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Cross‑sectional data accurately 
model longitudinal growth 
in the craniofacial skeleton
Kevin M. Middleton 1*, Dana L. Duren 2,3, Kieran P. McNulty 4, Heesoo Oh 5, 
Manish Valiathan 6 & Richard J. Sherwood 2,3,6

Dense, longitudinal sampling represents the ideal for studying biological growth. However, 
longitudinal samples are not typically possible, due to limits of time, prohibitive cost, or health 
concerns of repeat radiologic imaging. In contrast, cross‑sectional samples have few such drawbacks, 
but it is not known how well estimates of growth milestones can be obtained from cross‑sectional 
samples. The Craniofacial Growth Consortium Study (CGCS) contains longitudinal growth data for 
approximately 2000 individuals. Single samples from the CGCS for individuals representing cross‑
sectional data were used to test the ability to predict growth parameters in linear trait measurements 
separately by sex. Testing across a range of cross‑sectional sample sizes from 5 to the full sample, we 
found that means from repeated samples were able to approximate growth rates determined from 
the full longitudinal CGCS sample, with mean absolute differences below 1 mm at cross‑sectional 
sample sizes greater than ~ 200 individuals. Our results show that growth parameters and milestones 
can be accurately estimated from cross‑sectional data compared to population‑level estimates from 
complete longitudinal data, underscoring the utility of such datasets in growth modeling. This method 
can be applied to other forms of growth (e.g., stature) and to cases in which repeated radiographs are 
not feasible (e.g., cone‑beam CT).

Longitudinal biological growth data provide tremendous potential for investigating details of growth trajectories 
and their milestones. Requiring both dedicated participant commitment and long-term financial obligations, the 
development of longitudinal datasets for humans is logistically complex. As a result, such studies can be limited 
in the range of biological variation captured. The challenge is greater for studies of skeletal growth where radio-
graphic imaging is ideal for assessment but where repeated exposure to radiation severely limits the maximum 
number of observations per individual. In contrast, cross-sectional studies are logistically simple, are able to 
enroll a wider range of participants, and can be completed within a shorter timescale by not requiring participants 
to age naturally for years or decades. For these reasons, the efficiency of cross-sectional data allows for larger 
data  sets1. While the benefits of cross-sectional data are clear, the question remains as to what limitations are 
imposed by cross-sectional analysis of growth.

To answer this question, we use examples from the field of craniofacial growth. Assessment of growth status 
is important in a number of craniofacial fields from orthodontics to craniofacial and maxillofacial surgery, where 
optimal treatment timing is critical. Studies into craniofacial growth have regularly used relatively small sample 
sizes of 100 or fewer  individuals2–5. Frequently, those individuals are binned into yearly age classes (e.g., partici-
pants between their 12th and 13th birthdays are "12 year-olds") for which means or percentiles are  calculated6–10. 
In an alternate approach, several studies have examined only two timepoints for an  individual11,12, typically before 
and after the adolescent growth spurt. Although technically a longitudinal study, utilizing only two observa-
tion timepoints severely limits inferences regarding patterns of growth. Our own work in craniofacial growth 
modeling and clinical application has often highlighted the benefits of longitudinal  data13–18, and we have had 
similar success modeling human stature and skeletal maturation with longitudinal  data19–24.

When analyzed statistically, age groups, facial types, or sexes are most often statistically compared to one 
another via parametric independent samples t-tests or non-parametric U-tests tests to answer questions like "do 
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sexes differ significantly in age at peak growth velocity?" or "do facial classes differ in peak growth velocity at age 
12?". However, longitudinal data have also been modeled using multilevel polynomial  functions16,25–28. In clinical 
practice, patient-specific measurements from one or more observations are often compared to standards from 
reference  populations6,8,10,29–31 or a set of graphic standards such as the Bolton  Standards32. In the latter, standards 
are used as a "target" for comparison between the patient’s observed morphology and an ideal or mean con-
figuration (i.e., a "normal" facial configuration)10. It remains unclear how well cross-sectional, or limited-range 
longitudinal data, accurately reflect the true underlying longitudinal growth pattern in the craniofacial complex. 
Thus, determining the agreement between age-specific craniofacial trait values estimated from longitudinal and 
those from cross-sectional data is of significant importance.

