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Dynamic analysis of cylindrical 
foundations under torsional 
loading via generic 
discrete‑element models 
simulating soil stratum
Shi‑Shuenn Chen 1,3*, Chi‑Jou Kao 1,3 & Jun‑Yang Shi 2,3

Torsional vibration, considering soil‑structure interaction, is essential to the dynamic response of 
most irregular structures. A systematic method is developed to seek the optimal simplified model 
among multiple model candidates for uniform soil on rigid base regarding dynamic soil‑foundation 
interactions. A generic model is identified by the proposed method to simulate the cylindrical 
foundation resting on or embedded in the soil stratum under torsional vibrations. Various soil‑
foundation parameters, mainly including embedment depth, layer depth, and mass ratios, are 
considered in the simplified analysis. The frequency‑magnification curves and resonant responses 
of the foundation using the generic model agree well with theoretical solutions. The resultant 
resonant magnification factors against mass ratios clearly illustrate the impacts of the whipping 
effect resulting from the soil‑foundation interactions. The generic model performs better and adopts 
fewer parameters than the existing model to simulate the soil‑foundation interactions. In addition, 
dimensionless parametric charts are presented to estimate foundation responses for engineering 
applications quickly. The proposed charts also significantly overcome the limitations of the Wolf and 
Paronesso model. The generic model shows efficiency and accuracy in simulating the soil stratum. This 
research could contribute to the foundation vibration analysis for torsional responses.

Research on soil dynamics and structures has developed many fundamental methods for formulating interac-
tion problems. The causes of the torsional response of buildings are mostly related to the eccentric distribution 
of stiffness, damping, and the mass of a structure, or torsional  excitations1–9. The torsional response considering 
SSI is a key issue to be concerned about, as the rotation can significantly contribute to the response of most 
buildings, bridges, and steel structures during  earthquakes10–12. Complex engineering problems can be solved 
by developing simplified models. Deifalla and  Mukhtar13 constructed a simplified model for reinforced concrete 
elements under combined shear and axial tension. Fu et al.14 utilized the detachment phenomenon to create a 
mechanical model of pipe-soil interaction for pipe deformation under tunnel excavation. Cui et al. investigated 
the analytical solutions of the pile-soil interaction behavior in a uniform soil on bedrock or layered soils under 
vertical  vibrations15,16. Wang et al.17 developed a 3D finite-element model to investigate the seismic performance 
of large-scale pipeline structures under multiple external forces. To analyze dynamic SSI problems, the evaluation 
of dynamic impedance functions (i.e. stiffness and damping) plays a key role due to the frequency-dependent 
characteristics of the impedance  function18. Numerous lumped-parameter models simulate SSI for foundations 
in a uniform half-space under torsional  vibrations19–24. Besides the simulation for a uniform half-space, some 
research considering foundations in layered soils was also investigated. Wolf and  Somaini20 executed a five-
parameter discrete model to analyze the torsional vibrations of a square foundation on layered soils with linearly 
varying shear-wave velocities. Wolf and  Paronesso25 presented an eight-parameter model with three degrees of 
freedom (DOFs) for a cylindrical foundation vibrating in horizontal, vertical, rocking, or torsional motions, 
overlaying and embedded in a uniform soil layer on a rigid base. Pana et al.26 adopted an imperfect interface 
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bonding model to study the vertical and torsional vibrations of a rigid circular disc on a transversely isotropic 
half-space.  Shi27 presented a systematic modeling approach for layered soils considering rotational and horizontal 
foundation excitations. Dynamic responses of the foundation matched theoretical and computer-based solu-
tions. Shi et al.28 developed a model with three or five elements to simulate square foundations embedded in a 
nonuniform layer undergoing vertical load. In addition, Shi et al.29 also presented an adaptive method containing 
33 model candidates to investigate shallow foundations subjected to vertical excitations.

Most past studies concerning vibrational foundation response were limited to simulate dynamic SSI in a 
homogeneous half-space. Wolf and  Somaini20 didn’t demonstrate its application for the square foundation in 
soils overlying rigid bases. The Wolf and Paronesso  model25 (1992) was a pioneer research but didn’t show the 
simplicity of modeling elements or provide related application charts. Thus, this article emphasizes using a 
systematic method of lump-parameter models to adaptively find a simple generic model for a cylindrical foun-
dation in a uniform soil layer on rigid base and further offers numerical values of model parameters for easier 
and faster practical applications considering a wider range of soil-foundation parameters. Additionally, this 
article catches resonant responses of the foundations for the discrete frequency–response curves by applying 
the five-point-interpolation method by Lysmer et al.30. The resonant results are then compared with those from 
rigorous solutions and a corresponding existing model by Wolf and  Paronesso25. It is worth mentioning that the 
main differences between this research and previous related studies are demonstrated in Table 1. This research 
aims to investigate the torsional SSI behavior of uniform soil using a systematic method with only seven model 
candidates. Graphical charts are also presented to determine the model parameters. In addition, the determina-
tion of model parameters is independent of mass ratios. In this paper, the theoretical background of the proposed 
method is demonstrated first. The model selection for the target soil-foundation system is then illustrated. 
Subsequently, the model validations on frequency–response curves and resonant responses are investigated. A 
multiple target approach for practical applications is provided in the next section. A conclusion is made in the 
last section. This paper may bring extensive insight and efficiency for uniform soil on rigid base in the torsional 
vibration analysis of foundations.

