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Identification of mental disorders 
in South Africa using complex 
probabilistic hesitant fuzzy N‑soft 
aggregation information
Shahzaib Ashraf 1*, Muneeba Kousar 1 & Gilbert Chambashi 2*

This paper aims to address the challenges faced by medical professionals in identifying mental 
disorders. These mental health issues are an increasing public health concern, and middle-income 
nations like South Africa are negatively impacted. Mental health issues pose a substantial public 
health concern in South Africa, putting forth extensive impacts on both individuals and society 
broadly. Insufficient funding for mental health remains the greatest barrier in this country. In 
order to meet the diverse and complex requirements of patients effective decision making in the 
treatment of mental disorders is crucial. For this purpose, we introduced the novel concept of the 
complex probabilistic hesitant fuzzy N-soft set (CPHFNSS) for modeling the unpredictability and 
uncertainty effectively. Our approach improves the precision with which certain traits connected 
to different types of mental conditions are recognized by using the competence of experts. We 
developed the fundamental operations (like extended and restricted intersection, extended and 
restricted union, weak, top, and bottom weak complements) with examples. We also developed the 
aggregation operators and their many features, along with their proofs and theorems, for CPHFNSS. 
By implementing these operators in the aggregation process, one could choose a combination of 
characteristics. Further, we introduced the novel score function, which is used to determine the 
optimal choice among them. In addition, we created an algorithm with numerical illustrations for 
decision making in which physicians employ CPHFNS data to diagnose a specific condition. Finally, 
comparative analyses confirm the practicability and efficacy of the technique that arises from the 
model developed in this paper.

Abbreviations
MPGDM	� Multi-parameter group decision making
CPHFNS	� Complex probabilistic hesitant fuzzy N-soft
CPHFNSS	� Complex probabilistic hesitant fuzzy N-soft set
CPHFNSWA	� Complex probabilistic hesitant fuzzy N-soft weighted averaging aggregation
CPHFNSWG	� Complex probabilistic hesitant fuzzy N-soft weighted geometric aggregation
GCPHFNSWA	� Generalized complex probabilistic hesitant fuzzy N-soft weighted averaging aggregation
GCPHFNSWG	� Generalized complex probabilistic hesitant fuzzy N-soft weighted geometric aggregation
ACEs	� Adverse childhood experiences
GAD	� General anxiety disorder
DSM	� Statistical manual of mental disorders

Decision-making is a common challenge for many types of businesses, including manufacturing, the armed 
forces, finance, the medical field, and others. Choosing among a set of possibilities according to a set of criteria 
is one example of such a challenge. If alternative options are based only on criteria, the decision-making process 
is fairly simple. If there are several criteria for which each possibility has a distinct value, however, an aggregating 
technique is required to get a single value for each option. Multi-parameter Group Decision Making (MPGDM) 
will address this difficulty in the decision-making system. The increasing complexity of decision-making is 
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attributed to the significant level of ambiguity inherent in information, especially when it is presented in a yes-
or-no kinds as opposed to more or fewer types. In conventional logic, a proposition may only be true or false; 
there is no in-between.

Zadeh1 developed the fuzzy theory to circumvent these restrictions. It is meant to symbolize the determin-
istic uncertainty for which he created the idea of the membership function. Decision-making is considerably 
facilitated by fuzzy theories. But nonetheless, individuals sometimes struggled to handle group decision-making 
challenges when they were required to pick among several potential membership grades for an element in the 
group. Consider the case below: Two experts are disputing whether x falls in category A, with one wanting to 
offer a score of 0.6 and the other desiring to offer a score of 0.7. As a consequence, there is a degree of ambiguity 
around the range of probable values. Torra2 designed a hesitant fuzzy set to cope with uncertain circumstances in 
order to circumvent these constraints. In this instance, he constructed the membership function as a collection 
of potential membership values, h(x), where h(x) is a discrete subset of [0, 1]. With the passage of time, hesitant 
fuzzy sets have gained popularity and been used for a number of tasks, such as clinical diagnosis, retrieval of 
information, clustering, and decision-making concerns that play a significant role. Researchers introduced the 
dual-hesitant fuzzy soft set model for group forecasting. They utilized the pharmaceutical firm as an example, 
in which the board had to set the priorities for future investments in subsidiaries based on net income3, a wind 
power project site selection algorithm based on hesitancy4,5, and decision-making6,7 etc.

In many real-world circumstances, however, individuals encounter a mix of deterministic and random factors 
while making judgments. For example, weather patterns are both somewhat unpredictable and partially random. 
Meghdadi8 established the notion of probabilistic fuzzy logic to address these types of scenarios. In applications 
including robotic control systems9, signal processing10, fog-haze factor assessment problems11, power systems12, 
control systems13, drug selection to treat COVID-1914, and decision-making15–17. Probabilistic modelling is an 
essential instrument for managing random uncertainty. Several scientists study probabilistic fuzzy set hybrid 
models such as18–20, which play a crucial role in resolving real-world issues. It has been discovered from the 
aforementioned ideas that the fuzzy set and its generalizations are only capable of addressing vagueness and 
ambiguity in data when analyzing decision-making concerns. They cannot accurately show the variances in 
data at a particular time period. Ramot21 suggested a complex fuzzy set to address these limitations. Instead of 
being limited to the range [0, 1], this range extends to the complex plane’s unit circle, unlike a standard fuzzy 
membership function. The complex fuzzy set caught the attention of scholars, who subsequently created several 
hypotheses in relation to it. For instance, its operation and equalities22, distance measures of complex Pythagorean 
fuzzy sets and their applications in pattern recognition23, complex fuzzy computing for time series prediction24, 
for simulator selection25,26 and many more.