Herein we evaluate the ability of a large cross-sectional sample to replicate growth metrics estimated from 
well-characterized, similarly large longitudinal samples, and we address the impact of cross-sectional sample size 
on prediction ability in craniofacial growth milestones. Rather than choosing "ideal" or "normal" morphologies, 
the present analysis examines the full range of variability present in untreated individuals from historic growth 
studies. Importantly, this sample includes two sources of variation: naturally occurring phenotypic variation as 
well as measurement error associated with radiographs and landmark digitization.

To fully utilize the rich dataset described below, which includes a large number of serial observations for 
an extremely large sample of individuals, we model growth using a  multilevel28,33,34 double-logistic growth 
 equation35. This model allows for a smooth growth curve that includes two periods of rapid growth, an asymptote 
at growth cessation, and biologically meaningful parameters for the timing and magnitude of growth milestones. 
Finally, we assess the performance of these growth models using two primary applications of growth data: (1) 
estimation of measurement percentile intervals (i.e., growth standards) and (2) growth rates and ages at peak 
growth velocity. The former is used to assess a patient’s current status and future growth potential relative to the 
entire population (e.g., similar to standards for standing height in children). The latter can be used to determine 
timing relative to peak growth  velocity13 or to determine if growth cessation has been  achieved14, which are 
critical aspects of patient assessment and treatment planning.

Methods
Sample
All data for the present analysis derive from the Craniofacial Growth Consortium Study (CGCS). The CGCS 
combines data from six separate historic growth studies that span 100 years (1919–2018)13. Although this his-
toric sample is primarily composed of self-identified white individuals, it is represented by populations span-
ning the geographic breadth of North America and has considerable time depth. We have previously shown 
that the different growth studies that constitute the CGCS do not differ in their overall growth parameters, and 
thus it is likely that that the performance of cross-sectional data relative to longitudinal data is unlikely to vary 
among population  samples13. For this study, the sample includes all individuals from the CGCS with at least two 
cephalographs (n = 959 females; n = 980 males), yielding a data set with a median count of 9 cephalographs per 
individual (range: 2–22). The Institutional Review Board of the University of Missouri-Columbia approved all 
procedures used in this study, and all methods were performed in accordance with the relevant guidelines and 
regulations. Informed consent was waived by the institutional review board of University of Missouri-Columbia 
due to the retrospective nature of the study.

Landmark data collection and computation of craniofacial measures
Linear traits are measured between pairs of anatomical locations (e.g., nasion and basion). To capture the two-
dimensional (x, y) coordinates, we used a standard landmarking protocol. The full landmarking protocol, includ-
ing study- and date-specific corrections for radiographic enlargement are provided in Sherwood et al.13, and we 
include only an overview here. Landmarks (n = 119) were placed using the eDigit software (Craniofacial Research 
Instrumentation Lab; Arthur A. Dugoni School of Dentistry, University of the Pacific) by three separate assessors 
and the coordinates  averaged36. This software system includes a series of internal checks against large deviations 
among the three replicate landmark sets by ensuring that landmarks fall within a specified error  envelope36.

From the full landmark set, we focused on 12 linear cephalometric traits, defined by pairs of (x, y) coordi-
nates, broadly describing the shape of the basicranium, palate, face, and mandible. Trait values were calculated 
as inter-landmark distances and corrected for radiographic enlargement prior to  analysis13. We analyzed growth 
trajectories and estimated growth rates for these twelve traits separately by sex and compared the performance 
of modeling these data longitudinally or via cross-sectional subsets.