Developed systematic method
This section shows a systematic method to generate lumped-parameter models and to find the optimal model to 
simulate a cylindrical foundation on a uniform stratum undergoing harmonic torsional force. The soil stratum 
is viscoelastic and entirely connected to the cylindrical foundation overlaying or embedded in a homogenous 
soil layer on a rigid base, as shown in Fig. 1a,b. The cylindrical foundation that has a radius R is overlaying and 
embedded in a soil layer on rigid base, subjected to a harmonic torque M0r . The target soil condition is considered 
to be a uniform stratum on a rigid base with a depth of H where the shear-wave velocity, Vs , is uniformly distrib-
uted; the Poisson ratio, ν, is 0.33; the damping ratio, ζ, is 0.05; G is the shear modulus; E is the embedded depth 
of a foundation. ρ is the soil mass density and Vs is the shear-wave velocity of the soil. This research considers the 
SSI behavior using a foundation impedance function describing the force–displacement relation at the interface 
between the soil and the foundation. Note that the foundation represents one part of the upper structures.

For parametric analysis, a0 = ωR/Vs is the dimensionless frequency of harmonic torsional force with forcing 
frequency ω ; T is defined as embedment ratio (i.e., T = E/R); D is defined as layer depth ratio (i.e., D = H/R); b is 
the dimensionless mass ratio for torsional motion, (i.e., mass ratio in short in the following of the paper) and is 
non-dimensionalized as b = Ir/ρR

5 , where Ir is the polar mass moment of inertia of the foundation around the 
axis of rotation. It is noted that the polar mass moment of inertia is applied as a mechanism for quantifying the 
soil-foundation interaction.

Model candidates
The systematic method comprises seven simplified models, which are developed to simulate the uniform soil on 
a rigid base subjected to torsional vibration, as shown in Fig. 2. The simplified models are arranged sequentially 
from Model 1 to Model 7, as shown in Fig. 2a–g. Each of the seven simplified models connects to the foundation 
and the rigid base. The maximum internal degree of freedom is two for all simplified models where ψ0 is the rota-
tion of the foundation about the vertical axis of symmetry and ψa is the additional rotational DOF about vertical 
axis. The simplified models are developed to simulate the relationship of the soil-foundation interaction behavior. 
The modeling elements of the proposed models include lumped masses moment of inertia, viscous dampers, 
and linear springs. The model parameters contain static torsional stiffness, Ker, dynamic torsional stiffness, Kd, 
the polar mass moment of inertia, Mer, and torsional damping, Cer. Each simplified model considers only three 
parameters: Ker, Cer, and either Kd or Mer. The layout of each proposed model is summarized as follows: Model 1 
consists of three elements connected in parallel. Model 2 has three elements and one internal DOF contributed 
by a serial connection of a spring and a damper. Similarly, Model 3 also has three elements and one internal 

Table 1.  Comparison of previous related research by the authors.

Research work Vibration mode Model candidates Model limitation for vibrating mass

Present study Torsional mode 7 None (Independent of mass ratios)

Ref.27 Horizontal and rocking modes 276 Depend on mass ratios

Ref.28 Vertical mode 2 None (Independent of mass ratios)

Ref.29 Vertical mode 33 Depend on mass ratios
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DOF given by a damper connected with a polar mass moment of inertia. Model 4 and Model 5 include four ele-
ments and one internal DOF. They are featuring in having two torsional dampers. Model 6 and Model 7 consist 
of four and five elements, respectively, while two polar masses moment of inertia are included in their layout. 
The parameters of the proposed models could be non-dimensionalized as follows:

The systematic method calculates the parameters of simplified models using equivalent principles for static 
and dynamic responses. The adoption of equivalent theories is based on equaling the dynamic impedance of 
unbounded soils to the torsional impedance function of the simplified models; thus, it is assumed that the 
cylindrical foundation is massless. The torsional impedance of a target soil-foundation system is used in this study 
to calculate the model parameters for equivalent models. Based on the vibration theory, when each simplified 
model is subjected to a harmonic torque, the torsional impedance function of each model is defined as follows:

where Ksr  is the static stiffness; kr and cr are the dynamic stiffness and damping coefficients, respectively.

(1)ker =
Ker

GR3
, kd =

Kd

GR3
, mer =

Mer

ρR5
, cer =

Cer

ρVsR4

(2)Kr = Ksr

(

kr + ia0cr
)

Figure 1.  Soil-foundation system subjected to torsional vibration. (a) cylindrical resting on uniform soil on 
rigid base, (b) cylindrical embedded in uniform soil on rigid base.

