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Multifractal analysis of cellular 
ATR‑FTIR spectrum as a method 
for identifying and quantifying 
cancer cell metastatic levels
Ayan Barbora 1,5, Sirish Karri 2,5, Michael A. Firer 2,3,4 & Refael Minnes 1*

Cancer is a leading cause of mortality today. Sooner a cancer is detected, the more effective is the 
treatment. Histopathological diagnosis continues to be the gold standard worldwide for cancer 
diagnosis, but the methods used are invasive, time‑consuming, insensitive, and still rely to some 
degree on the subjective judgment of pathologists. Recent research demonstrated that Attenuated 
Total Reflection‑Fourier Transform Infrared (ATR‑FTIR) spectroscopy can be used to determine the 
metastatic potential of cancer cells by evaluating their membrane hydration. In the current study, we 
demonstrate that the conversion of ATR‑FTIR spectra using multifractal transformation generates a 
unique number for each cell line’s metastatic potential. Applying this technique to murine and human 
cancer cells revealed a correlation between the metastatic capacity of cancer cells within the same 
lineage and higher multifractal value. The multifractal spectrum value was found to be independent 
of the cell concentration used in the assay and unique to the tested lineage. Healthy cells exhibited 
a smaller multifractal spectrum value than cancer cells. Further, the technique demonstrated the 
ability to detect cancer progression by being sensitive to the proportional change between healthy 
and cancerous cells in the sample. This enables precise determination of cancer metastasis and disease 
progression independent of cell concentration by comparing the measured spectroscopy derived 
multifractal spectrum value. This quick and simple technique devoid of observer bias can transform 
cancer diagnosis to a great extent improving public health prognosis worldwide.

Cancer continues to be a major contributor to deaths  worldwide1, 2. Timely detection of the disease and identi-
fication of at-risk individuals is crucial to success of effective treatments, which can greatly increase the survival 
rate of patients. The current technologies for screening and diagnosis involving imaging techniques are gener-
ally insensitive and detect disease only when tumor mass is already generated and  visible3, Another concerning 
aspect of current cancer diagnosis is the variability of disease classification amongst pathologists. For example, 
a study in 2017 on inter-observer and intra-observer variability among pathologists using visual inspection of 
tissue sections observed that 17% of melanocytic lesions diagnosed in the US are  incorrect4. Although diagnos-
ticians utilize specific features from biopsy materials on microscopic slides, radiographs, and patients’ physical 
examination, the diagnoses incorporate individual perspectives in the processing, grading and categorization of 
medical  information4, 5. As such, the reliability and predictive values of these diagnostic criteria have never been 
established with rigorous standards until now due to high levels of diagnostic discordance across pathologists in 
interpreting cancerous  lesions6–9, demonstrating the serious state of both overdiagnosis and  underdiagnosis5, 10 
in current medical practice. Records show that pathologists’ interpretations of the same case on two occasions 
lacked  reproducibility4, making this low level of diagnostic precision a serious clinical concern. Also, computer 
aided detection (CAD) tools that are widely used in clinical practice to aid the interpretation and diagnosis have 
been found to cause potential harms, such as higher recall and biopsy rates for screening  mammography11. Thus, 
reliable and objective techniques are needed to validate and support pathologists’ visual assessments of cancer-
ous lesions, which can overcome the subjective bias in observer-derived opinions about diagnostic certainty, 
perceived risk for disease progression, and suggested management.
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Studies have previously reported that the degree of metastatic motility of cancer cells is related to their 
degree of cell membrane  fluidity12–17. This higher fluidity of the plasma membrane derives from higher levels of 
 hydration18–20. We previously demonstrated a dynamic Attenuated Total Reflection-Fourier Transform Infrared 
(ATR-FTIR) spectroscopy method sensitive for detecting the hydration levels of the plasma  membrane21 which 
enables distinguishing cancer cells at different metastatic potentials by measuring the mid-IR spectra of the cells. 
We identified two spectral zones involving the absorption peaks of membrane protein and the ratio of structural 
water to non-structural  water21. A method that converts these unique FTIR spectral curves, which incorporates 
absorption data over a range of wavelengths, into a characteristic parameter specific to the metastatic potential 
of the cell sample under assay can provide an effective method for detecting and identifying cancer.