Statistical methods
We modeled the growth of craniofacial traits as a function of age: y(age), using a double logistic equation pro-
posed by Bock et al.35

in which growth is modeled with two additive phases: prepubertal and adolescent. In the equation above, the f 
and a1 parameters represent the asymptotic and prepubertal trait size measurements, b1 and b2 rates of growth, 
and c1 and c2 ages at maximal growth rates. These six parameters, when applied across an age range, result in 
a continuously increasing length measurement with two periods of rapid growth (e.g., purple line in Fig. 1a). 
Although in the original presentation of this growth equation, which focused on modeling stature, asymp-
totic size at cessation (f) was assumed to be known a priori, here we estimate f from the data. Other modeling 

y
(

age
)

=
a1

1+ e−b1(age−c1)
+

f − a1

1+ e−b2(age−c2)



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19294  | https://doi.org/10.1038/s41598-023-46018-x

www.nature.com/scientificreports/

approaches have been used to estimate growth parameters, including polynomial and related spline functions, 
but we prefer the double logistic equation here. While other models are fit more easily, the double logistic equa-
tion has several biologically relevant characteristics that make it particularly well suited for studying growth. First, 
the parameter estimates have coefficients that are directly interpretable, representing distances (f and  a1 in mm), 
rates (b1 and  b2 in mm/year), or ages (c1 and  c2 in years). Second, the f parameter represents the asymptotic size at 
growth  cessation13,14. Finally, by restricting the b1 and b2 rate parameters to be positive, growth can be restricted 
to increase monotonically. The second two benefits are not possible with polynomial modeling.

Long-term growth studies like those that make up the CGCS are increasingly rare and unlikely to be repeated. 
Thus, we sought to effectively replicate the results of dense longitudinal data modeling using cross-sectional data. 
Using an identical analysis protocol, we compare the performance of models fit to cross-sectional subsets of the 
full data set to a longitudinal model fit using the full data set. The cross-sectional models analyzed in this set of 

Figure 1.  (a) The prior predictive check for female nasion to basion distance. The purple line represents the 
prediction from the mean prior for each of the six double logistic equation parameters. The gray lines represent 
50 predicted growth curves using parameter values randomly sampled from the trait-specific priors. These lines 
give a representative set of predicted growth patterns before the data has influenced the model. (b) Posterior 
densities for parameter estimates. Six posterior distributions are compared for the longitudinal model (blue 
lines) and the median of the full-sample cross-sectional models (red line). f and a1 represent asymptotic and pre-
pubertal lengths, b1 and b2 rates of growth, and c1 and c2 ages.
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comparisons varied in the number of individuals included. For this comparison, we consider the longitudinal 
model to represent the best approximation of the growth pattern for a trait and evaluate how well that pattern is 
approximated by the analysis of cross-sectional samples. The reference model was a Bayesian multilevel model, 
where we translated the double logistic equation into model syntax with priors for parameter estimates. That 
model has following specification:

In this model description, yi represents the ith observed value of a trait for an individual with a particular 
ID. This value follows a normal distribution with a mean (μi) defined by the double logistic equation. aID[ID] 
represents the random intercept for each individual, which is drawn from a normal distribution with a standard 
deviation estimated from the data (σID) and represents an individual-specific size offset from the population-level 
growth pattern. The remaining lines f through σID represent the priors, which are distributions for the priors for 
the model parameters, including trait specific values for the means of priors for each parameter (Pr).

In order to determine how well a cross-sectional sample can approximate a complete longitudinal sample 
for the goal of estimating growth milestones, we first needed to subsample the full dataset into smaller sets for 
which we could estimate those milestones. We generated 200 random cross-sectional subsets of the data for each 
of n = 5, 10, 20, 50, 100, 200, 300, 500, and ~ 870–881 individuals to explore the role of cross-sectional sample 
size in estimation of growth patterns. Importantly, each of these datasets included only a single observation per 
individual (i.e., mimicking a cross-sectional data set). Sample sizes for the largest cross-sectional samples varied 
from 870 to 881 due to differences in the observations of individual trait values across the full data set.

A model was then fit for each of these randomly generated subsets similar to the model above, but without 
the separate intercept for individual or its associated standard deviation. Aside from only including individuals 
with two or more observations, we did not impose any additional conditions on the resampling procedure, such 
as restriction to those with observations within a certain age range or individuals with a minimum number of 
measurement points. For example, individuals for whom only two observations are present will be dispropor-
tionately overrepresented in the larger samples.