Figure 2.  Proposed simplified models with seven candidates.
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The systematic method proposed uses three equivalent criteria to calculate the model parameters. Assume the 
torsional impedance function of a soil-foundation system is Kr = Ksr(kr + ia0cr) . By equalizing the impedance 
function of a soil-foundation system to that of a simplified model, the equivalent equations regarding static 
stiffness, dynamic stiffness coefficients, and dynamic damping coefficients are established as follows:

where Ksr , kr , cr are the static stiffness, the dynamic stiffness coefficients, and the dynamic damping coefficients, 
respectively, for the target soil-foundation system subjected to torsional vibration. The first equivalent equation 
adopts the static equilibrium of a soil-foundation system. Therefore, the static stiffness Ker of each model is 
derived by Eq. (3), i.e.,

Besides, Table 2 shows the impedance function of each simplified model, which is derived from dynamic 
equilibrium equations based on structural dynamics. A system of nonlinear equations (SNE) is established by 
substituting kr and cr of a model into Eqs. (4) and (5). The other model parameters are further obtained by solv-
ing the SNE in this study.

Frequency‑response curves
This subsection aims to illustrate the frequency–response curve of a dynamic system. As the target soil-
foundation system shown in Fig. 1 is subjected to a dynamic load, the equation of motion is expressed as follows:

where M0r is the harmonic torque, Ir is the polar mass moment of inertia of the foundation around the axis of 
rotation, Kr is the torsional impedance function of the soil-foundation system. Recall that the torsional impedance 
function is given by Kr = Ksr(kr + ia0cr) . Equation (7) can be used to derive the steady-state responses of the 
foundation by assuming M0r = m0r exp(iωt) and ψ0(t) = φ0 × exp(iωt) , as shown below.

where m0r is the amplitude of the harmonic torque; Mr and θr are the dynamic magnification factor and the 
phase angle.

It is noted that the damped soil-foundation system considers the effect of both material damping and radiation 
damping on the foundation response. In detail, the effect of the material damping and radiation damping are 
respectively considered in the real and imaginary part of the impedance function for the target soil-foundation 
system, as shown in Fig. 1. The theoretical impedances by Tassoulas and  Kausel31. are adopted for the surface 
foundation at the depth (D = 2) as the corresponding frequency a0 = 0.1 to 6.2 with an interval of 0.1. On the other 
hand, the theoretical impedances by  Tassoulas32 are adopted for the foundation embedded at the depth (T = 1), 

(3)Ksr = Ksr

(4)kr = kr

(5)cr = cr

(6)Ker = Ksr

(7)Irψ̈0(t)+ Krψ0(t) = M0r(t)

(8)ψ0(t) =
m0r

Ksr
Mr × exp [i(ωt + θr)]

(9)Mr = 1/

√

(

kr − a20b/ksr
)2

+ (a0cr)
2

Table 2.  Dynamic impedance coefficients of the proposed simplified models.
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layer depth ratios (D = 2, and 3) as the corresponding frequency a0 = 0.1 to 3 with an interval of 0.1. Similarly, 
when using the proposed models (i.e., Model 1 to Model 7) to simulate the soil-foundation system, the dynamic 
magnification factor of the foundation could be written as follows:

where the impedance coefficients kr and cr are given in Table 2. Therefore, the magnification factor of all 
simplified models can be calculated by Eq. (10) at each dimensionless frequency for a given mass ratio.

Optimal model by a single target approach (STA)
A single target approach (STA) is illustrated to find an optimal model for a target soil-foundation system 
regarding an individual mass ratio. At first, the parameters of the 7 model candidates are calculated at each 
dimensionless frequency. As there are NF dimensionless frequencies, the systematic method establishes 7 × NF 
simplified models. An error function εr is defined as follows to search for the optimal equivalent model that 
reproduces the most accurate frequency–response curve.

where Mr is the dynamic magnification factor of the target system given by Eq.  (9); Mr is the dynamic 
magnification factor calculated from the model parameters; Pi is the weighting at the ith frequency point and 
Pi = (Mr)i . Once the impedance functions of a soil-foundation system are given, the three model parameters for 
each model candidates are directly calculated from Eqs. (4)–(6), and the optimal model with the least value of 
error function is to be found by implementing Eq. (11). In brief, the procedure of STA considering single mass 
ratio is summarized as follows:

1. Find the torsional impedance function for a target soil-foundation system.
2. Use Eq. (6) to compute the static stiffness of simplified models.
3. Use Eqs. (4) and (5) to solve the other model parameters. Subsequently, 7 × NF simplified models will be 

constructed for NF frequency points.
4. Run an error analysis using Eq. (11) for each model and determine the optimal model with the minimum 

error.

(10)Mr = 1/

√

(

kr − a20b/ksr
)2

+ (a0cr)
2

(11)εr =

√

√

√

√

NF
∑

i=1

(

Mr −Mr

)2

i
× Pi

Table 3.  Error index of simplified models for surface cylindrical foundations. *T = E/R is an embedment ratio, 
D = H/R is a layer depth ratio, b is a mass ratio. N/A indicates no real number solution is found. Significant 
values are in bold.