According to Molodtsov, a significant difficulty with these theories is their poor use of parameterization 
tools, such as the individual’s capacity to evaluate their degree of membership depending on the information 
they receive, which makes them prone to subjective viewpoints. In addition, it is essential to analyze all aspects 
of a situation concurrently. To circumvent these limits, Molodtsov developed a soft-set computing method27. 
The soft set theory provides the benefit of having problems that take several factors into consideration. It offers 
tremendous potential for problem-solving and is crucial to a wide range of sectors28,29. Researchers improved 
and expanded soft set theory. Babitha and Sunil explained the look of a fuzzy soft set and its relationships and 
functions30. Many researchers used soft set theory for decision-making problems31–33 rule mining34, energy35, and 
business36. Rating or ranking systems frequently use non-binary evaluations. Real-world examples demonstrate 
how ratings may take the form of a star rating, such as “five stars”, “four stars”, “three stars”, “two stars”, or “one 
star”. For this, Fatimah et al.37 expanded the soft set model and presented the idea of the N-soft set and discussed 
the great importance of ordered grades in practical situations. They created decision-making processes for the 
N-soft set as well. The semantics of N-soft sets are now well studied with the help of the article38. The work on 
N-soft set theory by Akram et al.39 is remarkable. The theory of N-soft sets plays an interesting and advantageous 
role; therefore, many scholars work with this model, such as hesitant fuzzy N-soft sets40, complex fermatean fuzzy 
N-soft sets41, reduction of N-soft sets42, complex pythagorean fuzzy N-soft sets43 and belief interval-valued N-soft 
sets44 and complex spherical fuzzy N-soft sets45.

In the vast majority of African countries, mental illness is considered a “silent catastrophe”. Mental illness 
has been described as a neglected and growingly onerous issue impacting all sectors of Africa’s population46,47. 
It has also been challenging to prioritize mental health owing to a lack of resources, restricted financing, and 
inadequate or nonexistent mental health policies48. Across the African Region, more than 116 million people 
were already estimated to be living with mental health conditions pre-pandemic, and pandemic-19 places a 
double load on the country’s already frail healthcare system49. Mental disorders are prevalent in South Africa, 
with an estimated 30% of the population experiencing a mental disorder at some point in their lives. This high 
prevalence highlights the need for effective identification and treatment of mental disorders in the country. These 
have a significant impact on society, including decreased productivity, increased healthcare costs, and reduced 
quality of life50. Identifying mental disorders and providing appropriate treatment can help mitigate these nega-
tive effects and improve the overall well-being of individuals and society as a whole. Hence, a system that can 
accommodate doctors’ diagnostic preferences is essential. The secondary purpose of this article is to widen the 
application of the N-soft set theory, in which grades produce a parameterized interpretation of alternatives to 
the universe. This is important because individuals sometimes have trouble making decisions when confronted 
with the fuzziness, hesitation, and unpredictability of uncertain evidence combined with a parameterized family 
of subsets and grades of alternatives in the universe. For example, physicians confront several challenges while 
treating mental disorders. A patient with a mental condition is often treated by many physicians, which creates 
fuzziness, hesitancy, and randomness and makes diagnosis difficult. Consider a 30-year-old man/woman state-
ment, who seeks bipolar disorder therapy at a multi-physician mental health facility. His/Her symptoms change 
over time, making diagnosis difficult. Some doctors think he/she has bipolar illness, but others don’t since her 
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symptoms are unusual, such as combined spells of mania and despair, introducing fuzziness into the diagnosis. 
Treatment decisions exhibit hesitancy, as some physicians recommend mood stabilizers, while others recommend 
a combination of medicine and psychotherapy, indicating doubt regarding the best treatment, and reflecting 
uncertainty about the most effective approach. His/Her response to the therapy exhibits an element of unpredict-
ability, characterized by intermittent phases of stability that are afterwards interrupted by unintentional relapses. 
This unpredictability introduces a degree of randomness to the management of her condition.

In this study, a model for healthcare group decision-making has been developed. Using the model of a com-
plex probabilistic hesitant fuzzy N-soft set, medical professionals can acquire patient data in a more effective man-
ner. In which the amplitude term reflects the degree to which a symptom is associated with the illness in question, 
the phase term is generally connected to the periodicity or length of the appearance of the disease or symptoms, 
the grading indicates the severity, and the probability shows the likelihood that the disease or symptoms will 
really manifest. However, hesitant fuzzy approximations enhance the flexibility and depth of the decision-analysis 
process. We also described the technique or algorithm used to process this data so that physicians get a list of 
disorders from worst to least, which reflects the disease hierarchy. The suggested approach provides a variety of 
solutions based on motivation and the addressed issue. The potential advantages of the proposed concepts are: 

1.	 Improved accuracy Mental disorders are complex and multifaceted, making their identification a challenging 
task. CPHFNSS can provide a more accurate representation of the uncertainty and imprecision inherent in 
mental disorder diagnosis.

2.	 Improved efficiency Mental disorders can manifest in different ways and have varying degrees of severity. This 
model leads to more efficient algorithms or decision-making processes by reducing the complexity of the 
problem or increasing the speed of computation and allows a flexible and adaptable approach to diagnosis, 
which can account for these variations in symptoms and severity.

3.	 Improved interpretability This model provides a clear and interpretable representation of the diagnostic 
process, which can help physicians to understand and communicate the reasoning behind their diagnosis. 
This leads to better collaboration between physicians and improved patient outcomes.

4.	 Incorporation of hesitancy Mental disorder diagnosis is often characterized by uncertainty and hesitancy, 
with physicians being uncertain about the presence or absence of a particular symptom. This model allows 
physicians to express this hesitancy in a systematic and structured way, which can improve the diagnostic 
process.

Clearly, the modelization provided by present theories is inadequate to account for these scenarios as rep-
resented in Table 11. To achieve the aforementioned goals, the remaining sections of this work is organized as 
follows.