Bayesian inference requires a prior for each parameter to be estimated (i.e., f, a1, b1, etc.). These priors define 
the plausible range of values for a specific parameter, which allow the sampler to efficiently search for posterior 
values. For example, a prior for f with a mean of 100 mm and standard deviation of 2 mm means that 95% of 
the prior weight for f falls between 96 and 104 mm. Priors for Bayesian models were set to be broad but mildly 
regularizing and determined using a genetic  algorithm13 37–39 with the rgenoud package (version 5.9-0.3)40. These 
priors included positive constraints on the b1 and b2 rate parameters to ensure monotonically increasing length 
estimates. Adequacy of priors, neither too restrictive nor too wide, was assessed via prior predictive checks 
(Fig. 1a). These checks were visually inspected to ensure that the outcome scale of predicted distance approxi-
mated the same scale as the observed measures and that the priors were not overly restrictive to exploration of 
the parameter space.

Bayesian inference via Monte Carlo methods requires a mechanism for sampling from the posterior given 
the data, the priors, and the model. Models were estimated using Hamiltonian Monte Carlo via the stan statisti-
cal programming  language41,42 with the cmdstanr package (version 0.5.0)43 in R (version 4.3)44. Models were 
sampled for 10,000 iterations with 50% warmup in four parallel chains. Starting values for parameters were 
drawn randomly from the priors separately for each chain. Model convergence was assessed by inspection of R̂ 
values and rank  histograms45. After sampling, model parameter estimates had ~ 2000–30,000 effective samples.

yi ∼ Normal(µi , σ)

µi =
a1
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+
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Posteriors, prediction intervals, and growth rates
Bayesian sampling results in posteriors, which include simultaneous estimates for all parameters in the model, 
which are summarized for presentation and comparison. While the longitudinal model had a single posterior, 
each of the 200 randomly resampled cross-sectional models had a separate posterior. To combine these posteriors 
for comparison, we created a distribution of the median parameter estimates from all the cross-sectional models 
for each sample size (Fig. 1b). To compare posterior predictive ability between longitudinal and cross-sectional 
models, which represent percentile size intervals, we calculated middle 50%, 80% and 98% quantile intervals from 
the posteriors (Fig. 2a), using the aggregated samples from the set of 200 random datasets. Second, we calculated 
the first derivative of the predicted trait size over time, the estimate of growth  rate13,16,23,46–48 separately for each 
of the 200 random samples as well as for the median cross-sectional model and the longitudinal model (Fig. 2b).

Effects of sample size
To assess the role of sample size in the ability of a cross-sectional sample to approximate a hierarchical longitu-
dinal analysis, we analyzed subsamples ranging from the full sample size (n = 959 females or 980 males) down 
to n = 5 observations (i.e., a model fit to only 5 data points). These models were fit 200 times each using different 
random samples and posterior predictive mean measurements were calculated (Fig. 3a). Finally, to quantify the 

Figure 2.  (a) Comparison of size percentiles. The dark red and blue lines represent median cross-sectional and 
longitudinal model estimates, respectively. The dotted and dashed lines represent 1st, 10th, 25th, 75th, 90th, and 
99th percentiles, which are nearly identical between cross-sectional and longitudinal models as indicated by 
near overlap of percentiles. (b) Comparison of estimated growth rates as the first derivative the growth curve. 
As in (a), the dark red and blue lines represent median cross-sectional and longitudinal model estimates. All 200 
estimated rates for the full-sample cross-sectional analysis are shown in pink lines, indicating general agreement 
between the two approaches.
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difference between the predictive ability across sample size, we calculated the mean absolute difference between 
each of the cross-sectional sample’s predicted sizes and predicted measures from the longitudinal model (Fig. 3b).

Results
Overall results were similar across all traits and in both sexes. Thus, for simplicity we present only those results 
for one trait: the distance from Nasion to Basion in the female CGCS participants (Figs. 1 and 2). Full analysis 
of all traits in both sexes are included in the supplementary information (https:// figsh are. com/s/ a0d90 32965 
4c2a3 d8fcf).

