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Early‑career factors largely 
determine the future impact 
of prominent researchers: evidence 
across eight scientific fields
Alexander Krauss 1,2*, Lluís Danús 3 & Marta Sales‑Pardo 3*

Can we help predict the future impact of researchers using early‑career factors? We analyze early‑
career factors of the world’s 100 most prominent researchers across 8 scientific fields and identify four 
key drivers in researchers’ initial career: working at a top 25 ranked university, publishing a paper in a 
top 5 ranked journal, publishing most papers in top quartile (high‑impact) journals and co‑authoring 
with other prominent researchers in their field. We find that over 95% of prominent researchers across 
multiple fields had at least one of these four features in the first 5 years of their career. We find that 
the most prominent scientists who had an early career advantage in terms of citations and h‑index are 
more likely to have had all four features, and that this advantage persists throughout their career after 
10, 15 and 20 years. Our findings show that these few early‑career factors help predict researchers’ 
impact later in their careers. Our research thus points to the need to enhance fairness and career 
mobility among scientists who have not had a jump start early on.

What drives high-impact science and how do scientists gain prominence? Can we help predict scientific suc-
cess and especially the success of young researchers? And what would be the best metrics to do so? These are 
important questions in the science of science but that we still do not fully  understand1–9. These questions are 
of interest for hiring committees, funding bodies and university departments who make decisions by trying to 
predict the scientific trajectories of researchers often using limited information. The use of common bibliometric 
indicators, such as number of publications, journal impact factors and citations, as metrics for assessing research 
impact has been put into question by some  researchers10,11. Other metrics such as open access publications and 
altmetrics have been proposed as complements or alternatives for improving the way we assess  research10–12. 
Yet any measure of scientific impact and prominence faces constraints. A necessary step in identifying ways to 
evaluate research more fairly is to apply predictive models that help identify inherent biases to science’s current 
incentive and evaluation system. To this end, we comprehensively analyze the careers of prominent scientists to 
identify to what extent early-career factors help predict the success of researchers later on in their career.

Most studies on the drivers of high-impact science focus on the role of an individual factor in isolation, 
such as the prestige and ranking of researchers’  university13–16, ranking of published papers in  journals17–19, 
and  collaborations20–29. Total citation counts and h-index of the world’s prominent scientists capture only past 
accomplishments, but not what has driven those achievements. Rarely are there studies conducted to identify 
the factors driving the production of high-impact research over  time7,8,27,30,31, combining the different key factors 
in a single study to understand the relative importance of each  factor13–18 and studying fields across the natural, 
behavioural and social sciences  simultaneously6,28,29. Here, we do so by conducting a comparative analysis of 
these key factors to shed light on how early-career choices and factors shape the path to later become prominent 
researchers. To this end, we collected data on the scientific careers of the 100 most prominent scientists in eight 
different fields across science (genetics, development economics, cognitive psychology, network science, social 
inequalities in public health, network ecology, metabolomics, and philosophy of science) to which we apply a set 
of descriptive statistics, as well as classification and regression analyses (Data and Methods sections). Specifically, 
we examine four key early-career factors (researchers’ university prestige, journal ranking of their top publica-
tion, collaboration with other prominent researchers, and overall impact of their early research) which we find 
capture the scientific achievements during the first 5 years of the career. We then assess how these key factors are 
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related to their h-index later on in their career, while controlling for factors like their geographic  location32–34, 
 gender35 and scientific  field23,35 (Fig. 1).

We find that top researchers across fields have, in the first five years of their career, an advantage compared 
to the average researchers – the comparison group – that lasts throughout the rest of their career: they are more 
likely to research at one of the top 25 ranked universities worldwide, publish a paper in a top 5 ranked journal 
in their field, publish most papers in top quartile journals, and collaborate with other prominent researchers. 
Indeed, this trend holds for prominent researchers across scientific fields: the prominent researchers at the top of 
their field early on in their career (compared to their peers) are consistently at the top as their career progresses. 
Our results highlight how an early-career jump-start drives researchers to prominence, i.e. what a researcher 
does early on has a very strong impact on how they will perform in the future. The implications of our findings 
are vast and can provide young researchers with a means to evaluate their own expected career trajectories. Yet 
because these four attributes of ultra-successful scientists are predictable, the findings also suggest how closed the 
scientific system already is. The results also point to shortcomings in using the common and highly-influential 
indicators of success, namely citation and h-index metrics. This is because early career advantages–measured 
using these metrics–are so strong that they predefine ‘highly-successful scientists’ without further information 
about the content or social and policy impact of their research.