Preliminaries are discussed in “Preliminaries” section, where we carefully review a few fundamental defini-
tions and operations to help us explain more easily the following sections. The notion of a complex probabilistic 
hesitant fuzzy N-soft set is developed in “Complex probabilistic hesitant fuzzy N-soft set” section. We talked 
about novel score function and various fundamental operations, including extended and restricted intersection, 
extended and restricted union, weak complement, top and bottom weak complement, as well as aggregation 
operations. Additionally, confirm their essential laws. Furthermore, the numerical examples have been resolved to 
demonstrate the validity and superiority of the research work. In “Aggregation operators for CPHFNSS” section, 
we developed the averaging and geometric aggregations operators, its theorems and properties. In “Framework 
of multi-parameter group decision making” section, we developed the decision-making algorithm based on 
complex probabilistic hesitant fuzzy N-soft information and also illustrate the numerical example to help readers 
make the best choices. In “Comparison analysis” section we discussed the comparative analysis with the existing 
studies. While we provided the paper’s conclusion in “Conclusion” section.

Preliminaries
The definitions we used to establish the methods in this paper are briefly reviewed in this section.

Definition 2.1  If Z be a universal set then A is a fuzzy set defined on Z as:

where µA(ρi) is a membership degree of ρi in A and µA : Z → [0, 1] . If µA(ρi) = 0 , is considered to be non-
membership of ρi . If µA(ρi) = 1 , is considered to be the entire membership of ρi . If µA(ρi) value among 0 and 
1, is considered to be partial membership of ρi1.

Definition 2.2  If Z be a universal set then B is a hesitant fuzzy set in terms of the h function, which returns a 
subset of [0,1] when it applies to Z which is denoted as:

where hB(ρi) is the collection of distinct finite elements in [0,1], represents the possible membership degrees of 
the element ρi ∈ Z to the set B2.

A =
{

�ρi ,µA(ρi)�
∣

∣ρi ∈ Z

}

,

B =
{〈

ρi , hB(ρi)

〉

∣

∣ρi ∈ Z

}

,
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Definition 2.3  If Z be a universal set then C is a probabilistic hesitant fuzzy set defined as:

where hC
(

µm(ρi)|PCm

)

 is the collection of distinct finite elements (µm(ρi)
∣

∣PCm) representing the hesitant fuzzy 
information along probabilities to the set C,m = 1, 2, 3, ..., l where l is the number of possible elements in 
hC

(

µm(ρi)|PCm

)

, PCm ∈ [0, 1] is the hesitant probability of ρi and 
∑

m
PCm = 151.

Definition 2.4  If Z be a universal set then D is a complex fuzzy set defined as:

where rD(ρi)e2π iψD(ρi) is a complex valued membership degree of ρi in D and it might be given any value that is 
contained in the complex plane unit circle. and rD(ρi) ∈ [0, 1] , ψD(ρi) ∈ [0, 1] and i =

√
−121.

Definition 2.5  If Z be a universal set then E is a complex probabilistic hesitant fuzzy set (CPHFS) defined as:

where hE
(

rEm(ρi)e
2π iψEm (ρi)

∣

∣PEm

)

 is the collection of finite complex elements denoting the complex hesitant 
fuzzy information along probabilities to the set E, rEm(ρi) ∈ [0, 1] and ψEm(ρi) ∈ [0, 1],m = 1, 2, ..., l where l is 
the number of possible elements in hE

(

rEm(ρi)e
2π iψEm (ρi)

∣

∣PEm

)

, PEm ∈ [0, 1] is the complex hesitant probability 

of rEm(ρi)e
2π iψEm (ρi) and 

∑

m
PEm = 1.

Definition 2.6  Let Z be a universal set and H be the set of parameters, for any non-empty set B ⊆ H . A pair 
(F,B) is called soft set over Z if there exist a mapping F : B → P(Z) where P(Z) indicates the power set of Z.

Thus, the soft set is a parametric family of the subsets of universal set. For each bj ∈ B , we can denote F(bj) as 
a subset of universal set Z . We can also consider F(bj) as a mapping F(bj) : Z → {0, 1} and then F(bj)(ρi) = 1 
equivalent to ρi ∈ F(bj) , otherwise F(bj)(ρi) = 0 . Molodtsov considered many examples in Ref.27 to illustrate 
the soft set.

Definition 2.7  Let Z be a universal set and H be the set of parameters, for any non-empty set B ⊆ H . A pair 
(G,B) is called fuzzy soft set over Z if there exist a mapping G : B → I(Z) where I(Z) indicates the fuzzy power 
set of Z(all possible fuzzy subsets of Z)52.

Definition 2.8  Let Z be the universal set and I(Z) indicates the set of all fuzzy subsets of Z and let 
R = {0, 1, 2, ...,N − 1} be a set of ordered grades where N ∈ {2, 3, 4, ...} and H be the set of parameters, 
for any non-empty set B ⊆ H . A triple (H,B,N) is called Fuzzy N-soft set over Z if there exist a mapping 
H : B → I(Z)× R , with the property that for each bj ∈ B there exist a unique (ρi ,µ(ρi), sij) ∈ (I(Z)× R) such 
that (ρi ,µ(ρi , sij) ∈ H(bj), bj ∈ B, ρi ∈ Z and sij ∈ R , where I(Z)× R is the collection of all fuzzy soft sets over 
Z× R39.