Posterior distributions
We focus here on the comparison of the full sample cross-sectional models to the longitudinal model. Compari-
sons of posterior distributions of parameter estimates (Fig. 1b) are similar between the longitudinal model and 
the median of the 200 cross-sectional models where one sample was drawn from each individual ("Full sample"). 
Most parameter estimates show almost complete overlap between the two approaches. When the posteriors differ 
(e.g., f and c1), the difference is small on the parameter scale: 0.5 mm or 0.5 years.

Figure 3.  (a) Effect of sample size on nasion to basion distance prediction. The blue line represents the median 
predicted measurement from the longitudinal model. Each of the pink lines represents one of 200 random 
subsample models. As sample size increases, the effect of single extreme points has gradually less effect. (b) 
Differences in predictive ability. Mean absolute difference between the 200 samples and the longitudinal model 
was calculated across the predictive range. Average difference was usually less than 1 mm except for sample sizes 
below ~ 50, even though individual differences vary considerably more as seen in (a).

https://figshare.com/s/a0d90329654c2a3d8fcf
https://figshare.com/s/a0d90329654c2a3d8fcf
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Posterior predictions and growth rates
Median posterior predictive size was nearly identical between the longitudinal and cross-sectional models 
(Fig. 2a). Similarly, the 98% prediction intervals (the age-specific range in which 98% of new observations are 
expected to be located) agree very well, and only small deviations are observable at the earliest ages. Furthermore, 
both 98% intervals very well encompass the observed data, indicating that the double-logistic model used here 
is able to model the growth of craniofacial traits. Median predicted growth rates and age at peak growth velocity 
estimated from the growth curves differ by less than 0.1 mm on average (RMSD = 0.064 mm/y; Fig. 2b).

Effects of sample size
As predicted, models estimated from small sample sizes show greater variation in predicted growth pattern. At 
young ages, models with 5–20 observations show greater variation than models fit to larger datasets (Fig. 3a), with 
some deviating by 10 mm or more (i.e., > 10% error). At sample sizes of 200 or more, all of the random-sample 
cross-sectional models closely approximate the longitudinal model. For the full sample model, the two are largely 
indistinguishable (Fig. 3a, lower right panel). Mean absolute difference between the predicted measure from 
the cross-sectional models and the predicted measure from the longitudinal model follows a similar pattern: as 
sample size increases, deviations decrease (Fig. 3b). Across the age range, all sample sizes of 100 or more show 
mean absolute deviations of 1 mm or less. We compared the growth milestones peak growth velocity (PGV) and 
age at peak growth velocity (aPGV) to those estimated from the longitudinal model across the different cross-
sectional sample size. We found that PGV was <  ~ 0.5 mm/y and aPGV <  ~ 0.5 y, on average, with larger samples 
showing lower error in general (Supplemental information).

Discussion
Longitudinal approaches are recognized as the gold standard for growth  modeling49,50. As discussed above, 
however, longitudinal studies incur significant costs in terms of resources and participant commitment. When 
feasible to carry out, the advantage to this approach comes with the characterization of ontogenetic trajectories 
at the individual level in addition to the population level. It is clear that individuals, even though they might be 
similarly sized at the beginning and end of a growth spurt, may experience unique patterns of rate changes and 
thus differences in the timing of milestone achievements because the pacing of growth differs among individu-
als. We operate under the paradigm that longitudinal approaches provide a unique opportunity for an increased 
understanding of the variation in trajectories and of the influences on that variation. That knowledge can then 
be applied to analysis conducted on cross-sectional datasets to improve those results.