The biological significance of these spectroscopic developments can be enhanced by coupling them to digital 
image analysis of changes in cellular features. Fractal dimension measures the space filled by an object, which 
is otherwise impossible to calculate using Euclidian  geometry22. All natural structures exhibit irregularity and 
a property of self-similarity. The changes in these properties can be studied considering the changes in their 
fractal dimension. Multifractal analysis (MFA) is an extension to fractal dimension assay. MFA determines 
the changes in fractal structures, making it useful for analyzing signal patterns in biomedical imaging such as 
ECG (electrocardiogram, to analyze heart rate variability)23, EEG (electroencephalogram, to evaluate the brain’s 
electrical behavior)24 and X-ray images for characterization of soil macropore  structures25. These recent develop-
ments show that MFA is a promising tool in the field of biology and medicine to statistically evaluate, extract, 
and represent chaotic graphical representations such as heartbeat, wave functions, mechanical vibrations, and 
possibly also FTIR spectra. The principle behind MFA is that different regions of a spectra have different fractal 
properties, providing information on a broad range of heterogenous phenomena.

Cancer cells membranes are more fluid than normal cells of the same genetic  lineage26 with no significant loca-
tional differences in the stiffness of cells between the central and peripheral regions. These characteristic mechani-
cal features arise from the modified hydration and molecular changes in the membranes of cancer cells with 
reference to healthy cells. These changes produce spectral alterations detectable by ATR-FTIR  spectroscopy21. 
Here, we present a novel technique of MFA on FTIR spectra, enabling precise identification of cancer cells at 
different metastatic levels. The method was tested and verified on human colorectal cancer, murine and human 
melanoma cell lines. The experiments demonstrate a subjective-bias-free, spectrum-based statistical tool for 
cancer detection and disease progression.

Results
MFA of ATR‑FTIR spectra of cells generate unique multifractal number corresponding to their 
levels of metastatic potential
MFA of spectra plots generated by the ATR-FTIR acquisitions were analyzed using BOX count method to 
determine the distribution of pixel values under multiple scaling values. To evaluate if the given spectra showed 
multifractal properties, we initially analyzed f(α) versus α singularity spectra (see Methods). The resulting spec-
trum was found to show a typical concave curve which confirmed the input spectra was a perfect example of a 
multifractal structure.

B16-f01 and B16-f10 cells are subclones of different metastatic potential derived from the parental murine 
melanoma B16 line. They were isolated from lung cancer metastases cells formed following their injection into 
C57 mice: the B16-f10 cells are more aggressive than the B16-f01  cells27. MFA of acquired ATR-FTIR spectra of 
B16-f01 and B16-f10 cells at subsequently increasing concentration levels showed that the multifractal number 
from each cell type is independent of the concentration of cells used and unique to the cell line (Fig. 1). The 
higher metastatic potential cell line generates a higher multifractal number. The same trend was observed upon 
MFA of acquired ATR-FTIR spectra from the adenocarcinoma cell lines SW-480 and SW-620 (representing 

Figure 1.  Multifractal number (f(α) vs. α) of acquired ATR-FTIR Spectra from B16-f01, B16-f10, SW-480 and 
SW-620 cell lines over subsequently increasing concentration levels  (105, 2 ×  105, 4 ×  105 and  106 cells/ml each). 
The values and error bars represent mean and standard deviation of the calculated multifractal number by MFA 
of 3 distinct ATR-FTIR spectra for each respective cell line and each respective concentration as indicated. 
Calculated p values are less than 0.0001.
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lower and higher tumorigenic and metastatic potential, respectively; see Methods) of human colorectal cancer 
disease over subsequently increasing concentration levels (Fig. 1); demonstrating a cell number independent 
higher multifractal number for higher metastatic potential.