Data
We collected data for several early-career factors, by building on a dataset we previously compiled that identi-
fied the 100 researchers with the highest h-index across eight fields that span across the natural, behavioural 
and social sciences  (see33). These eight fields include genetics, development economics, cognitive psychology, 
network science, social inequalities in public health, network ecology, metabolomics, and philosophy of science. 
We extracted all data for this study - publications, bibliometric data, university affiliations etc. for each author 
- using Scopus database in 2021 (the largest database of peer-reviewed journals), with two exceptions–data for 
university rankings using QS World University Rankings  202136 and for journal rankings using Journal Cita-
tion Reports (JCR)  202137. All data used are publicly available via Scopus, QS World University Rankings and 
Journal Citation Reports (JCR).

To overcome shortcomings of studies with cross-sectional research designs (with data collected at one specific 
timepoint) we adopt a longitudinal research design by collecting data over the entire scientific career of the 100 
prominent researchers across these fields. We use the h-index as a metric for prominence as it is designed to 
capture the quantity and quality of researchers’  output38. For each researcher we set the start of their academic 
career as the year of their first publication. We then collect data for the first 5 years of researchers’ scientific career, 
including their early-career university ranking, publication records and journal ranking, and collaborations. 
Table 1 provides a list of all main variables we study and the descriptive statistics for the variables that are disag-
gregated by scientific field. Some of these variables we collected are highly correlated, so they were discarded for 
the analysis we later perform (see Supplementary Figs. S26).

All data presented throughout the paper reflect only the first 5 years of prominent researchers’ careers since 
their first publication, unless explicitly stated otherwise - i.e. with the exception of the number of accumulated 
citations and the h-index at 10, 15 and 20 years after the first publication of each scientist. All data are presented 
at the researcher level, i.e. only one aggregate value for each of the 100 prominent researchers across eight fields 

Figure 1.  Conceptual map of the study. We compiled a list of the 800 most prominent scientists across 8 
research fields. We obtained for each researcher a full publication list, history of citations of the publications 
as well as their affiliation records over time from Scopus. Using this information, we obtained data on early-
career factors (within the first 5 years after their first publication): being at a top 25 university, publishing in a 
top 5 journal or most papers in Q1 journals within a specific area of knowledge (according to Journal Citation 
Reports), and coauthoring with other prominent researchers. We then study the subsequent career of the 
researchers and measure the evolution of their number of citations and h-index over 5, 10, 15 and 20 years since 
their first publication.
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is provided for each variable. The 100 prominent researchers across these 8 fields have an average h-index of 64, 
meaning that researchers each have an average of 64 publications that have each received at least 64 citations. 
The median h-index is 49. In contrast, the average global h-index is approximated at 27 - 32 (median 14–25) as 
an upper bound estimate (see Table 1 for field-level data)39,40.

Moreover, as nearly all of today’s prominent researchers were based in Europe and North America in the first 
five years of their career and to allow for cross-regional comparison, we focus the analysis on Europe and North 
America—excluding about 6% of other prominent researchers not based there. Among the prominent research-
ers across each of the eight fields, 21 researchers were at a university outside of Europe or North America at the 
time of their first publication (largely in Australia, New Zealand and Japan), while most moved within the first 
five years to a university in Europe or North America to which they have been classified.

Results
Four early‑career factors related to early‑on prominence and research impact
Early-career factors of prominent scientists
We analyse the first 5 years of the academic career (starting at the first publication) of the 100 prominent research-
ers across these eight scientific fields, and we find overall that 47% were at a top 25 ranked university, 77% pub-
lished a paper in a top 5 ranked journal in their field, 59% of their papers were published in top quartile (Q1) 
journals and 27% co-authored a paper with another prominent researcher in their field (Table 1). These shares 
are significantly higher than for the comparison group of average researchers (see Methods for calculations for 
the global averages for researchers and Table 1 for all factors we analyzed): less than 1% of all researchers world-
wide—an estimated 0.6%—are at one of the top 25 universities; an estimated 3–14% of all researchers worldwide 
have published a paper ranked in the top 5 journals in their field; about one third of all articles worldwide are 
published in top quartile (Q1) journals;41,42 and, about 14% of junior researchers on average have co-authored 
a paper with a senior researcher in journals across scientific fields, including top multidisciplinary journals.

Furthemore, 92% of all prominent researchers had at least one or more of these four features, with the share 
increasing to at least 95% for those in genetics, development economics, cognitive psychology and metabolomics. 
Moreover, more than half of all prominent researchers placed a paper within a top 5 ranked journal in their field 
in the first 5 years, with the highest shares at 93% for researchers in genetics, 86% in metabolomics and 82% in 

Table 1.  Descriptive statistics. Features and traits of the 100 prominent researchers across each of the eight 
fields.