Example 2.9  Let Z = {ρ1, ρ2, ρ3} be the set of laptops, H = {b1, b2, b3, b4, b5} be the set of parameters for the 
evaluations of laptop by its features, and B ⊆ H such that B = {b1 = storage, b2 = graphics, b3 = processor} and 
let R = {0, 1, 2, 3, 4} be the set of grade evaluation. Then, (H,B, 5) is the fuzzy 5-soft set as follows:

It can also be represented in tabular form as follow:

(H,B, 5) b1 b3 b3

ρ1 (0.3, 3) (0.7, 2) (0.2, 0)

ρ2 (0.5, 1) (0.2, 3) (0.6, 4)

ρ3 (0.2, 2) (0.4, 4) (0.8, 1)

C =
{〈

ρi , hC

(

µm(ρi)
∣

∣PCm

)

〉

∣

∣ρi ∈ Z

}

,

D =
{〈

ρi , rD(ρi)e
2π iψD(ρi)

〉

∣

∣ρi ∈ Z

}

,

E =
{〈

ρi , hE

(

rEm(ρi)e
2π iψEm (ρi)

∣

∣

∣
PEm

)〉

∣

∣

∣
ρi ∈ Z

}

,

H(b1) =
{

(ρ1, 0.3, 3), (ρ2, 0.5, 1), (ρ3, 0.2, 2)
}

,

H(b2) =
{

(ρ1, 0.7, 2), (ρ2, 0.2, 3), (ρ3, 0.4, 4)
}

,

H(b3) =
{

(ρ1, 0.2, 0), (ρ2, 0.6, 4), (ρ3, 0.8, 1)
}

.
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For interpretation, the above table is of 5-soft set (H,B, 5) created on the laptop’s storage, graphics, and 
processor. Where, in the bottom middle cell 4 is the ordered grade (s32) of the laptop ρ3 with respect to b2 = 
graphics , Similarly, in the top-right cell 0, is the laptop’s ordered grade (s13) of the laptop ρ1 with respect to b3 = 
processor. In this case, a grade of 0 does not indicate that the evaluation was insufficient or that the information 
was inadequate.

Complex probabilistic hesitant fuzzy N‑soft set
We created a model of a complex probabilistic hesitant fuzzy N-soft set (CPHFNSS) as stated in the introduction, 
and we used some numerical examples to show how it works. The complex probabilistic hesitant fuzzy N-soft 
set (CPHFNSS) framework controls uncertainty, ambiguity, and imprecision in decision-making domains, mak-
ing it important. An increasingly complex and data-driven world, CPHFNSS provides a diverse and powerful 
tool to simulate and evaluate real-life events. Its capacity to mix probabilistic, hesitant, and fuzzy information 
helps decision-makers grasp diverse challenges and make more accurate and robust decisions. The aggregation 
operations are covered along with some fundamental operations. Also, prove their fundamental rules as well. 
The mathematical examples have also been resolved in order to demonstrate the validity and competency of the 
research work in this section.

Definition 3.1  (53) Let Z be a universal set and H be the set of parameters, for any non-empty set B ⊆ Hand 
let R = {0, 1, 2, ...,N − 1} be a set of ordered grades where N ∈ {2, 3, 4, 5, ...} . A triple (I,B,N) is called complex 
probabilistic hesitant fuzzy N-soft set over Z if there exist a mapping I : B → I(Z)× R with the property that 
for each bj ∈ B there exist a unique (ρi , sij) ∈ (Z× R) such that ((ρi , sij), hI) ∈ I(bj), bj ∈ B, ρi ∈ Z and sij ∈ R , 
where I(Z)× R indicates the all possible complex probabilistic hesitant fuzzy subset of Z× R . It is expressed as:

where hI
(

rIm(ρi , sij)e
2π iψIm (ρi ,sij)

∣

∣PIm

)

 is the collection of complex elements representing the complex hesitant 
fuzzy information along probabilities to the set I, rIm(ρi , sij) ∈ [0, 1] and ψIm(ρi , sij) ∈ [0, 1],m = 1, 2, ..., l where 

l is the number of possible elements in hI
(

rIm(ρi , sij)e
2π iψIm (ρi ,sij)

∣

∣PIm

)

, PIm ∈ [0, 1] is the complex hesitant 
probability of rIm(ρi , sij)e

2π iψIm (ρi ,sij) and 
∑

m
PIm = 1.

Example 3.2  The evaluation of a lecturer at a university is based on the star ratings and 
grades given by a selection board, which consists of the vice chancellor, subject special-
ist, chairman, and psychologist. Let Z = {ρ1, ρ2, ρ3} be the set of candidates attending a univer-
sity interview and B ⊆ H  be the set of parameters for the evaluation, by the selection board, such that 
B =

{

b1 = Experience, b2 = interpersonal skills, b3 = Attiude of answering the questions
}

 . Table 1 can be used 
to create a 5-soft set, where four stars indicate Excellent, three stars indicate very good, two stars indicate good, 
one star indicates satisfactory and hole indicates unsatisfactory.

This star-rating is easily identifiable by the numbers for example 0 represents ◦ , 1 represents ⋆ , 2 represents 
⋆⋆ , 3 represents ⋆ ⋆ ⋆ , 4 represents ⋆ ⋆ ⋆⋆ and we can be used to create 5-soft set, as represented in Table 2.

It is sufficient when this information is accurately and unambiguously extracted from actual data. It has to 
do with the N-Soft Set. However, if the assessments are ambiguous, hesitant, and random, we might need to use 
CPHFNSS, which gives us more flexibility in determining how these grades are assigned to applicants. For this 
reason, the following CPHFNSS is defined. Then, (I,B, 5) is the complex probabilistic hesitant fuzzy 5-soft set, 
represented in Table 3.

I(bj) =
{〈

(ρi , sij), hI

(

rIm(ρi , sij)e
2π iψIm (ρi ,sij)

∣

∣

∣
PIm

)〉

∣

∣

∣
(ρi , sij) ∈ Z× R

}

, ∀bj ∈ B ⊆ H ,

Table 1.   Star evaluation by the selection board.

Z/B b1 b2 b3

ρ1 ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆

ρ2 ◦ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆

ρ3 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Table 2.   Five-soft set from Table 1.