Population modeling
The common goal of growth modeling using both longitudinal and cross-sectional data is to use observed data 
for individuals to estimate the patterns of trait change over time and the timings and magnitudes of growth 
milestones. In longitudinal samples such as the CGCS, experimenters can observe variation between different 
individuals in growth trajectories as well as within individual variation attributable to the combined sources of 
measurement error. In cross-sectional data, both of these sources of variation—–between individuals and meas-
urement—are present, but they are not directly estimable. Thus, an implicit assumption of cross-sectional data is 
that the observed trait value falls at the true measurement for that individual at that age. Without any sense for 
measurement error, the observed value must be taken as accurate. That this assumption cannot be true is made 
clear by observing longitudinal data. Mean trait values increase monotonically, but individual observations do 
not, a pattern which is exhibited in Fig. 2a: measurements for some individuals appear to increase in size and 
then decrease, before increasing again. Thus, with longitudinal data, a single individual’s trait measurements 
will increase monotonically on average but will appear to locally increase and decrease. We do not believe that 
individuals are growing and shrinking in successive measurements but rather that we are observing a "noisy" 
pattern around a changing trait value representing growth. Nonetheless, without any additional information 
or a model which explicitly includes measurement error, single observations for any single individual must be 
assumed to be the true measure. In other words, with cross-sectional data, the observed values are assumed to 
accurately represent the real measurement.

If interest lies only in the population mean growth pattern or in percentile intervals for observations at a 
specific age, then the ratio of phenotypic variation to measurement error is of less concern. Indeed,  Cock51 argued 
that cross-sectional data are useful in the study of growth but only for population patterns. Our results underscore 
the value of cross-sectional data in elucidating population patterns, and we add that via (1) biologically grounded 
modeling, (2) priors that mildly constrain parameter estimates, and (3) Bayesian sampling, population growth 
patterns can be used to inform individual-level prediction. Improved individual prediction is a long-term goal 
of this research program. With only a single data point, individual trajectories will closely resemble a shifted 
population curve. However, with two or more observations (e.g., pre- and post-treatment), particularly if these 
fall at or around the timing of peak growth velocity, the population growth pattern can be used to inform and 
potentially constrain the range of possible trait values at maturity.

Sources of variation in data influencing parameter estimates
Observed craniofacial growth data can vary as a result of phenotypic variation in a population or via sources of 
error, each of which can impact parameter estimates and subsequent analyses. In the context of the craniofacial 
traits studied here, measurement error is introduced from a range of possible sources, including those stemming 
from collection of the radiograph (e.g., enlargement factor), non-orthogonal positioning of the participant to the 
radiographic  plate13, and the scanning, digitizing and landmarking of the  radiograph36. Although steps are taken 
to mitigate each of these sources of error, some of the observed variation in craniofacial traits inevitably stems 
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from these sources. This experimental error is added to naturally occurring phenotypic variation. Despite these 
drawbacks, we have shown that the overall measurement error of a very large cross-sectional sample approxi-
mates the total variation of a longitudinal sample when all individuals are included in the sample, as indicated by 
the similarity in ranges of percentile intervals and overlap of the observed data with the 98% posterior interval 
(Fig. 2a). Although the CGCS is ancestrally homogeneous and we focus here on craniofacial traits, we believe that 
our results are broadly applicable to other groups and other traits. Our overall results are to be expected, because 
phenotypic variation and measurement error are indistinguishable from one another in real data measured on 
individuals such as the CGCS. In contrast, simulated data traditionally model only phenotypic variation either 
explicitly or implicitly.

Both phenotypic variation and measurement error contribute to observed (i.e., "apparent") variation, but in 
the absence of additional information, such as repeated sampling of the same individual at the same age, the 
relative magnitudes of each are unknown. Longitudinal modeling offers one approach to estimate measurement 
error for a trait. For a monotonically increasing trait value, the observed measurements could be assumed to 
oscillate around the true trait measurement, with deviations drawn from a normal distribution with a mean of 
zero. Indeed, the multilevel longitudinal model with random intercepts for each participant used in this study fits 
exactly this model. Using the multilevel longitudinal model, we estimated the median measurement error across 
all traits in both sexes at 0.87 mm (~ 1.2%). However, the percent error was lower for larger traits (r =  − 0.64, 
P < 0.001) where more of the observed variation can be attributed to inter-individual variation.