Average for the 100 prominent researchers in each field (all data 
reflect the average per researcher in the given field, unless stated 
otherwise) Gene. Dev. Eco. Cog. Psy. Net. Sci. Ineq. Hea. Net. Eco. Metab. Phi. Sci. All fields

Total H-index – mean 130 62 89 43 63 43 48 31 64

Total H-index – median 136 53 86 37 56 41 41 25 49

H-index at 20 years since first publication – mean 35 16 14 30 27 23 29 7,2 23

H-index at 20 years since first publication – median 29 14 12 27 24 22 28 6 19

First 5 years of career

% at one of the top 25 ranked universities worldwide in first 5 years 0,56 0,71 0,67 0,34 0,38 0,28 0,37 0,45 0,47

% who published a paper in a top 5 ranked journal in their field in first 
5 years 0,93 0,74 0,82 0,79 0,74 0,77 0,86 0,51 0,77

% of researchers’ total papers in top decile (journal rankings) in first 5 
years 0,42 0,26 0,28 0,27 0,27 0,34 0,33 0,09 0,27

% of researchers’ total papers in first quartile (journal rankings) in first 
5 years 0,73 0,51 0,66 0,60 0,50 0,61 0,71 0,38 0,59

% with more than half of researchers’ total papers published in first 
quartile journals in first 5 years 0,83 0,56 0,77 0,69 0,55 0,73 0,87 0,38 0,68

% who co-authored a paper in first 5 years with another prominent 100 
researcher in their field 0,26 0,31 0,28 0,42 0,25 0,27 0,24 0,11 0,27

% of researchers’ total papers in first 5 years that are coauthored with 
another prominent 100 researcher in their field 0,09 0,11 0,09 0,19 0,13 0,13 0,13 0,03 0,11

Total citations in first 5 years 137 23 14 97 33 35 61 8 52

Average number of authors for researchers’ total papers in first 5 years 16,4 1,7 1,8 10,3 3,9 3,6 5,3 1,8 5,9

% of researchers’ multi-author papers (among all their papers) in first 
5 years 0,88 0,59 0,59 0,87 0,79 0,78 0,97 0,28 0,72

Average Journal Impact Factor for researchers’ papers in first 5 years 82,9 70,7 75,8 74,8 67,6 75,7 79,6 60,1 73,6

% at North American university at their first publication 0,66 0,69 0,74 0,41 0,47 0,39 0,38 0,66 0,55

% at EU university at their first publication 0,34 0,31 0,26 0,59 0,53 0,61 0,62 0,34 0,45

Present researcher status (early 2021)

% presently at North American university/institution 0,75 0,72 0,81 0,55 0,48 0,44 0,43 0,73 0,62

% presently at EU university/institution 0,25 0,28 0,19 0,45 0,52 0,56 0,57 0,27 0,38

% male 0,94 0,87 0,85 0,86 0,71 0,86 0,81 0,86 0,85
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cognitive psychology (Fig. 2). The majority of prominent researchers publish more than half of their papers in 
top quartile journals (except for philosophy of science) (Fig. 2). As we will show later, this initial prominence is 
often not just a ‘hot streak’ but consistently characterises the impact of researchers’ over their career.

A researcher’s early institution is also strongly correlated with scientific prominence across a number of 
 fields13–16. Indeed, we find that over 50% of researchers in development economics, cognitive psychology, and 
genetics were at one of the top 25 ranked universities worldwide in the first 5 years of their career. However, this 
is not the case in younger scientific fields such as network science, network ecology or metabolomics, suggesting 
that the role of institutional prominence seems to be more important in well-established, more traditional fields. 
Being at a top university is the factor, among the four early-career factors, that illustrates the strongest difference 
between newer and older fields. Another factor that highlights differences between fields is the collaboration 
network that prominent researchers establish. Network science is the most collaborative field (in which 42% of 
prominent researchers have co-authored a publication with another prominent researcher) while philosophy 
of science stands out as the least collaborative (in which 17% of prominent researchers have done so) (Fig. 2).

In terms of geographic differences, we find that prominent European researchers are, in their early career, 
overall more likely to have top publications and to have been at a top 25 ranked university across all fields (Sup-
plementary Fig. S1), even though North America has a larger concentration of top universities whose graduates 
occupy the majority of faculty positions in US  universities43. Prominent European researchers are, however, less 
likely to have co-authored a paper with another of these top 100 researchers in their field, except in development 
economics and cognitive psychology (Supplementary Fig. S1)33.

In terms of gender differences, our results confirm that the gender gap is even more exacerbated among the 
scientific elite: females account for 15% of all prominent researchers across fields, ranging from 29% in inequali-
ties in public health to only 6% in  genetics35. In the first five years, prominent female researchers have a similar 
(or even higher) share of papers in the top quartile as males across fields, except in genetics. They are also more 
likely to have researched at a top 25 university than males across fields, except in network science and philoso-
phy of science, and a larger fraction of women has also coauthored a paper with another prominent researcher 
(Supplementary Fig. S2).