(A,B, 6) b1 b2 b3

ρ1 2 3 2

ρ2 0 4 3

ρ3 5 1 2
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Definition 3.3  (53) Let Z be a universal set and H be the set of parameters,there exist non-empty set B ⊆ H . A 
triple (J,B,N) is called empty CPHFNSS over Z . If J(bj) = φ for all bj ∈ B.

Definition 3.4  (53) Let Z be a universal set and H be the set of parameters, there exist non-empty set B ⊆ H . A 
triple(K,B,N) is called full CPHFNSS over Z . If K(bj) = 1 for all bj ∈ B.

Fundamental operations of CPHFNSS
In this subsection we will develop the fundamental operations for CPHFNSS such as extended union and inter-
section, restricted union and intersection, weak complement, as well as top and bottom weak complement with 
the numerical examples. We also defined its several properties.

Definition 3.5  (53) Let Z be a universal set. (I1,B1,N1) and (I2,B2,N2) are two CPHFNSS over Z then the 
restricted union is described as:

where L = I1 ⋒ I2 , E = B1 ∩ B2 �= φ and K = max(N1,N2) ; ∀ej ∈ E and ρi ∈ Z,
〈

(ρi , sij), hL

(

rLm(ρi , sij)e
2π iψLm (ρi ,sij)

∣

∣

∣
PLm

)〉

∈ L(ej) ⇐⇒ sij = max(s�ij , s
�
ij) and

with s�ij ∈ I1(b
1
j ) and s�ij ∈ I2(b

2
j ) while b1j ∈ B1 and b2j ∈ B2.

Definition 3.6  (53) Let Z be a universal set. (I1,B1,N1) and (I2,B2,N2) are two CPHFNSS over Z then the 
extended union is described as:

where M = I1 ⊔ I2 , F = B1 ∪ B2 and K = max(N1,N2) ; ∀fj ∈ F and ρi ∈ Z , with f 1j ∈ B1 and f 2j ∈ B2.

Definition 3.7  (53) Let Z be a universal set. (I1,B1,N1) and (I2,B2,N2) are two CPHFNSS over Z then the 
restricted intersection is described as:

w h e r e  N = I1 ⋓ I2  ,  E = B1 ∩ B2 �= φ  a n d  J = min(N1,N2)  ;  ∀ej ∈ E  a n d  ρi ∈ Z  , 
〈

(ρi , sij), hN

(

rNm(ρi , sij)e
2π iψNm (ρi ,sij)

∣

∣

∣
PNm

)〉

∈ N(ej) ⇐⇒ sij = max(s�ij , s
�
ij) and

(L,E,K) = (I1,B1,N1) ⋒ (I2,B2,N2),

rLm(ρi , sij)e
2π iψLm (ρi ,sij)

�

�

�
PLm

=























rI1m(ρi , s
�

ij)e
2π iψI1m

(ρi ,s
�

ij)
�

�

�
PI1m , if m ∈ hI1m − hI2m ,

rI2m(ρi , s
�
ij)e

2π iψI2m
(ρi ,s

�
ij)
�

�

�
PI2m , if m ∈ hI2m − hI1m ,

max
�

rI1m(ρi , s
�

ij), rI2m(ρi , s
�
ij)

�

e
2π imax

�

ψI1m
(ρi ,s

�

ij),ψI2m
(ρi ,s

�
ij)

�

�

�

�
PI1m · PI2m , if m ∈ hI1m ∩ hI2m ,

(M,F,K) = (I1,B1,N1) ⊔ (I2,B2,N2),

M(fj) =











I1(f
1
j ) , if fj ∈ B1 − B2,

I2(f
2
j ) , if fj ∈ B2 − B1,

I1(f
1
j ) ⋒ I2(f

2
j ) , if fj ∈ B1 ∩ B2.

(N,E, J) = (I1,B1,N1) ⋓ (I2,B2,N2),

Table 3.   Tabular representation of CPHF 5-SS.

(I,B, 5) b1 b2 b3

ρ1

(

2,

{

0.7e2π i0.4|0.2,
0.8e2π i0.8|0.8

})



3,







0.9e2π i0.8|0.2,
0.4e2π i0.2|0.3,
0.8e2π i0.1|0.5











(

2,

{

0.8e2π i0.6|0.4,
0.7e2π i0.2|0.6

})

ρ2



0,







0.3e2π i0.7|0.2,
0.2e2π i0.4|0.2,
0.5e2π i0.3|0.6











(

4,
{

0.9e2π i0.6|1
})

(

3,

{

0.4e2π i0.9|0.1,
0.1e2π i0.6|0.9

})

ρ3
(

2,
{

0.1e2π i0.7|1
}) (

1,
{

0.5e2π i0.3|1
})



2,







0.7e2π i0.4|0.1,
0.4e2π i0.3|0.2,
0.9e2π i0.8|0.7










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with s�ij ∈ I1(b
1
j ) and s�ij ∈ I2(b

2
j ) while b1j ∈ B1 and b2j ∈ B2.

Definition 3.8  (53) Let Z be a universal set. (I1,B1,N1) and (I2,B2,N2) are two CPHFNSS over Z then the 
extended intersection is described as:

where O = I1 ⊓ I2 , F = B1 ∪ B2 and K = max(N1,N2) ; ∀fj ∈ F and ρi ∈ Z , with f 1j ∈ B1 and f 2j ∈ B2.

Definition 3.9  (53) Let Z be a universal set. (I,B,N) is the CPHFNSS over Z then weak CPHFNSS complement 
is represented by (Ic ,B,N) where Ic(bj) ∩ I(bj) = �; ∀bj ∈ B and it is defined as:

Definition 3.10  (53) Let Z be a universal set. For any CHFNSS (I,B,N) over Z then bottom weak CPHFNSS 
complement is represented by (I�,B,N) ; ∀bj ∈ B and it is defined as:

Definition 3.11  (53) Let Z be a universal set. For any CHFNSS (I,B,N) over Z then top weak CPHFNSS comple-
ment is represented by (I�,B,N) ; ∀bj ∈ B and it is defined as:

Proposition 3.12  Given that (I1,B1,N1) , (I2,B2,N2) and (I3,B3,N3) are any three CPHFNSS on Z , then the fol-
lowing laws hold.