The technique of ATR-FTIR spectra acquisition and multifractal number generation presented in this article 
requires the samples to be pressed using a screw top knob to maximize the contact of the cell membrane with 
the ATR diamond; stipulating that for a sample under analysis, the multifractal number generated as such would 
be independent of the cell concentration used. To test this hypothesis, samples of each cell type at subsequently 
increasing cell concentrations  (105, 2 ×  105, 4 ×  105 and  106 cells/ml) were analyzed to generate their multifractal 
number from the acquired ATR-FTIR spectra (Fig. 1). The resulting observations indicate that higher and lower 
metastatic level (based on the physiological difference in membrane hydration levels detected by ATR-FTIR 
spectroscopy) of the same cell lineage under analysis can be classified by the characteristic multifractal number. 
Further, this assay was observed to be independent of the cell concentrations used for the same lineage under test.

MFA identifies cancer cells with metastatic potential within a population of non‑cancer cells
The ratio of metastatic cells to healthy cells in tissues increases as cancer disease progresses. Using MFA on 
acquired FTIR spectra, we tested whether our method could detect cancer cells of differing metastatic potential 
when they are mixed with increasing concentrations of non-cancerous cells. This experiment tests our technique’s 
ability to detect and objectively report disease progression from biopsy samples.

We observed that as the ratio of cancer cells to non—cancerous 3T3 cells increases from 20 to 100% the 
associated multifractal number also increases in value (Fig. 2) for every cell type tested. This incremental can-
cer cell experiment is analogous to the in-vivo colonization of metastatic cancer cells at healthy tissue sites in a 
patient and subsequent tumor  growth28. Using this principle as demonstrated here, our technique can be used 
to construct patient-specific multifractal number libraries to aid in cancer disease progression in patients and 
follow disease remission after treatments are started.

Discussion
Metastasis is a hallmark of cancer progression and accounts for most cancer-related  deaths28. Higher metastatic 
potential resulting from higher motility due to increased fluidity of the cell membrane has been observed in well-
established models of tumor  progression15–17. Detecting these higher membrane hydration levels correspond-
ing to higher metastatic potential by measuring the spectral properties of the  cells21 has shown that ATR-FTIR 
spectroscopy is useful to distinguish different stages of cancer. To derive therapeutically relevant information, 
statistical evaluation of such acquired spectral data has been able to isolate spectral bands analogous to the 
increased levels of protein, lipid, and nucleic acid molecules in the serum of  patients29. Thus, ATR-FTIR spec-
troscopy has become a remarkable tool in following cancer metastasis and prognosis. A method to combine such 
precise sensing of disease states into an objective digital output format can further enhance this technology to 
improve clinical practices in cancer treatment.

As discussed earlier, subjective pathological evaluation of biopsies remains the gold standard of cancer 
 detection4 because of which successful clinical outcomes are limited by inter-observer and intra-observer dis-
cordance rates among  pathologists5, 6, 10, specifically pertaining to how the medical information is processed, 
graded, and categorized. Our experiments demonstrate that the absorbance value of less malignant and more 
malignant cancer cells show a statistically significant difference, and we confirmed our hypothesis using a non-
linear approach involving MFA of chaotic graphs that otherwise cannot be statistically quantified by a linear 
approach. By employing MFA on acquired FTIR spectra, we demonstrate that our technique makes it possi-
ble to objectively determine cancer metastatic potential directly correlated to their biochemical composition. 
Additionally, the technique is applicable to following disease progression and can potentially have application 
in monitoring disease remission after therapy.

