018 0.0017

TCO-GLR 0.0054 0.0053 0.0052 0.0026 0.0026 0.0025 0.0049 0.0049 0.0049 0.0012 0.0011 0.0010

DENRPO1-PARM 0.0065 0.0069 0.0038 0.0022 0.0023 0.0014 0.0068 0.0060 0.0039 0.0026 0.0017 0.0005

DENRPO1-OLMAR 0.0069 0.0052 0.0024 0.0031 0.0021 0.0015 0.0059 0.0040 0.0027 0.0029 0.0012 0.0001

DENRPO1-RMR 0.0072 0.0053 0.0028 0.0033 0.0028 0.0016 0.0058 0.0047 0.0043 0.0030 0.0012 0.0003

DENRPO1-GLR 0.0076 0.0064 0.0033 0.0035 0.0027 0.0014 0.0056 0.0052 0.0049 0.0024 0.0008 0.0000

DENRPO2-PARM 0.0065 0.0069 0.0038 0.0022 0.0023 0.0014 0.0068 0.0060 0.0039 0.0025 0.0017 0.0004

DENRPO2-OLMAR 0.0069 0.0052 0.0024 0.0031 0.0021 0.0015 0.0059 0.0040 0.0027 0.0029 0.0012 0.0001

DENRPO2-RMR 0.0072 0.0053 0.0028 0.0033 0.0028 0.0016 0.0058 0.0047 0.0043 0.0030 0.0012 0.0003

DENRPO2-GLR 0.0076 0.0064 0.0033 0.0035 0.0027 0.0014 0.0056 0.0052 0.0049 0.0024 0.0008 0.0000

Table 5.  α Factor obtained by several algorithms on four data-sets with transaction costs. Top two 
achievements on each column excluding benchmark are highlighted.

Algorithms

NYSE(O) NYSE(N) TSE MSCI

0 0.0025 0.005 0 0.0025 0.005 0 0.0025 0.005 0 0.0025 0.005

BEST 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004 0.0015 0.0015 0.0015 0.0005 0.0005 0.0005

TCO1 0.0055 0.0050 0.0034 0.0023 0.0020 0.0013 0.0045 0.0044 0.0026 0.0024 0.0009 0.0003

TCO2 0.0051 0.0036 0.0019 0.0025 0.0017 0.0010 0.0046 0.0048 0.0032 0.0019 0.0007 0.0000

TCO-RMR 0.0051 0.0051 0.0050 0.0026 0.0026 0.0025 0.0045 0.0046 0.0046 0.0019 0.0018 0.0017

TCO-GLR 0.0052 0.0051 0.0050 0.0025 0.0025 0.0025 0.0047 0.0047 0.0047 0.0012 0.0011 0.0010

DENRPO1-PARM 0.0064 0.0067 0.0038 0.0021 0.0022 0.0014 0.0067 0.0057 0.0038 0.0026 0.0017 0.0005

DENRPO1-OLMAR 0.0067 0.0050 0.0024 0.0030 0.0020 0.0015 0.0057 0.0038 0.0026 0.0029 0.0012 0.0001

DENRPO1-RMR 0.0070 0.0052 0.0026 0.0032 0.0027 0.0015 0.0056 0.0044 0.0041 0.0030 0.0012 0.0002

DENRPO1-GLR 0.0075 0.0062 0.0031 0.0035 0.0026 0.0014 0.0053 0.0049 0.0046 0.0024 0.0008 0.0000

DENRPO2-PARM 0.0064 0.0067 0.0038 0.0021 0.0022 0.0014 0.0067 0.0057 0.0038 0.0025 0.0017 0.0004

DENRPO2-OLMAR 0.0067 0.0050 0.0024 0.0030 0.0020 0.0015 0.0057 0.0038 0.0026 0.0029 0.0012 0.0001

DENRPO2-RMR 0.0070 0.0052 0.0026 0.0032 0.0027 0.0015 0.0056 0.0044 0.0041 0.0030 0.0012 0.0002

DENRPO2-GLR 0.0075 0.0062 0.0031 0.0035 0.0026 0.0014 0.0053 0.0049 0.0046 0.0024 0.0008 0.0000
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Sharpe ratio
In order to more synthetically illustrate the empirical superiority of DENRPO, we compare it with WFDA strat-
egy in Sharpe ratio in the long-short baseline. Sharpe ratio measures the excess return in the unit risk, thus the 
higher ratio leads to better performance of the strategy. It can be computed as:

Besides, we compare the long-short baseline setting that simultaneously buys the top five and shorts the bottom 
five stocks sorted by VaR and CVaR in an hour, and holds the position for one day in DJIA dataset. Table 7 shows 
the Sharpe ratio of DENRPO, raw long-short term baseline and WFDA-based long-short transaction, where α 
denotes the confidence level, raw and WFDA denotes VaR and CVaR computed by raw data and WFDA pro-
cessed data, respectively. We can find that the Sharpe ratio of DENRPO is the highest in all compared strategies, 
indicating its effectiveness and superiority in the real market.