Idempotent Laws: 

	 i.	 (I1,B1,N1) ⋒ (I1,B1,N1) = (I1,B1,N1).
	 ii.	 (I1,B1,N1) ⊔ (I1,B1,N1) = (I1,B1,N1).
	 iii.	 (I1,B1,N1) ⋓ (I1,B1,N1) = (I1,B1,N1).
	 iv.	 (I1,B1,N1) ⊓ (I1,B1,N1) = (I1,B1,N1).

Commutative Laws: 

	 xxii.	 (I1,B1,N1) ⋒ (I2,B2,N2) = (I2,B2,N2) ⋒ (I1,B1,N1).
	xxiii.	 (I1,B1,N1) ⊔ (I2,B2,N2) = (I2,B2,N2) ⊔ (I1,B1,N1).
	xxiv.	 (I1,B1,N1) ⋓ (I2,B2,N2) = (I2,B2,N2) ⋓ (I1,B1,N1).
	 xxv.	 (I1,B1,N1) ⊓ (I2,B2,N2) = (I2,B2,N2) ⊓ (I1,B1,N1).

Associative Laws: 

	 ix.	 (I1,B1,N1) ⋒

(

(I2,B2,N2) ⋒ (I3,B3,N3)

)

=
(

(I1,B1,N1) ⋒ (I2,B2,N2)

)

⋒ (I3,B3,N3).

	 x.	 (I1,B1,N1) ⊔
(

(I2,B2,N2) ⊔ (I3,B3,N3)

)

=
(

(I1,B1,N1) ⊔ (I2,B2,N2)

)

⊔ (I3,B3,N3).

rNm(ρi , sij)e
2π iψNm (ρi ,sij)

�

�

�
PNm

=























rI1m(ρi , s
�

ij)e
2π iψI1m

(ρi ,s
�

ij)
�

�

�
PI1m , if m ∈ hI1m − hI2m ,

rI2m(ρi , s
�
ij)e

2π iψI2m
(ρi ,s

�
ij)
�

�

�
PI2m , if m ∈ hI2m − hI1m ,

min
�

rI1m(ρi , s
�

ij), rI2m(ρi , s
�
ij)

�

e
2π imin

�

ψI1m
(ρi ,s

�

ij),ψI2m
(ρi ,s

�
ij)

�

�

�

�
PI1m · PI2m , if m ∈ hI1m ∩ hI2m ,

(O,F,K) = (I1,B1,N1) ⊓ (I2,B2,N2),

O(fj) =











I1(f
1
j ) , if fj ∈ B1 − B2,

I2(f
2
j ) , if fj ∈ B2 − B1,

I1(f
1
j ) ⋓ I2(f

2
j ) , if fj ∈ B1 ∩ B2.

I
c(bj) =

{〈

(ρi , sij), hIc

(

(

1− rIm(ρi , sij)
)

e2π i
(

1−ψIm (ρi ,sij)
)

∣

∣

∣
1− PIm

)〉

∣

∣

∣
(ρi , sij) ∈ Z× R

}

, ∀bj ∈ B ⊆ H .

I
�(bj) =















(ρi , 0), hI�

�

�

1− rIm(ρi , sij)
�

e2π i
�

1−ψIm (ρi ,sij)
�

�

�

�
1− PIm

�

, if sij > 0,

(ρi ,N − 1), h
I�

�

�

1− rIm(ρi , sij)
�

e2π i
�

1−ψIm (ρi ,sij)
�

�

�

�
1− PIm

�

, if sij = 0.

I
�(bj) =















(ρi ,N − 1), h
I�

�

�

1− rIm(ρi , sij)
�

e2π i
�

1−ψIm (ρi ,sij)
�

�

�

�
1− PIm

�

, if sij < N − 1,

(ρi , 0), hI�

�

�

1− rIm(ρi , sij)
�

e2π i
�

1−ψIm (ρi ,sij)
�

�

�

�
1− PIm

�

, if sij = N − 1.
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	 xi.	 (I1,B1,N1) ⋓

(

(I2,B2,N2) ⋓ (I3,B3,N3)

)

=
(

(I1,B1,N1) ⋓ (I2,B2,N2)

)

⋓ (I3,B3,N3).

	 xii.	 (I1,B1,N1) ⊓
(

(I2,B2,N2) ⊓ (I3,B3,N3)

)

=
(

(I1,B1,N1) ⊓ (I2,B2,N2)

)

⊓ (I3,B3,N3).

Proposition 3.13  Given that (I1,B1,N1) and (I2,B2,N2) are any two CPHFSS on Z , then the following laws hold.

Involution Law: 

i.	
(

(

I1
c
)c
,B1,N1

)

= (I1,B1,N1).

De-Morgan’s Laws: 

	 ii.	
(

I1
c ,B1,N1

)

⋓

(

I2
c ,B2,N2

)

=
(

(

I1 ⋒ I2
)c
, (B1 ∩ B2),min(N1,N2)

)

.

	 iii.	
(

I1
c ,B1,N1

)

⊓
(

I2
c ,B2,N2

)

=
(

(

I1 ⊔ I2
)c
, (B1 ∪ B2),max(N1,N2)

)

.

	 iv.	
(

I1
c ,B1,N1

)

⋒

(

I2
c ,B2,N2

)

=
(

(

I1 ⋓ I2
)c
, (B1 ∩ B2),max(N1,N2)

)

.

	 v.	
(

I1
c ,B1,N1

)

⊔
(

I2
c ,B2,N2

)

=
(

(

I1 ⊓ I2
)c
, (B1 ∪ B2),max(N1,N2)

)

.