A singularity spectrum describes the multifractal number of a subset of points of a function belonging 
to a group of points that have the same Holder exponent α (when a complex function f is distributed along d 
dimensional Euclidean space, then it satisfies the Holder exponent where Holder constant (α) is greater than 0). 
Intuitively, the singularity spectrum gives a value for how “fractal” a set of points are in a function. For a singu-
larity spectrum, the probability of the distribution of space cannot be limited to just a set but should be studied 
using a more general framework. If any pattern shows non-uniformity that is associated with multifractals, then 
we consider D(Q) versus (Q) where D(Q) is generalized dimension and Q refers to arbitrary set of exponents, f(α) 
versus α multifractal spectra where f(α) is fractal dimension of set of boxes α (see Methods). In order to determine 
the random distribution of points, we characterize the distribution of data sets against the extent of distortion.

Till date, the standard intraoperative pathologic methods involving frozen section analysis and imprint 
cytology have been the traditional choices for intraoperative diagnosis during Breast Conserving  Surgeries30. 
However, several issues remain in order for these techniques to generalize the method, such as the complexity 
and time-consuming nature of these procedures, as well as the demanding workload placed on pathologists. 
Our demonstrated technique may be a very practical solution to these problems. Our technique’s efficient pro-
cessing and classifications can directly enhance and improve the clinical utility of a variety of other methods of 
surgical margin delimitation on live tissue, such as conventional specimen radiography (SR)31, intraoperative 
ultrasonography (IOUSG)32, radio-frequency spectroscopy (MarginProbe device)33, bioimpedance spectroscopy 
(ClearEdge device)34, microcomputed tomography (micro-CT)35, optical coherence tomography (OCT)36, ex vivo 
magnetic resonance imaging (ex vivo MRI)37, ultraviolet photoacoustic microscopy (UV-PAM)38, microscopy 
with ultraviolet surface excitation (MUSE)39 and other multimodal imaging techniques combining both macro 
(tissue-level) and micro (cell-level) detection capabilities.
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The World Health Organization (WHO) has called for worldwide efforts to identify “best buys” and other 
cost-effective priority strategies for cancer prevention and control by developing precise standards and tools to 
guide the planning and implementation of  interventions1. Recent years have seen the development of diagnostic 
tests based on attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy for the detec-
tion of  cancer40 combined with machine learning  technology41 demonstrating effectivity in triaging patients 
and allowing rapid access to appropriate treatment; although with limited throughput in most cases due to the 
requirement of developing specific instrumentations to undertake the novel signal processing methods. As such 
our innovative tool presented here combines the efficacy of fractal analysis matched to FTIR spectra process-
ing to deliver a powerful diagnostic tool which can detect cancer cells at the most minute of concentrations as 
shown in our results above. Combined with the latest advances in endoscopic FTIR  probes21, 42, 43 to complement 
conventional biopsies, our technique can transform the current levels of prevention, early diagnosis, screening, 
treatment, and palliative and survivorship care for both adult and child cancers by providing accurate technical 
assistance for rapid and effective transfer of best practice interventions to countries worldwide.

Limitations
Multifractal analysis for spectra involves image processing, including choosing the number of pixels, grid size, 
and number of grids. Thus, multifractal analysis of FTIR spectra depends on the sampling procedure, type of 

Figure 2.  Multifractal number (f(α) vs. α) of acquired ATR-FTIR Spectra from (A) B16-f01 mixed with 3T3 cells 
(B) B16-F10 mixed with 3T3 cells (C) SW-480 mixed with 3T3 cells and (D) SW-620 mixed with 3T3 cells; at 
the indicated percentages. Each data point represents a sample containing  106 cells/ml in total. The values and 
error bars represent mean and standard deviation of the calculated multifractal number by MFA of 3 distinct 
ATR-FTIR spectra for each respective sample. Calculated p values are less than 0.0001.
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sample and spectra results, and the establishment of different image processing parameters. MF analysis in FTIR 
involves no standard image processing protocol, and therefore loss of data from the spectra peaks may cause 
slight uncertainty in the results, which can be easily overcome by larger sampling numbers and studies involving 
various types of samples under different conditions to further improve the accuracy of the analysis and determine 
the best image processing protocol(s) for various applications.