Simulation condition

Model candidates

Dimensionless parameters Error index

T = E/R D = H/R b ker kd cer mer εr
0 2 1 Model 1 5.79 – 1.13 0.41 1.735

0 2 1 Model 2 5.79  − 4.93 1.58 – 1.902

0 2 1 Model 3 5.79 – 1.50 1.29 0.355

0 2 1 Model 4 5.79  − 0.84 1.36 – 8.881

0 2 1 Model 5 5.79 – 0.30 0.30 2.830

0 2 1 Model 6 5.79 – 0.93 0.89 68.386

0 2 1 Model 7 5.79 – 0.99 0.22 1.724

0 2 5 Model 1 5.79 – 0.58 1.02 5.568

0 2 5 Model 2 5.79  − 1.35 2.37 – 2.531

0 2 5 Model 3 5.79 – 2.37 1.35 1.699

0 2 5 Model 4 5.79  − 0.43 1.45 – 385.544

0 2 5 Model 5 5.79 – 0.71 0.31 178.028

0 2 5 Model 6 5.79 – 0.93 0.89 36.521

0 2 5 Model 7 5.79 – 0.30 0.93 4.542

0 2 10 Model 1 5.79 – 0.10 1.09 0.053

0 2 10 Model 2 5.79  − 0.54 6.25 – 2.839

0 2 10 Model 3 5.79 – 6.25 1.11 0.059

0 2 10 Model 4 5.79 0.73 0.00 – 1583.259

0 2 10 Model 5 5.79 – 0.70 0.57 1523.450

0 2 10 Model 6 5.79 – 0.10 1.08 0.062

0 2 10 Model 7 5.79 – 0.05 1.09 0.055
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A generic model for simulating the target soil‑foundation system
This section pays attention to selecting the optimal equivalent model based on the procedure of STA among seven 
simplified models, which simulate the soil-foundation system in Fig. 1. According to the analyzed results for 
single mass ratio, Tables 3 and 4 summarizes the error index of all simplified models regarding various simulating 
conditions. A total of 63 analyzed cases are conducted with different embedment depth ratios (T = 0, and 1), layer 
depth ratios (D = 2, and 3), and mass ratios (b = 1, 5, and 10). It is observed in Table 3 for surface foundations that 
optimal simplified models are selected to investigate the target stratum. Model 3 could outperform almost the rest 
of the six model candidates for the analyzed cases as mass ratio b is smaller than 10. It is noted that in the case of 
mass ratio b equaling 10, a minimal discrepancy of error index is found between two model candidates (Model 3 
and Model 1). On the other hand, it is observed clearly in Table 4 for the embedded cylindrical foundations that 

Table 4.  Error index of simplified models for embedded cylindrical foundations. *T = E/R is an embedment 
ratio, D = H/R is a layer depth ratio, b is a mass ratio. N/A indicates no real number solution is found. 
Significant values are in bold.