Early-career factors are correlated with early-on research output
To understand the relationship of early-career factors to early performance, we disaggregate researchers into four 
quartiles of increasing number of citations they received during the first five years (i.e. researchers in quartile 1 
(QI) are those with the lowest 25% of citations received during the first five years, while researchers in quartile 
4 (QIV) – the top cited quartile – are those with the highest 25% of citations). We find that there is a strong cor-
relation between the four early-career drivers and the impact of research output early on in researchers’ career. 
The fraction of prominent researchers in the top citation quartile in the first five years are, in general, more likely 

Figure 2.  Early-career factors of prominent researchers across fields. Fraction of researchers by field for the 
four key variables in the first 5 years since the first publication: TOP5 represents whether a researcher published 
in a top 5 ranked journal in their field. Q1 represents whether a researcher published most of their papers in 
a top quartile journal. TOP25 represents whether a researcher was affiliated to one of the top 25 universities 
worldwide. Collab represents whether a researcher co-authored a paper with another prominent researcher in 
their field.
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than expected by chance to have any of the four early-career features than other prominent researchers in lower 
citation quartiles (Fig. 3).

The role of publishing with other prominent researchers
Collaboration among scientists has been recognised as a source for innovation and creativity leading to increased 
research  output20,21. Our analysis is consistent with these findings: co-authorship is strongly correlated with 
higher citations across all fields, and the relationship is particularly strong in the natural sciences including 
genetics and network science (Supplementary Fig. S3).

Remarkably, the effect of co-authoring with prominent researchers is even greater. We find that only 27% of 
prominent researchers co-authored at least one paper (and overall 11% of their papers) with another prominent 
researcher in the first 5 years of their career. The papers co-authored by two (or more) prominent researchers 
have a much higher number of citations than other papers. The effect, intensity and size of collaborations, how-
ever, is not homogeneous across geographic  locations33 nor across fields (Supplementary Fig. S1, S4D and S5). 
Furthermore, the disaggregated data by citation quartiles reveal that researchers in the lowest citation quartile 
have very low shares of co-authorship in their early career across fields with other prominent researchers in 
their field compared to an average of 56% for those in the top citation quartile (Fig.  3A). This finding suggests 
that co-authorship with other prominent researchers early on can have a large return across all fields. Indeed, 
already during the first five years of the career of scientists in our study, papers with other prominent scientists 
have overall received more than twice the number of citations than those not co-authored with other prominent 
scientists in their field (Supplementary Figs. S4D and S5).

Our findings are thus in line with previous studies that analyzed the advantages of co-authoring with lead-
ing researchers in one’s field. Working under leading researchers can boost career development through greater 
citations and  mentorship44, and provides visibility early on in a scientist’s  career26. In fact, junior scientists at less 
recognised universities are most likely to benefit from co-authorship with leading  researchers26. Young scientists 
can also apply what they learn from high-impact, established researchers in their own  career27,28,45, providing 
them with a competitive advantage relative to their  peers46.

The role of prestige of researchers’ institution
Researchers at top universities have a qualitative advantage with respect to researchers in other institutions. They 
enjoy a high-quality research environment, generally with access to greater resources. Additionally, researchers at 
prestigious institutions are sought for collaboration as a way to boost the academic careers of researchers at lower 
tier  institutions22. Here, we assess the relationship between being at a top university and early-career impact. 

Figure 3.  Early-career factors of prominent researchers disaggregated by citation quartiles. Fraction of 
researchers by field and quartile in the first five years who have: (A) Publications with other prominent 
researchers in their field. (B) Affiliation in one of the top 25 universities. (C) A paper published in a top 5 ranked 
journal in their field. (D) Most of their papers published in a top quartile journal in their field. Grey points 
represent the values and the 95% confidence interval expected when radomizing the citation quartiles within 
each field.
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The share of researchers who have spent part of their early career in such institutions is not homogeneous across 
fields, with traditional disciplines having much larger shares, as outlined earlier. Not surprisingly, we find that 
for these disciplines – genetics, development economics and cognitive psychology  – being at a top university 
is strongly correlated with early-on research impact. Nonetheless, across most fields we find that researchers 
most cited early on in their career are more likely to be in a top institution (Fig.  3B; Supplementary Fig. S4C).

Researchers at prestigious universities also have a comparative advantage on other indicators. Among these 
prominent researchers at a top 25 university in the first 5 years of their career, 79% published a paper in a top 5 
journal (compared to 76% at a non-top university), 72% published more than half of all papers in top quartile 
journals (compared to 64%) and 29% co-authored with another prominent researcher (compared to 25%) (Sup-
plementary Fig. S6).

The role of publishing in highly-ranked journals
Publishing in high impact journals early on is correlated with an increase in later impact  – by increasing citations 
it benefits researchers’ career opportunities, increases their prestige and recognition, and helps  promotion18. 
Nearly all prominent researchers across fields placed their best paper in their early career within a highly ranked 
journal, which thus appears to be a necessary condition for becoming a prominent researcher. In fact, pub-
lishing in highly-ranked journals is strongly correlated with greater early-career impact, more so than just 
publishing within journals in Q1 (Fig.  3C, D). Interestingly, these two early-career factors (publishing in a top 
5 journal, versus publishing the majority of articles in Q1 journals) are not highly correlated with each other 
(Supplementary Fig. S26), thus showing that these two variables characerise two different aspects of early career 
performance: the former characterises the big hits, while the later represents consistency in output quality, and 
therefore are distinct early-career factors.