The method demonstrated here uses a conversion of the ATR spectrum to a digital image, and the calcula-
tions are made on this binary image towards the conversion of information by the quantization of the spectrum. 
If the spectrum amplitude level is represented by 100 pixels (actually it is less than 100), the maximum signal to 
noise ratio that can be obtained is reduced to a value less than roughly 42 dB (6 times the number of bits, which 
is 7 for 128 pixels). Considering quantization of the wavenumber axis, it is be possible to obtain these methods 
based on the original spectrum levels. This article demonstrated the proof-of-concept encouraging the use of 
this novel method for preliminary approximate calculations currently, following which predictive testing on 
unknown samples will be subsequently investigated.

Methods
Cell lines
Mouse melanoma B16-f01 and B16-f10 cells, Human colorectal adenocarcinoma SW-480 and SW-620 cells and 
Normal murine fibroblast 3T3 cells were grown in growth medium composed of DMEM (Biological Industries, 
01-050-1A, Beit Haemek, Israel)) supplemented with 10% FBS (04-007-1A, Biological Industries, Beit Haemek, 
Israel), 0.292 mg/mL L-glutamine (03-020-1B, Biological Industries, Beit Haemek, Israel) and 40 units/mL 
Penicillin–Streptomycin (03-031-1B Biological Industries, Beit Haemek, Israel).

Cell suspension preparation
The cells were washed 1 × with PBS (02-023-1A Biological Industries, Beit Haemek, Israel) and trypsinised using 
Trypsin EDTA solution B (03-052-1B Biological Industries, Beit Haemek, Israel), and centrifuged at 400 g for 
5 min at 4 °C and re-suspended in normal growth medium to the appropriate concentration as indicated in 
the experiments. 10 µl of sample was subsequently dropped on the diamond ATR in the FTIR instrument for 
acquiring absorbance spectra.

ATR‑FTIR spectroscopy
Measurements were carried out using an FTIR spectrometer (Jasco, 6800 FV, Tokyo, Japan) equipped with a 
Diamond ATR device (Jasco, ATR Pro One, Tokyo, Japan). The effective dimensions of the diamond are 1.8 mm 
diameter. The refractive index of the diamond is 2.4 and the angle of incidence in our device was 45°, generating 
1 reflection. The calculated depth of penetration is ~ 2 μm. The radiation from the IR source of the spectrometer 
was focused into the ATR diamond, and the output radiation (from the other side of the diamond) was focused 
onto a DLaTGS (Deuterated Lanthanum α Alanine doped TriGlycine Sulphate) detector. 10–20 µl of cell suspen-
sions of specific lineages were placed on the diamond ATR. Pressure (700 kg/cm2) was applied to produce better 
contact between the sample and the diamond. Measurements were carried out in the spectral range of 4000–650 
 cm−1. Each spectrum at acquisition (see Supplementary) was an average of 64 scans to increase the signal to noise 
ratio (SNR). The spectra were analyzed using Spectra Analysis™ (Jasco, Tokyo, Japan).

Multifractal analysis
The Multifractal spectrum is characterized by a continuum of singularities, which is defined by α, and the fractal 
dimension  f(α) defined by their sets. In order to determine the random distribution of points, we characterized the 
distribution of data sets against the size of the distorting lens. Unlike fractal dimension where f = α = D where D 

Figure 3.  D(Q) versus Q (0) for a multifractal spectra.
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is fractal dimension, multifractal dimension is obtained by calculating generalized dimension  D(Q), singularity 
spectrum  f(α) and fractal dimension D. Considering all the distribution of data sets, multifractal analysis gives a 
more accurate value concerning any given property of self-similarity.

Multifractal analysis is based on the box counting method, where each pixel in a digital image contains a 
distribution of sets. To compare and quantify various features of a multifractal spectra, we used three data sets, 
such as “Dimensional ordering”, “Singularity spectrum f(α)” and “Fractal dimension” D.