Conclusion
In this paper, we study the online portfolio selection problem with transaction costs via machine learning. First, 
we formulate the problem as a minimization problem on the simplex. By minimizing negative expected returns 
and applying elastic net regularization to transaction cost controlled terms and portfolio variables, a practical 
and robust model is constructed to achieve the goal of maximizing return while minimizing transaction costs. 
Since the augmented Lagrangian function based on the proposed model has a quadratic term, we develop to 
apply LALM and ADMM to solve the model, which subtly reduces the computational difficulty. Further, we 
theoretically guarantee that the sequences generated by the proposed algorithms converge to the solution of the 
proposed model, and we also establish the closed-form solutions of the subproblems in each iteration. Moreover, 
we compare with state-of-the-art portfolio algorithms on five commonly used benchmark datasets. Extensive 
numerical experiments demonstrate that the cumulative wealth obtained by proposed algorithms outperforms all 
compared algorithms as transaction costs increasing in most cases and it also outshine in long-short transaction 

(35)Sharpe ratio =
r̄s − ¯rm

σ̂ 2(rs)
.

Table 6.  β Factor obtained by several algorithms on four data-sets with transaction costs. Top two 
achievements on each column excluding benchmark are highlighted.

Algorithms

NYSE(O) NYSE(N) TSE MSCI

0 0.0025 0.005 0 0.0025 0.005 0 0.0025 0.005 0 0.0025 0.005

BEST 0.9169 0.9169 0.9169 0.8904 0.8904 0.8904 1.4552 1.4551 1.4551 0.4585 0.4585 0.4585

TCO1 1.2092 1.2428 1.1515 1.0799 1.0398 0.9972 1.4721 1.5109 1.5131 1.1279 1.0780 0.9270

TCO2 1.2781 1.3211 1.1964 1.1450 1.0935 1.0614 1.5308 1.5476 1.5499 1.1532 1.1601 1.1264

TCO-RMR 1.2932 1.2952 1.2968 1.1472 1.1424 1.1372 1.5563 1.5529 1.5505 1.1703 1.1686 1.1675

TCO-GLR 1.3623 1.3628 1.3643 1.1368 1.1340 1.1303 1.5832 1.5814 1.5792 1.2630 1.2654 1.2680

DENRPO1-PARM 1.2354 1.2474 1.0851 1.0855 1.0492 0.9956 1.3099 1.5395 1.2146 1.1289 1.1202 0.9684

DENRPO1-OLMAR 1.3124 1.3454 1.1309 1.1817 1.1848 1.0607 1.5291 1.5904 1.4146 1.1789 1.1297 1.0289

DENRPO1-RMR 1.2950 1.3211 1.2473 1.1541 1.1318 1.1598 1.5847 1.6075 1.5542 1.1924 1.1747 1.1089

DENRPO1-GLR 1.3462 1.3674 1.3916 1.1199 1.1329 1.1248 1.6837 1.6865 1.6147 1.2704 1.2624 1.2953

DENRPO2-PARM 1.2354 1.2474 1.0852 1.0855 1.0492 0.9954 1.3099 1.5395 1.2146 1.1270 1.1231 0.9750

DENRPO2-OLMAR 1.3125 1.3454 1.1310 1.1817 1.1849 1.0602 1.5291 1.5904 1.4139 1.1789 1.1297 1.0289

DENRPO2-RMR 1.2950 1.3211 1.2473 1.1541 1.1318 1.1593 1.5846 1.6074 1.5545 1.1924 1.1747 1.1089

DENRPO2-GLR 1.3462 1.3674 1.3916 1.1200 1.1331 1.1234 1.6837 1.6865 1.6151 1.2706 1.2629 1.2812

Table 7.  Sharpe Ratio obtained by DENRPO and WEDA on DJIA dataset in long-short transaction. Top two 
achievements of strategies are highlighted.

Algorithms confidence level

raw WFDA DENRPO1-PARM DENRPO1-OLMAR DENRPO1-RMR DENRPO1-GLR

(× 10−3) (× 10−3) (× 10−3) (× 10−3) (× 10−2) (× 10−2)

α = 5% −2.3246 6.3195

α = 1% −2.8108 6.1054 96.6294 98.0381 79.5606 79.5606

α = 0.5% −2.3246 6.3195

Algorithms confidence level

raw WFDA DENRPO2-PARM DENRPO2-OLMAR DENRPO2-RMR DENRPO2-GLR

(× 10−3) (× 10−3) (× 10−3) (× 10−3) (× 10−2) (× 10−2)

α = 5% −2.3246 6.3195

α = 1% −2.8108 6.1054 96.6295 98.0380 79.5621 120.8834

α = 0.5% −2.3246 6.3195
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scenario, indicating that our proposed portfolio selection algorithms are highly competitive and have practical 
significance.

Data availibility
The datasets generated and analysed during the current study are available in the Github repository, https:// 
github. com/ Ting2 21/ DENRPO.

Accession codes
Code used for the numerical experiments can be found here: https:// github. com/ Ting2 21/ DENRPO.
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