Early‑career performance is a strong indicator of performance throughout later career stages
As the scientific career of researchers progresses, the number of publications and citations accrued increases and 
so does the h-index of each researcher (Supplementary Fig. S7). We find disparities between fields in terms of 
the evolution of h-indices over time which reflect differences in the rate of publications, collaboration structures 
and the size of each field (Supplementary Fig. S8) .

To assess whether early-career performance translates into a sustained advantage over time, we analyse the 
evolution of h-indices and citations over time for all researchers (pooled together across the eight fields) (Fig. 4). 
To this end, we divide researchers into quartiles based on the normalized h-index and the normalized number 
of citations at 5, 10, 15 and 20 years since the first publication (see Methods). We then look at the probability of 
transition over time between quartiles using the 5-year mark as the reference point (Fig. 4). We observe that the 
initial advantage in the first 5 years is still present at 20 years of researchers’ career. Figure 4C and F shows that 
90% of researchers that started their career in the two top citation quartiles (QIII and QIV) have maintained this 
prominent position over time. Conversely, we observe the same situation for those scientists who were in the 
lower two quartiles (QI and QII). Both findings are consistent, whether we look at quartiles defined by h-index 
(Fig. 4 first row) or by citations (Fig. 4 second row) and across fields (Supplementary Figs. S9–S10). Although 
some fields display greater mobility from lower to upper quartiles, such as in network science and metabolomics, 
researchers are very unlikely to transition from the top-two to the bottom-two quartiles. This suggests that the 
initial advantage consistently remains throughout researchers’ career.

Factors driving citations and h‑index in researchers’ early career
So far our results in Figs. 3 and  4 show that there is a clear relationship between key early-career factors and the 
early-on impact of research output, and between early-on impact of research output and impact at later career 
stages. Here, we want to assess the extent to which early-career factors can explain the evolution in the impact 
of research output during the career of prominent scientists. To this end, we perform a prediction experiment in 
which we consider the h-index/citation quartile of a researcher (which we obtain by pooling together normal-
ized h-indices of the 8 fields) at Y (=10, 15 or 20) years after the start of their scientific career as our dependent 
variable, and different combinations of early-career factors as well as researchers attributes such as gender or 
current geographic location as our independent variables (see Supplementary Fig. S26 for evidence of lack of 
co-linearity among independent variables). Specifically, we train a Random Forest classifier for different sets 
of independent variables, called Models (see Methods for a description of the models—Model 1, 2, 3 and Q5) 
(Fig. 5). In Fig.  5, we show the prediction results of two classifiers for two different Models (sets of independent 
variables). First, we train a classifier in which we use binary independent variables that account for the four key 
early-career factors we study—working at a top 25 ranked university, publishing a paper in a top 5 ranked journal, 
publishing most papers in top quartile journals, and co-authoring with other prominent researchers—as well as 
two common background factors, namely researchers’ geographic location and their gender, called Model 2 (see 
Methods and Supplementary Material for other models we analyse). Second, we train a classifier in which the 
only independent varible we considere is the h-index quartile after 5 years of the first publication (Model Q5).