Simulation condition

Model candidates

Dimensionless parameters Error index

T = E/R D = H/R b ker kd cer mer εr
1 2 1 Model 1 21.20 – 8.46 4.97 1.518

1 2 1 Model 2 21.20  − 33.32 14.16 – 2.483

1 2 1 Model 3 21.20 – 9.70 8.30 0.043

1 2 1 Model 4 21.20  − 5.45 5.39 – 2.342

1 2 1 Model 5 21.20 – 3.76 7.77 3.939

1 2 1 Model 6 21.20 N/A N/A N/A N/A

1 2 1 Model 7 21.20 – 5.94 2.30 0.665

1 2 5 Model 1 21.20 – 6.18 3.81 2.102

1 2 5 Model 2 21.20  − 22.03 10.67 – 3.781

1 2 5 Model 3 21.20 – 10.03 8.91 0.100

1 2 5 Model 4 21.20  − 5.45 5.39 – 8.567

1 2 5 Model 5 21.20 – 4.17 6.31 10.821

1 2 5 Model 6 21.20 N/A N/A N/A N/A

1 2 5 Model 7 21.20 – 4.47 2.39 1.330

1 2 10 Model 1 21.20 – 5.36 5.02 1.944

1 2 10 Model 2 21.20  − 13.83 10.78 – 4.359

1 2 10 Model 3 21.20 – 10.56 9.43 0.152

1 2 10 Model 4 21.20  − 3.59 4.42 – 20.468

1 2 10 Model 5 21.20 – 4.17 6.31 25.650

1 2 10 Model 6 21.20 N/A N/A N/A N/A

1 2 10 Model 7 21.20 – 3.47 3.44 0.990

1 3 1 Model 1 20.4 – 7.26 2.33 0.760

1 3 1 Model 2 20.4  − 45.00 8.74 – 1.341

1 3 1 Model 3 20.4 – 8.82 10.41 0.073

1 3 1 Model 4 20.4  − 4.07 5.29 – 0.896

1 3 1 Model 5 20.4 – 5.54 1.57 0.674

1 3 1 Model 6 20.4 N/A N/A N/A N/A

1 3 1 Model 7 20.4 – 6.72 1.36 0.497

1 3 5 Model 1 20.4 – 7.20 2.77 1.365

1 3 5 Model 2 20.4  − 25.63 9.22 – 1.443

1 3 5 Model 3 20.4 – 9.05 11.73 0.103

1 3 5 Model 4 20.4  − 4.07 5.29 – 3.365

1 3 5 Model 5 20.4 – 5.54 1.57 1.782

1 3 5 Model 6 20.4 N/A N/A N/A N/A

1 3 5 Model 7 20.4 – 6.75 1.28 1.375

1 3 10 Model 1 20.4 – 6.80 4.10 1.358

1 3 10 Model 2 20.4  − 16.55 10.40 – 1.045

1 3 10 Model 3 20.4 – 9.55 12.84 0.105

1 3 10 Model 4 20.4  − 4.07 5.29 – 4.235

1 3 10 Model 5 20.4 – 5.54 1.57 4.975

1 3 10 Model 6 20.4 N/A N/A N/A N/A

1 3 10 Model 7 20.4 – 5.95 2.21 1.230
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one unique model candidate (Model 3) is consistently calculated to investigate the target stratum, it outperforms 
the other six model candidates for the analyzed cases of mass ratio, b, is smaller than and equal to 10. Based on 
the numerical analysis of the error index, a conclusion is made that Model candidate (Model 3) is the generic 
model to simulate the target sol-foundation system as the mass ratio of the foundation is smaller than 10.

Furthermore, Model 3 shows relatively broader and more accurate adaptability than other model candidates 
in simulating the target soil-foundation system. Therefore, Model 3 is selected as a generic model in this study 
to simulate the dynamic interactions between the cylindrical foundation and the soil medium. All the following 
results are analyzed using Model 3.

Model validations on frequency–response curves
This section aims to verify the frequency–response curves calculated by the generic model and introduce related 
research considering cylindrical foundations overlying uniform soil on a rigid base. Figure 3 shows that the 
Wolf and Paronesso  model25 uses 3 degrees of freedom and eight parameters to simulate the SSI system (as 
shown in Fig. 1). The frequency–response curves and the peak response of the foundation by the generic model 
are compared and validated to those by the existing model. Wolf and Paronesso  model25 was applicable as the 
dimensionless frequency a0 ≦ 4.1 for surface foundations and as a0 ≦ 2.5 for embedded foundations. By adopting 
the theoretical impedance and least-error analysis, this research breaks through the frequency limitation of the 
Wolf and Paronesso  model25. This work effectively extends the dimensionless frequency (a0) from 4.1 to 6.2 for 
surface foundations and 2.5 to 3 for embedded foundations, as shown in Table. 5.

Surface cylindrical foundations
The generic model uses the impedance function from Tassoulas and  Kausel31 (1983) to generate lump-parameter 
models for simulating the target stratum. Based on the calculation of the optimal equivalent model, numerous 
simplified models are generated using equivalent principles, and then the optimal equivalent model is obtained.

Figure 4 shows the relationship of frequency versus response for a cylindrical surface foundation (T = 0, 
D = 2). The generic model generates results consistent with the dynamic magnification factors obtained by the 
theoretical solutions in the cases where the mass ratio increases from 1, 5 to 10, which validates the accuracy 
of the generic model. It is particularly noted in Fig. 4a that as the mass ratio b is small (i.e., b = 1), the generic 
model simulates the dynamic magnification factor at 1 < a0 < 4 more precisely than Wolf and Paronesso  model23. 
Furthermore, Fig. 4 demonstrates that the generic model simulates more precisely than the existing model in 
the peak responses as the mass ratio varies from 1, 5 to 10. The reason for frequency–response differences might 
be that the curve-fitting method by Wolf and Paronesso  model25 used a different error weighting function to 
approach the theoretical impedance. In contrast, the generic model considers the effect of mass ratios to approach 
the frequency–response curve.

Embedded cylindrical foundations
The generic model uses the impedance function by  Tassoulas32 (1981) to construct simplified models for 
simulating target stratum. There are 30 given frequency points of a0. A series of simplified models are generated 
using equivalent principles; then, the optimal equivalent model is obtained by Eq. (11).

Figure 3.  The lumped-parameter model by Wolf and  Paronesso25 (1992).

Table 5.  Comparisons of simulation parameters between the existing and proposed models.

Model name Embedded depth ratio Layer depth ratio Maximum dimensionless frequency

Wolf and Paronesso  model25
0 1–4 4.1

1 2–3 2.5

Proposed model
0 0.25–10 6.2

0.25–2 0.5–10 3
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Figure 5 shows the trend of the frequency-response relationship for the cylindrical foundation (T = 1, D = 
2). The generic model and the Wolf and Paronesso  model25 produce results consistent with the magnification 
factors calculated by the theoretical impedances. It is worth mentioning that the generic model adopting only 
three parameters performs more effectively than the existing model.

Figure 6 shows the trend of the frequency-response relationship for the cylindrical foundation (T = 1, D = 
3). It is observed by compared with Fig. 5 as the layer depth ratio (D) increases, the generic model also produces 
results consistent with the magnification factors calculated by the theoretical impedances as the mass ratio varies 
from 1, 5 to 10, which validates the accuracy of the generic model. On the other hand, it is observed in Fig. 6 that 
the Wolf and Paronesso  model25 seems to underestimate the peak responses in all mass ratios slightly.