When considering phenotypes with large absolute magnitude relative to their associated measurement error, 
such as stature, observed variation can be reliably assigned as phenotypic variation rather than due to measure-
ment  error23,46–48,52,53. In stature (or recumbent length in the very young), substantial increase is seen during 
growth. For example, an infant that is 80 cm at age 1 may increase to 180 cm at age 18. If the measurement error 
remains constant across the age range at ~ 0.2 cm, then the percent error decreases from 0.25% at age 1 year to 
0.11% at age 18. Comparing this to the craniofacial traits examined here, largest craniofacial trait studied here 
(Nasion to Menton distance in males) is six times smaller than the stature of even a one-year-old child. The 
consequence is that models of large magnitude traits with relatively low measurement error (e.g., stature) will 
be better able to estimate population-level variation, whereas relatively small traits where measurement error 
can be relatively greater (e.g., nasion-menton) are more challenging to model longitudinally. Further, cross-
sectional modeling across age may be more sensitive to such error, whereas longitudinal measurements on 
individual children can have internal checks on serial measures. Care must be taken, therefore, in craniofacial 
growth modeling, particularly in cross-sectional population modeling. Comparing PGV and aPGV milestones 
estimated from cross-sectional samples to the complete longitudinal data (Supplemental Information Fig. 1) for 
the smallest trait (ANS-PNS), a mid-sized trait (Sella-Gonion), and the largest trait (Nasion-Menton), we find no 
clear pattern in aPGV. It is slightly overestimated by about 6 months for ANS-PNS and N-M, but very accurately 
estimated for S-Go. Similarly, PGV is very accurate for ANS-PNS and N-M but slightly underestimated for S-Go 
by ~ 0.4 mm/y. Given that the CGCS represents the combined sample from separate growth studies spanning 
nearly 100 years, each of which used different imaging protocols and technologies, we find this level of accuracy 
to be acceptable. In the supplemental information, we provide these comparisons for all traits in both sexes.

How large of a cross‑sectional sample is adequate?
We found that cross-sectional modeling using increasingly larger subsets of the entire CGCS sample of par-
ticipants approximates longitudinal models very well for craniofacial traits. Both percentile size intervals and 
rates of growth from cross-sectional subsamples agree with longitudinal models fit to the full dataset (Fig. 2). 
Although any single model fit to a relatively small dataset may deviate substantially from the population pattern, 
an aggregated summary of a large number of models is a good approximation, even if those subsample sizes 
are relatively small (Fig. 3). It is important to note that the random samples in this study are themselves drawn 
from a very large sample (> 7000 observations per trait for each sex). A single random set of even many hundred 
individuals might not adequately represent the population-level patterns, but repeated resampling of those data 
will provide an improved estimate of the overall growth pattern compared to a single model estimate (Fig. 3a). 
In these data, we found that a sample of at least 200 individuals used with resampling approaches to best estimate 
population growth patterns from cross-sectional data.

In conclusion, we found that cross-sectional data can provide robust estimates of not only growth in crani-
ofacial traits over time, but also milestones derived from those growth curves, including peak growth velocity 
and age at peak growth velocity. Importantly, these results are similar to those from a large, densely sampled 
longitudinal data dataset, provided that the cross-sectional data are sampled repeatedly and at sufficiently large 
size. Our results provide a method by which to fully utilize cross-sectional data in situations when longitudinal 
samples are not possible, for example due to time, cost, or health concerns. We envision application of this 
cross-sectional resampling methodology to the analysis of 3D craniofacial imaging via cone-beam computed-
tomography (CBCT). Although CBCT involves a relatively low dose of radiation, serial imaging for research 
purposes is neither warranted nor feasible. The methods described here will prove invaluable to the study of not 
only craniofacial growth, but other forms of growth.

Data availability
Supporting information for this manuscript is available via Figshare (https:// figsh are. com/s/ a0d90 32965 4c2a3 
d8fcf), which includes R and stan code to reproduce all analysÞes and figures. Due to the raw data containing 
personal health information (PHI), we are not able to share the raw data. However, we do share the posterior 
samples for both longitudinal and cross-sectional analyses, which allow users to carry out all subsequent analyses. 

https://figshare.com/s/a0d90329654c2a3d8fcf
https://figshare.com/s/a0d90329654c2a3d8fcf
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Requests for data should be directed to Richard J. Sherwood (sherwoodrj@health.missouri.edu; Department 
of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA).
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