Our classification analysis reveals that assessing the h-index quartile at 5 years (Model Q5), the classifier is 
more accurate than if we only include the early-career factors. Nonetheless, the classifier for Model 2 is still able 
to correctly predict overall 40% of the researchers that fall into the lowest quartile (QI) and 38% who fall into 
the top quartile (QIV) at 20 years from the start of their career—significantly higher than the expected 25% for 
random quartile assignment. Our results show that the early-career factors we study can explain h-index quar-
tiles as early as 5 years after the first publication (Supplementary Figs. S11–S12) as well as trends in the share 
of researchers who remain in the same h-index quartile over their career (Fig.  5; see also Figs. S13–S14 for an 
equivalent analysis for citations). We also observe that for both classifiers, missclassification tends to happen 
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Figure 4.  Researcher mobility across quartiles. H-index quartile at five years compared to h-index quartile at 
10, 15 and 20 years (first row, panels A–C), and citation quartile at five years compared to citation quartile at 
10, 15 and 20 years (second row, panels D–F). The darker the region, the stronger the coincidence between the 
quartile at 10, 15 and 20 years relative to the quartile at the first 5 years. The results reflect the aggregated and 
normalized data for all fields.
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Figure 5.  Prediction of h-index quartile based on early-career factors. Predicted h-index quartile at five 
years compared to observed h-index quartile at 10, 15 and 20 years (first, second and third columns). (A)–(C) 
illustrate the prediction results with Model 2 (which takes into account the four early-career factors as well as 
the geographic location and gender of researchers; see Methods). (D)–(F) illustrate the prediction results with 
Model Q5 (which only takes into account the quartile of the first 5 years). The darker the region, the higher 
the number of researchers that are correctly classified by the algorithm. The results reflect the aggregated and 
normalized data for all fields. (G) and (H) show the f1-score for the predictions of Model 2 and Model Q5, 
respectively. Grey bars represent the 95% confidence interval expected when predicting randomized citation 
quartiles.
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between neighboring quartiles, so that the fraction of lower quartile researchers are seldom classified as QIV 
researchers and vice versa. Indeed, f1 scores highlight precisely that in Model2 and Q5 the performance for Q1 
and QIV is better than for QII and QIII (Fig. 5 H and G; see Supplementary Fig. S15 for precision and recall for 
the same models). This indicates that early-career features (Model 2) capture a substantial part (but not all) of 
the information captured by the h-index (Model Q5). Nonetheless, our results show that early-career research-
ers who are already prominent among their peers are very likely to sustain their advantage 15-20 years later (i.e. 
researchers in QIV). We find consistent results when we analyse fields individually (Supplementary Figs. S16–S19 
for h-index quartile prediction; Supplementary Figs. S21–S24 for citation quartile prediction).

As a final step, using our trained Random Forest classifiers for Model 2, we analyze the relative importance 
of the key four early-career factors (Methods). As all variables are binary (0 or 1), this facilitates comparing the 
relative importance of each factor. Collaborating with other prominent researchers is the most important factor, 
followed by publishing a paper in a top 5 journal. Working at a top 25 university and publishing more than half 
of one’s papers in Q1 journals have less explanatory power; and gender and geographic location appear to have 
little predictive power (Supplementary Figs. S14, S20, S25). The results illustrate how collaborating with estab-
lished researchers is perhaps the best strategy for securing a position among the scientific elite. These results are 
consistent with results from the analysis of citations (Supplementary Fig. S20) and with the disaggregated analysis 
of individual fields (Supplementary Figs. S20, S25). The only exception is philosophy of science for which being 
at a top institution or publishing in top journals early on are better predictors of h-index and citation quartiles 
while publishing with other prominent scientists is of much less importance. As a final robustness check, we 
perform two different regression analyses: an ordinary least squares regression of the h-indices, and a logistic 
regression of the top tercile of h-indices (see Figs. S27, S28, and Supplementary Table S1), which confirm the 
relative importance of variables we obtain using the Random Forest classifier.

Discussion
Our analysis shows that the future success of a researcher is often determined early on in their career. Indeed, 
we show that as early as 5 years after the first publication, we can already make accurate predictions of whether 
a prominent researcher is going to be within the top quartile of leading researchers later on or not. Our study, 
while limited to prominent scientists, shows that early-career factors also establish a hierarchy within this group 
of scientists that is sustained over time.

We find four early-career factors that are central drivers for later success across science: working at a highly 
ranked university, publishing a top 5 journal paper, publishing most papers in top quartile journals and co-
authoring with prominent researchers at the early stage of researchers’ career. Most importantly, we find a strong 
positive correlation between citations during the first five years of their career and the probability to have had 
any of these central early-career features we identify: researchers in the top quartile of citations are more likely 
than expected to have the four key features, whereas researchers in the lowest citation quartile are less likely than 
expected to have these features (but still more likely than the average non-prominent researchers). This finding 
is very insightful, especially because classification models are able to accurately predict the citation and h-index 
quartiles after 10, 15 and 20 years for researchers falling into the top and lowest quartiles: what scientists do early 
on largely determines their impact later on in their careers.

We also find that in traditional areas of science, being at a top-ranked institution can be an important driver, 
but in younger disciplines it is less important. This finding is especially interesting in light of recent findings 
about graduates from top-ranked US universities occupying the majority of faculty positions in the US university 
 ecosystem43, and raises the question of whether hierarchies in the hiring system pose a threat to innovation and 
the emergence of new fields of science. Indeed, we also find that in disciplines in which university affiliation is 
not such an important driver, publishing with other prominent scientists becomes especially  important44.

Our analysis shows that these four key factors are important as a general strategy for young researchers across 
science and that an early-career jump start gives scientists an advantage that is sustained throughout their career. 
At the same time, our results suggest that there are also other factors influencing the h-index at 5 years such 
as individual, more qualitative or psychological traits of  researchers19 or, in relevant cases, the traits of a PhD 
 advisor45 that have not been considered here. While it can be a limitation, our results also explain that the success 
of individual researchers cannot be attributed to a single factor but involve a combined set of early-career factors.