Generalized dimension
A generalized dimension or  D(Q), is defined by the distortion of the mean (µ) for a distribution of pixel values 
at a certain level of complexity ε resulting from box counting. To calculate the generalized dimension  D(Q), µ is 
raised to the arbitrary exponent Q and then compared to how this rise varies to ε which determines how mass 
varies with ε (resolution/box size).

The graphical representation of  D(Q) versus Q aids in distinguishing between different types of patterns 
(Fig. 3), giving us a sigmoidal curve around Q = 0 and the pattern varies between non-fractals (a geometrical 
figure that is self-similar in all scales monofractals) and multifractals (a generalized system of fractals where a 
data is more complex to be described only by fractal dimension) as shown below, where,

Figure 4.  (A) Singularity spectrum of non/mono fractals (B) Singularity spectrum of multifractals showing 
a typical hump. The α(min) (green dots) and α(max) (Red dots) reveals how strong the multifractal is in the given 
subject.
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For a multifractal data, the typical f(α) versus α shows humped spectra whereas in case of mono-fractals they 
converge at a certain value (Fig. 3).

D(Q) =
τ(Q)

Q− 1

D(Q = 0) ≥ D(Q = 1) ≥ D(Q = 2)

Figure 5.  Image processing protocol. (A) Raw data of ATR-FTIR spectra eliminating grids and axis for MF 
analysis. (B) 8-bit grey scale image of ATR-FTIR spectra compatible for MF analysis. (C) Number of grids 
covering ATR-FTIR spectra to determine number of pixels covered by each grid.
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In order to determine differences between two samples using an FTIR absorbance spectra, MFA plays an 
interesting role in statistically predicting and distinguishing the abnormalities in the two samples. Therefore, to 
determine if the current spectrum is a multifractal, we need to analyze the singularity spectrum.

Singularity spectrum
To quantitate the multifractal spectrum or singularity spectrum, we evaluate the aperture, which is determined 
by an intersection between f(α) and α between positive and negative values, Q = 1 and Q = − 1, and from the lines 
where Q = 0. Non, mono and multifractals can be distinguished using a standard f(α) versus α graph (Fig. 4).

The singularity spectrum fα can be determined by τ(Q):

Image processing
ATR-FTIR was used to examine the mid-infrared absorbance spectra (4000–650  cm−1) of murine melanoma 
cell lines with low and high metastatic potential (B16-f01 vs. B16-f10) and lower and higher metastatic potential 
colorectal cancer (SW-480 vs. SW-620). spectra were processed in BMP format followed by converting them into 
binary images, which were then analyzed for fractal dimension (mono-fractal) and multifractal by setting box/

τ(Q) = Q X H(Q)− 128

α =
∂τ(Q)

∂Q

Figure 6.  Graphical representation of f(α) versus α (A) and D(Q) versus Q (B) plot for the given spectrum.
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grid sizes to 100, minimum pixel size to 10, and maximum image percentage to 60 (Fig. 5). The acquired spectra 
were analyzed using FracLac plugin (Karperien, A., FracLac for ImageJ. http:// rsb. info. nih. gov/ ij/ plugi ns/ fracl 
ac/ FLHelp/ Intro ducti on. htm. 1999–2013) in ImageJ software (Rasband, W.S., ImageJ, U. S. National Institutes 
of Health, Bethesda, Maryland, USA, https:// imagej. nih. gov/ ij/, 1997–2018). The Q value was set between − 10 
and 10, and graphs were plotted for generalized dimension  D(Q) and singularity spectrum  f(α).

The  D(Q) versus Q and f(α) versus α graphs both showed typical multifractal behavior, thus confirming that 
the spectrum analysed was not a simple monofractal in fact a multifractal structure (Fig. 6).

Data processing
Statistical analysis and graphical representation were done using GraphPad prism software (GraphPad Prism 
version 8.0.0 for Windows, GraphPad Software, San Diego, California USA, www. graph pad. com).

Data availability
All data are available from authors upon request.
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