Model validations on resonant responses
This section focuses on validating the resonant responses obtained by the generic model (i.e., Model 3), which 
is significant for engineering applications to avoid the coincidence of the forcing frequency with the natural 
frequency of the soil-foundation system. The resonant response of the foundation consists of the maximum 
magnification factor and the corresponding frequency. The discontinuity of the adopted impedance function 
shows discrete  characteristics18; therefore, catching the peak response of the foundation between discrete 
frequency points appears necessary and significant. The five-point interpolation  technique30 is adopted to 
catch the peak responses of the theoretical solution by Tassoulas and  Kausel31 (1983) and  Tassoulas32 (1981). 
In addition, as Wolf and Paronesso  model25 (1992) calculates the dynamic response by evaluating the torsional 
impedance functions based on its model parameters, the five-point interpolation  approach30 is also applied to 
Wolf and Paronesso  model25 to calculate the peak displacements. However, the peak displacements using the 
generic model do not perform the five-point interpolation  approach30 because the three model parameters vary 
with the mass ratio. To catch the approximate peak response for the foundation, this study adopts the impedance 
function with expanded frequencies (i.e., the interval of a0 is 0.1) by a standard third-order interpolation 
function. Thus, the analyzed peak reactions of the foundation can be directly selected among the calculated 
discrete responses.
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Figure 4.  Dynamic response of surface foundations (T = 0, D = 2): (a) mass ratio b = 1, (b) mass ratio b = 5, (c) 
mass ratio b = 10.
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Surface cylindrical foundations
Figure 7a (T = 0, D = 2) shows that the resonant frequencies of the torsional foundation response calculated by 
both the generic model and the Wolf and Paronesso  model25 are consistent well with the theoretical solutions as 
the torsional mass ratios of the foundation are in the range (b = 2 to 10). On the other hand, it is comparatively 
observed that the generic model and the Wolf and Paronesso  model25 could underestimate the resonant frequen-
cies as the torsional mass ratios of the foundation are small (b = 0 to 2). In contrast, the generic model evaluates 
the resonant frequencies more accurately than the existing model.

Figure 7b (T = 0, D = 2) shows that resonant magnification factors of the torsional foundation response 
calculated by the generic model are consistent well with the theoretical solutions as the torsional mass ratio of 
the foundation varies in the range from 0 to 10. In addition, it is comparatively observed that the generic model 
simulates more precisely. At the same time, the Wolf and Paronesso  model25 significantly underestimates the 
resonant magnification factors of the torsional foundation responses as the torsional mass ratios of the foundation 
are larger (b = 3 to 10). The reasons that caused these differences in the resonant magnification factor might be 
that the peak magnification factor is fairly sensitive to large mass ratios, especially as the layer depth ratio of the 
soil stratum is small, and that the generic model adopts the optimal equivalent model which carefully considers 
the effect of each single mass ratio on the peak response.

Note that Fig. 7(b) (T = 0, D = 2) shows the results for a relatively small layer depth ratio of the soil stratum. 
A remark is that the analyzed results of the resonant magnification factors simulated by the generic model 
show agreement with the theoretical solutions and are consistent with the whipping effect of the soil-structure 
 interaction33.

Embedded cylindrical foundation
Figure 8a (T = 1, D = 2) shows that resonant frequencies of the torsional foundation response calculated by both 
the generic model and the Wolf and Paronesso  model25 are consistent well with the theoretical solutions as the 
torsional mass ratios of the foundation are in the range (b = 4 to 10). On the other hand, as the torsional mass 
ratios of the foundation are in the range (b = 0 to 4), it is comparatively observed that the generic model and 
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Figure 5.  Dynamic response of embedded foundations (T = 1, D = 2): (a) mass ratio b = 1, (b) mass ratio b = 5, 
(c) mass ratio b = 10.
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(a) Mass ratio, b=1
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(c) Mass ratio, b=10
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Figure 6.  Dynamic response of embedded foundations (T = 1, D = 3): (a) mass ratio b = 1, (b) mass ratio b = 5, 
(c) mass ratio b = 10.
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Figure 7.  Resonant response of surface foundations (T = 0, D = 2) overlaying on a soil stratum on rigid base: (a) 
resonant frequency, (b) resonant magnification factor.
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the Wolf and Paronesso  model25 could respectively overestimate and underestimate the resonant frequencies. 
Whereas the Wolf and Paronesso  model23 evaluates the resonant frequencies slightly more accurately than the 
generic model as mass ratios are small (b = 0 to 4). Figure 8b (T = 1, D = 3) shows that as the torsional mass 
ratios of the foundation are in the larger range (b = 4 to 10), resonant frequencies of the torsional foundation 
response calculated by the generic model are consistent well with the theoretical solutions while the Wolf and 
Paronesso  model25 slightly overestimates. However, as the torsional mass ratios of the foundation are in the 
smaller range (b = 0 to 4), the generic model slightly overestimates the resonant frequencies while the Wolf and 
Paronesso  model25 slightly underestimates resonant frequencies. Generally, the generic model and the Wolf and 
Paronesso  model25 simulate the resonant frequencies in a way that approaches theoretical solutions as the mass 
ratio increases.