Given that these four attributes of ultra-successful scientists are predictable, the findings suggest that the 
scientific system is presently relatively closed. The results also illustrate limitations of using highly-influential 
metrics of success, such as citations and h-index. This is because early career advantages on these metrics are 
so strong that they predefine ‘highly-prominent scientists’, independent of the content of their research. More 
generally, the findings point to the need for a reform among the scientific community: As some scientists produce 
good science but are not successful in the ‘metrics game’, decision makers evaluating the work of researchers 
should also use additional metrics such as policy and social impact of research, developing new research tools, 
and the like. Decision makers should thus by no means take this as an opportunity to just use citation and h-index 
metrics to evaluate scientific prominence.

Overall, our jump-start hypothesis here can, by integrating multiple early-career factors and not focusing 
on an individual factor in isolation, better explain the Matthew effect in  science47, namely how the most cited 
researchers get more cited just because they became highly cited early on in their career. The central implication 
for researchers is that early-career factors can be fostered through deliberate choices and hard work.
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Methods
Calculations for the average researchers globally (the comparison group)
The calculations for the average researchers globally—the comparison group—for the four factors analysed here 
have been made as follows. Firstly, less than 1% of all researchers worldwide—an estimated 0.6%—are at one of 
the top 25 universities. This share is calculated using UNESCO data on the total number of researchers worldwide 
at 8,854,28848 divided by the total number of researchers (university staff) at the same top 25 universities (using 
QS World University Rankings) at 56,900. For comparison, the top 25 universities account for 1.8% of the total 
1396 universities in the Times World University  Rankings49. Secondly, an estimated 3−14% of all researchers 
worldwide have published a paper ranked in the top 5% in their field. This share is calculated by using data on 
the total number of all publications ranked top 5% in researchers’ field at 267,966 publications indexed in Web 
of Science using the Leiden  Ranking50 divided by the total number of researchers worldwide at 8,854,28848 or 
by the total number of researchers (university staff) at 1,914,14949 that results in a 3% (lower bound) or 14% 
(upper bound) estimate, respectively. Thirdly, about one third of all articles worldwide (upper bound estimate) 
are published in top quartile journals indexed in Web of Science;41,42 and as many individual researchers publish 
multiple articles in quartile 1 journals it is likely that the share is significantly lower for the average researchers 
to publish at least half of their papers in quartile 1 journals. Fourthly, about 14% of junior researchers on average 
have co-authored a paper with a senior researcher between 1990 and 2012 in a global study covering about 1000 
journals across the sciences (totalling about 6 million publications), with the shares varying across the fields of 
biology (15%), physics (13%), chemistry (13%), medicine (16%) and mathematics (6%), including the top three 
multidisciplinary journals (Nature, Science and PNAS) at about 19% for each  journal44. Fifth, the average h-index 
using university-level data is estimated at about 27 (median 25) as an upper bound estimate that includes only the 
top 500  universities40. The average h-index using all journal-level data from the Scimago Institutions  Ranking39 
via Scopus is estimated at about 32 (median 14). Note that both the mean university-level and journal-level 
h-indexes are upper bound estimates - i.e. higher than the mean researcher-level h-index given that researchers 
with lower h-indices are not represented in such estimates. These averages for researchers globally provide the 
baseline comparisons for our analysis.

Statistical approaches and Models (sets of independent variables)
We use two statistical approaches, a Random Forest classifier and a linear regression, to understand the role 
that different early-career variables play in the evolution of the h-indices and accumulated citations over the 
duration of scientists’ career.

Our goal is to assess how well different factors help predict researchers’ h-index/citation counts (the depend-
ent variables). We thereby consider four different groups of independent variables that we denote as Models 1, 
2, 3 and Q5. Formally, we will refer to the sets of variables as M1,M2,M3,Mq5.

Models 1, 2 and 3
For these three Models, all independent variables are binary (0 or 1). Descriptive data for all variables used in 
the models are provided in Table 1. Supplementary Figure S26 shows that there is no strong correlation between 
the different variables we consider in what follows.

Model 1. This model considers as independent variables solely the four key early-career factors we study, 
namely working at a top 25 ranked university or not ( topU)13–16 publishing a paper in a top 5 ranked journal or 
not ( top5 ), publishing most papers in Q1 journals or not (Q1)17–19 and co-authoring with other top 100 research-
ers or not ( BS)23,26–29. Therfore M1 := {TOP25, TOP5,Q1, Collab.}.

Model 2. This model considers the same variables as in Model 1 but also controls for two common background 
factors: the researchers’ geographic location ( loc : whether they are based at a university in North America or 
not)32–34, and their gender ( Gender : whether they are male or not)35. These are standard control variables applied 
in economics and the social sciences. Therefore, M2 := {TOP25, TOP5,Q1, Collab., Firstloc, Gender}.

Model 3. This model considers the same variables as in Model 2 but also controls for the average number of 
co-authors on researchers’ total papers ( coaut ), so that M2 := {TOP25, TOP5,Q1, Collab., Firstloc, Gender, Avg}).