The score function in the complex probabilistic hesitant fuzzy N-soft set framework enhances its relevance 
and usefulness. A scoring mechanism is established with the aim of resolving various comparability concerns. 
This function quantifies the appropriateness or preference of choice alternatives, making it easier to rank and 
acquire solutions in complicated decision situations.

Definition 3.14  The score function ð for a CPHFNS element I is defined as:

where l is the number of feasible hesitant values and s is the number of parameters.

Remark 3.15  If we want to find the score w.r.t single parameter bj we will put s=j in the above Definition 3.14, 
such as

Definition 3.16  The ordered relation between CPHFNS elements I1 and I2 is defined as:

•	 If ð(I1) > ð(I2) then I1 > I2,
•	 If ð(I1) < ð(I2) then I1 < I2,
•	 If ð(I1) = ð(I2) then we calculate the accuracy function.

Definition 3.17  The accuracy function is defined as:

•	 If ℧(I1) > ℧(I2) then I1 > I2,
•	 If ℧(I1) < ℧(I2) then I1 < I2,
•	 If ℧(I1) = ℧(I2) then I1 ∼ I2.

Aggregation operations for CPHFNSS
In this subsection we will develop the aggregation operations for CPHFNSSs and their some verified properties. 
It is impossible to emphasize the significance of aggregate procedures in data analysis and decision making. These 
operations serve as a foundation that transforms unstructured data into actionable insights. Aggregation opera-
tions simplify complex information by condensing large volumes of data into meaningful summaries, thereby 
disclosing trends, patterns, and key metrics that would otherwise remain obscure. In recent decades, it have 
gar nere d  a  g re at  de a l  of  at tent ion 25,26.  E xcept  as  ot her wis e  sp e c i f i e d ,  supp os e . 

I(bj) =
〈

(ρi , sij), hI

(

rI(bj)m(ρi , sij)e
2π iψI(bj )m

(ρi ,sij)
∣

∣

∣
PI(bj)m

)〉

, 

ð(I) =
(

maxsj=1sij

N − 1

)

×
1

s

s
∑

j=1

[

1

l

l
∑

m=1

( rI(bj)m + ωI(bj)m

2
× PI(bj)m

)

]

,

ð(I) =
(

sij

N − 1

)

×
1

l

l
∑

m=1

( rI(bj)m + ωI(bj)m

2
× PI(bj)m

)

.

℧(I1) =
(

sij

N − 1

)

×

√

√

√

√

1

s

s
∑

j=1

[

1

l

l
∑

m=1

(

�m − ð(I1)
)2
]

,
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I(bj′) =
〈

(ρi , sij′), hI

(

rI(bj′ )m(ρi , sij′)e
2π iψI(bj′ )m

(ρi ,sij′ )
∣

∣

∣
PI(bj′ )m

)〉

, and I(bj′′) =
〈

(ρi , sij′′), hI

(

rI(bj′′ )m(ρi , sij′′)

e
2π iψI(bj′′ )m

(ρi ,sij′′ )
∣

∣

∣
PI(bj′′ )m

)〉

, are three CPHFSS and assume that

Definition 3.18  Let I(bj) =
〈

(ρi , sij), hI

(

φje
2π iεj

∣

∣Pj

)〉

 and I(bj′) = �(ρi , sij′), hI
(

φj′e
2π iεj′

∣

∣Pj′
)

� be the two CPH-
FNS elements and κ ∈ R > 0 is scalar. Then the aggregation operations for CPHFNSS is defined as: 

(1)	 I(bj)
κ =

〈

(ρi , sij), hI

(

(

φj
)κ
e2π i(εj)

κ ∣
∣Pj

)〉

.

(2)	 κI(bj) =
〈

(ρi , sij), hI

(

(

1− (1− φj)
κ
)

e2π i(1−(1−εj)
κ )
∣

∣Pj

)〉

.

(3)	 I(bj)⊗ I(bj′) =
〈

(ρi ,min(sij , sij′)), hI

(

(

φjφj′
)

e2π i(εjεj′ )
∣

∣PjPj′
)

�.

(4)	 I(bj)⊕ I(bj′) = �(ρi ,max(sij , sij′)), hI

(

(

φj + φj′ − φjφj′
)

e
2π i(εj+εj′−εjεj′ )

∣

∣PjPj′
)

�.

Theorem 3.19  Let I(bj) , I(bj′) , and I(bj′′) be the three complex probabilistic hesitant fuzzy soft numbers and 
κ1, κ2, κ > 0 are scalars. Then following theorems are hold: 

(1)	 I(bj)⊕ I(bj′) = I(bj′)⊕ I(bj).
(2)	 I(bj)⊗ I(bj′) = I(bj′)⊗ I(bj).
(3)	

(

I(bj)⊕ I(bj′)
)

⊕ I(bj′′) = I(bj)⊕
(

I(bj′)⊕ I(bj′′)
)

.
(4)	

(

I(bj)⊗ I(bj′)
)

⊗ I(bj′′) = I(bj)⊗
(

I(bj′)⊗ I(bj′′)
)

.
(5)	 κ

(

I(bj)⊕ I(bj′)
)

= κI(bj)⊕ κI(bj′).
(6)	

(

I(bj)⊗ I(bj′)
)κ = I(bj)

κ ⊗ I(bj′)
κ.

(7)	 κ1I(bj)⊕ κ2I(bj) = (κ1 + κ2)I(bj).
(8)	 I(bj)

κ1 ⊗ I(bj)
κ2 = I(bj)

κ1+κ2.

The proof of (1) to (4) can easily be derived from the Definition 3.18.
(5) κ

(

I(bj)⊕ I(bj′)
)

= κI(bj)⊕ κI(bj′)

Proof    L.H.S:

Firstly we will multiply κ with amplitude term.