Figure 9 (T = 1, D = 2 and 3) shows that resonant magnification factors of the torsional foundation response 
simulated by the generic model and the Wolf and Paronesso model are both consistent well with the theoretical 
solutions as the torsional mass ratio of the foundation varies in the range from 0 to 10. In addition, it is compara-
tively observed in Fig. 9b that the generic model outperforms the existing model in terms of the Wolf and Paron-
esso  model25 slightly underestimating the resonant magnification factors of the torsional foundation at all mass 
ratios considered (b = 0 to 10). The generic model performs better in the resonant magnification factor because 
the resonant magnification factor of the theoretical solution is precisely detected by the five-point interpolation 
method. Moreover, the generic model considers the effect of mass ratios on the dynamic magnification factor. The 
generic model seems to estimate better the resonant magnification factor for surface and embedded foundations.
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(b) D=3
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Figure 8.  Resonant frequency of embedded foundations (T = 1): (a) layer depth ratio D = 2, (b) layer depth ratio 
D = 3.
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Figure 9.  Resonant magnification factor of embedded foundations (T = 1): (a) layer depth ratio D = 2, (b) layer 
depth ratio D = 3.
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Multiple target approach (MTA) for practical applications
The STA illustrated in the previous section is limited to the application for a single mass ratio. In light of STA’s 
limitations, a multiple target approach (MTA) is developed, as listed in Supplementary Information-SCP, to 
enhance the engineering application of the proposed model. This section aims to provide reference charts for 
engineering use to build the generic model quickly. The Wolf and Paronesso  model25 was developed in the 1990s. 
It was a pioneering study at that time, but the model element was complex, and there was no relevant parametric 
chart for engineering applications. Therefore, this study further proposes the MTA to find a generic model and 
consider a broader range of soil-foundation parameters to build related parametric charts, making the simplified 
model easier to apply in engineering.

Dimensionless parametric charts
In this subsection, parametric charts are established based on the procedure of MTA listed in Supplementary 
Information-SCP, considering multiple mass ratios. Consider that the maximum dimensionless frequency 
is 3 with a discrete interval of 0.1, then the number of dimensionless frequency (NF) is 30. Assume that a 
group of mass ratios (b = 0.5,1,2,3,4,5) is assigned, then the number of multiple mass ratios (NB) is 6. Applying 
Supplementary Information-SCP, 7 × NB × NF (i.e., 7 × 6 × 30) sets of simplified models are generated, and the 
model parameters of the optimal equivalent model are obtained at each combination of the embedment depth 
ratio (T), and the layer depth ratio (D). The embedment depth ratios are T = 0, 0.25, 0.5, 1, 1.5, and 2. The 
minimum layer depth ratio is defined as Dmin = T + 0.25, and the maximum layer depth ratio is defined as Dmax = 10 
with an integral interval of 1 from the minimum. After analyzing the optimal equivalent model for multiple 
mass ratios considering various soil and foundation parameters, the analyzed results determine that the optimal 
equivalent model is solely the model candidate (Model 3). The result that Model 3 is the optimal simplified 
model among the 7 model candidates is consistent with that in Tables 3 and 4. Recall that Model 3 is selected 
as the generic model for generating corresponding dimensionless charts. In addition, Table 5 shows that the 
proposed model in this research considers a broader range of main soil-foundation parameters than the Wolf 
and Paronesso  model25 (1992).
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Figure 10.  Dimensionless parametric charts for creating the generic model: (a) stiffness coefficient, (b)damping 
coefficient, and (c)mass coefficient.
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Furthermore, Fig. 10a–c are generated as dimensionless charts of the static stiffness coefficient ( ker ), damping 
coefficient ( cer ), and mass coefficient ( mer ), respectively, for the genetic model. Those referenced values in the 
chars correspond to the referenced scenarios to compute the dynamic responses of foundations. Error analysis 
of applying the charts will be substantially introduced in the next subsection, followed by an illustrative example 
for practical engineering application.

Error analysis and applicable scope
This subsection compares the errors by different approaches and gives suggestions for application. The STA 
follows the process described in the previous section to build the optimal model for a single mass ratio. The MTA 
applies the dimensionless parametric charts given in Fig. 10 to create the optimal model quickly. The optimal 
models generated by STA and MTA may have different performances in simulating the target system. Thus, it 
is essential to investigate the difference between the two approaches. Eqs. (12) and (13) define a relative error 
index for the STA, εSTA and for the MTA, εMTA , respectively.

where Msystem i,j , MSTA i,j , and MMTA i,j indicate the magnification factors calculated respectively using  SASSI30 
program, the STA, and the MTA for the ith mass ratio and jth dimensionless frequency ratio.

The assumption of multiple mass ratio combination is b = 0.5, 1, 2, 3, 4, and 5. Thus, based on the maximum 
and minimum of multiple mass ratios, the comparison of error index that corresponds to mass ratio b = 0.5, 1, 
2.5, and 5 are selected. It is noted that each relative error index corresponds to each combination of the embed-
ment depth ratio (T), the layer depth ratio (D), and the mass ratio (b).

Figure 11 shows the error index, by Eqs. (12) and (13), of surface foundation considering various soil-
foundation conditions (T = 0, D = 0.5–10, b = 0.5, 1, 2.5, and 5). Remarks are made as follows:

• The STA shows a good agreement with the  SASSI30 solution and a precision higher than 91.1%, as the 
maximum error occurs at T = 0, D = 1, and b = 2.5.