Model Q5. This model considers only the h-index quartile at 5 years after first publication (Q5), MQ5 := {Q5}.

Random forest classifier
In order to quantify the predictive power of the models and the different variables, we performed a classifica-
tion experiment using a Random Forest Classifier. Our goal was to assess whether we could correctly predict 
the h-index/citation quartile at 5, 10, 15 and 20 years of career using only indicators from the first 5 years since 
the first publication.

A Random Forest Classifier (RFC) behaves similarly to a Random Forest Regressor but produces a categorical 
output instead of a continuous one. In this sense, the classifier iteratively evaluates several decision trees over 
different parts of the data and averages the resulting outputs.

We evaluated the performance of the classifier with a 10-fold cross validation. In this procedure, the dataset is 
divided in 10 folds from which one is selected as the test and the others as the training folds iterated several times 
until each fold has been used as a test. For each one of the models M = {M1,M2,M3,MQ5} , training data for each 
fold F = {trainingF, testF} corresponds to TrF(M) := {(QYi , xi), i ∈ trainingF} where QYi is the quartile at year Y 
we want to predict, and xi are the feature values or independent variable values xi = {(M)i} for a specific model 
(and similarly for test data). For each TrF(M) , we train a Random Forest Classifier RFCF,M ≡ RFC(TrF(M)) 
and make predictions for the corresponding test set {Q̂Y j(M) = RFCF,M(xj), j ∈ testF} . Since test sets are non-
overlapping, in the end we obtain a list of {Q̂Y j(M),∀j} , which we compared to the real quartiles {QYj , ∀j} to 
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obtain the overall confusion matrices, precision and recall for each model M. We then select the best model from 
Models 1, 2 and 3 as the one with the best overall precision and recall, in our case Model 2 ( M2).

Note that when performing the classification analysis for the aggregated data comprising all fields, the h-index 
and citation data are normalized due to high variability among fields (Supplementary Fig. S8).

Feature importance. For each RFCF,M we obtain permutation feature importances for each independent vari-
able, that is, the feature importance of variable top5 , FIF,M(top5) is the reduction in performance of the Random 
Forest Classifier when we randomize top5.

Formally, the feature importance of a variable v is defined as:

where sk,j is the score function, s the reference score, DF/j the new dataset with variable v randomized, k is the 
repetition, and K the number of repetitions. To obtain the overall feature importance for a variable v, we average 
over folds FIM(v) = 1

10

∑10
F=1 FIF,M(v).

In our case, we selected the f1-score as the score function for the permutation importance and set K = 10 
repetitions.

f1-score, precision and recall. The values of performance metrics for the RFC shown in Figure 3 and in Sup-
plementary Fig. S15 are the results of averaging these metrics over folds in our classification analysis. Black 
bars in those figures show the 95% confidence interval when assessing the same metrics over a Random Forest 
Classifier trained with random assignation of quartiles to researchers.

Regression analysis
To assess the predictors of scientific prominence, we analyse which early-career factors influence an increase in 
citation counts most. We perform ordinary least squares (OLS) and logistic regression analyses.

The OLS results illustrate the mean change in the dependent variable (researchers’ h-index or their total cita-
tions in their early career) given a one-unit change in each independent variable (being at a top 25 university or 
not, being in North America or not etc.). All independent variables are binary (0 or 1). Specifically, the model is 
yi(M) = a0 +

∑
i∈M aixi , where the dependent variable y is the normalized h-index/number of citations and xi 

are the independent variables we consider in Model M = {M1,M2,M3}.
We perform OLS regression analysis to assess the predictors of h-index in the first 5, 10, 15 and 20 years for 

the world’s prominent researchers (see Supplementary Fig. S27 and Supplementary Table S1 for regression coef-
ficients and significance) and to predict the number of citations in the first 5 years (Supplementary Fig. S28B).

Second, we conduct a logistic regression analysis in which the binary dependent variable yi is equal to 1 
for the third most-cited top researchers in the first 5 years and yi = 0 for the bottom two-thirds least cited top 
researchers. These top third researchers reflect the best of the best in their field. We thereby normalise citations 
by calculating citation terciles for each field individually (Supplementary Fig. S28 A). The model in this case 
corresponds to p(yi(M)) = 1/

[
1+ exp

(
−f (M, xi)

)]
 where f (M, xi) = a0 +

∑
i∈M aixi . The coefficients ai thus 

express how the probability of p(y = 1) changes when xi = 1 (positive coefficients increase the probability, while 
negative ones decrease it); a0 is a coefficient that sets the background probability for p(y = 1) – 1/3 in our case.

Data availability
All data are publicly available, and the lists of prominent researchers and their publications can be provided upon 
request (a.krauss@lse.ac.uk, marta.sales@urv.cat).
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