• The MTA shows a precision of 42.1% ~ 97.1% with the numerical solutions, as the maximum error occurs at 
T = 0, D = 0.5, and b = 0.5. However, adjusting the application range to 4≦D≦10 and 1≦b≦5 is suggested to 
demonstrate a precision higher than 90%.

Figures 12 and 13 show the error index by Eqs. (12) and (13), of embedded foundations, considering various 
soil-foundation conditions. (T = 0.25, 0.5, 1, 1.5, and 2, D = 0.75 ~ 10, b = 0.5, 1, 2.5, and 5). Remarks are made 
as follows:

• The STA shows a good agreement with the  SASSI30 solution and a precision higher than 90.8%, as the 
maximum error occurs at T = 0.5, D = 1, b = 5.

• The MTA shows a precision of 56.6–96.8% with the  SASSI30 solutions, as the maximum error occurs at 
T = 0.25, D = 0.5, and b = 1. Adjusting the application range to 2 < D≦10 and 0.5≦b≦5 is suggested to reach a 
precision higher than 90%.
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Figure 11.  Error index analysis for surface cylindrical foundation: (a) STA, (b) MTA.
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Illustrative example
Consider a rigid cylindrical foundation embedded in uniform soil on a rigid base, as shown in Fig. 1. The generic 
model (i.e., Model 3 shown in Fig. 2) is developed herein to simulate the interactions between the foundation 
and the soil medium. The properties of the target system are described as follows:

• Foundation geometry: a radius of the foundation, R = 2.5 m, and an embedment depth, E = 2.5 m.
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(b) Single Target Approach, T=0.5
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(c) Single Target Approach, T=1
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(d) Single Target Approach, T=1.5
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(e) Single Target Approach, T=2
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Figure 12.  Error index by the generic model from STA for embedded cylindrical foundation regarding various 
embedment ratios: (a) T = 0.25, (b) T = 0.5, (c) T = 1, (d) T = 1.5, (e) T = 2.
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• Soil properties: Poisson ratio, ν = 0.33; damping ratio, ζ = 0.05; mass density, ρ = 2000Mg/m3; shear-wave 
velocity, Vs = 400 m/s; a thickness of the soil stratum, H = 12.5 m.

For the target system considered, the embedment ratio T = 2.5/2.5 = 1 and the layer depth ratio 
D = E/R = 12.5/2.5 = 5. Subsequently, the dimensionless coefficients ker , cer , and mer are directly obtained by que-
rying Fig. 10, i.e. ker = 19.83, cer = 10.68, and mer = 8.94. Hence, the model parameters for the soil-foundation 
system can be evaluated through Eq. (1), as shown below.

(14)Ker = kerGR
3
= 99, 150× 106 kNm
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(b) Multiple Target Approach, T=0.5
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(c) Multiple Target Approach, T=1
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(d) Multiple Target Approach, T=1.5
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(e) Multiple Target Approach, T=2
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Figure 13.  Error index by the generic model from MTA for embedded cylindrical foundation regarding various 
embedment ratios: (a) T = 0.25, (b) T = 0.5, (c) T = 1, (d) T = 1.5, (e) T = 2.
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The process above may show the effectiveness of the parametric charts developed for engineering applications.

Conclusion
A systematic method is developed to investigate lump-parameter models for various homogeneous soil strata 
on rigid base, considering the dynamic interaction behavior of soil-foundation systems. The systematic method 
proposes seven simplified models comprising springs, dampers, and lumped mass. This research utilizes the 
proposed method to adaptively identify a generic model to investigate the dynamic response of a cylindrical 
foundation embedded in uniform soil on rigid base under torsional vibrations. The generic model simulates the 
foundation response considering embedment depth ratios, layer depth ratios, and mass ratios. The validation 
of the generic model to simulate the dynamic frequency-magnification curve and resonant behavior has been 
confirmed. The generic model effectively overcomes the limitation of the Wolf and Paronesso model about the 
upper-frequency limit in frequency–response curves. In addition, the existing model underestimates the resonant 
magnification factors when the foundation mass ratio increases.

Moreover, the proposed model has broader applicability than the Wolf and Paronesso model and has also 
achieved a precision higher than 90% within the suggested application range. Dimensionless parametric charts 
are proposed to estimate the model parameters readily and to efficiently build the generic model in the time 
domain for the dynamic analysis of cylindrical foundations under torsional load. The research results showed 
the limitation of the existing model may be improved, as follows: the foundation embedment deeper than the 
foundation radius (R), the depth of the soil layer greater than 3R, and the dimensionless frequency ratio larger 
than 2.5.

This research developed a generic simplified model with better practical applications than the Wolf and 
Paronesso model. Additionally, this study provides the single target approach (STA) and the multiple target 
approach (MTA) to find the optimal equivalent models for simulating target soil-foundation systems. The STA 
establishes an optimal model for a target system vibrated with a fixed mass. The MTA shows excellent potential 
in engineering applications regarding various soil-foundation conditions. The generic model may be applied 
efficiently and accurately to simulate the dynamic torsional responses for the cylindrical foundation embedded 
in uniform soils on rigid base. For more complicated layers of soils, additional discrete-element modelings may 
be further extended to enhance the capabilities of the generative models.

Data availability
All data generated or analyzed during this study are included in this published article.
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