Similarly for phase term;

This implies that

R.H.S:

rI(bj)m(ρi , sij) = φj , ψI(bj)m(ρi , sij) = εj , PI(bj)m = Pj

rI(bj′ )m(ρi , sij′) = φj′ , ψI(bj′ )m(ρi , sij′) = εj′ , PI(bj′ )m = Pj′

rI(bj′′ )m(ρi , sij′′) = φj′′ , ψI(bj′′ )m(ρi , sij′′) = εj′′ , PI(bj′′ )m = Pj′′ .

κ
(

I(bj)⊕ I(bj′)
)

= κ

{〈

(ρi ,max(sij , sij′)), hI

(

(

φj + φj′ − φjφj′
)

e
2π i

(

εj+εj′−εjεj′
)

∣

∣PjPj′

)〉}

.

κ
(

φj + φj′ − φjφj′
)

= 1−
(

1−
(

φj + φj′ − φjφj′
)

)κ

= 1−
(

1− φj − φj′ + φjφj′
)κ

= 1−
(

(

1− φj
)

− φj′
(

1− φj
)

)κ

= 1−
((

1− φj
)(

1− φj′
))κ

= 1−
(

1− φj
)κ(

1− φj′
)κ
.

κ
(

εj + εj′ − εjεj′
)

= 1−
(

1− εj
)κ(

1− εj′
)κ
.

(1)

κ
(

I(bj)⊕ I(bj′)
)

=
{〈

(ρi ,max(sij , sij′)), hI

((

1−
(

1− φj
)κ(

1− φj′
)κ
)

e
2π i

(

1−(1−εj)
κ (1−εj′ )

κ
)

∣

∣PjPj′
)

〉}

.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20091  | https://doi.org/10.1038/s41598-023-45991-7

www.nature.com/scientificreports/

First of all we will solve for amplitude term:

Similarly for phase term;

This implies that

From Eqs. (1) and (2);
L.H.S = R.H.S
Hence κ

(

I(bj)⊕ I(bj′)
)

= κI(bj)⊕ κI(bj′) . 	�  �

(6) 
(

I(bj)⊗ I(bj′)
)κ

= I(bj)
κ ⊗ I(bj′)

κ.

Proof    L.H.S:

Thus L.H.S = R.H.S

Hence 
(

I(bj)⊗ I(bj′)
)κ

= I(bj)
κ ⊗ I(bj′)

κ 	�  �.

(7) κ1I(bj)⊕ κ2I(bj) = (κ1 + κ2)I(bj)

Proof    L.H.S:

Firstly we will consider only amplitude term:

κI(bj)⊕ κI(bj′) =
〈

(ρi , sij), hI

(

(

1−
(

1− φj
)κ
)

e2π i
(

1−(1−εj)
κ
)

∣

∣Pj

)〉

⊕
〈

(ρi , sij′), hI

(

(

1−
(

1− φj′
)κ
)

e
2π i

(

1−
(

1−εj′
)κ)

∣

∣Pj′

)〉

.

(

1−
(

1− φj
)κ
)

⊕
(

1−
(

1− φj′
)κ
)

=
(

1−
(

1− φj
)κ
)

+
(

1−
(

1− φj′
)κ
)

−
(

1−
(

1− φj
)κ
)

(

1−
(

1− φj′
)κ
)

= 2−
(

1− φj
)κ −

(

1− φj′
)κ −

[

1−
(

1− φj′
)κ −

(

1− φj
)κ+

(

1− φj
)κ(

1− φj′
)κ
]

= 2−
(

1− φj
)κ −

(

1− φj′
)κ − 1+

(

1− φj′
)κ +

(

1− φj
)κ−

(

1− φj
)κ(

1− φj′
)κ

= 1−
(

1− φj
)κ(

1− φj′
)κ
.

(

1−
(

1− εj
)κ
)

⊕
(

1−
(

1− εj′
)κ
)

= 1−
(

1− εj
)κ(

1− εj′
)κ
.

(2)

κI(bj)⊕ κI(bj′ ) =
{〈

(ρi ,max(sij , sij′)), hI

((

1−
(

1− φj
)κ(

1− φj′
)κ
)

e
2π i

(

1−(1−εj)
κ (1−εj′ )

κ
)

∣

∣PjPj′
)

〉}

.

(

I(bj)⊗ I(bj′)
)κ =

〈

(ρi , sij), hI

(

(

φjφj′
)κ

e
2π i

(

εjεj′

)κ
∣

∣

∣
PjPj′

)〉

=
〈

(ρi , sij), hI

(

(

(

φj
)κ(

φj′
)κ
)

e
2π i

(

(

εj

)κ(

εj′
)κ
)

∣

∣

∣
PjPj′

)〉

=
〈

(ρi , sij), hI

(

(

φj
)κ
e2π i

(

εj

)κ ∣
∣

∣
Pj

)〉

⊗
〈

(ρi , sij), hI

(

(

φj′
)κ
e
2π i

(

εj′
)κ ∣
∣

∣
Pj′

)〉

= I(bj)
κ ⊗ I(bj′)

κ

= R.H .S.

κ1I(bj)⊕ κ2I(bj) =
〈

(ρi , sij), hI

(

(

1−
(

1− φj
)κ1

)

e
2π i

(

1−
(

1−εj

)κ1
)

∣

∣

∣
Pj

)〉

⊕

〈

(ρi , sij), hI

(

(

1−
(

1− φj
)κ2

)

e
2π i

(

1−
(

1−εj

)κ2
)

∣

∣

∣
Pj

)〉

.
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Similarly for phase and probability terms;

This implies that:

Thus L.H.S = R.H.S
Hence κ1I(bj)⊕ κ2I(bj) = (κ1 + κ2)I(bj) . 	�  �

(8) I(bj)κ1 ⊗ I(bj)
κ2 = I(bj)

κ1+κ2

Proof  L.H.S:

Thus L.H.S = R.H.S
Hence I(bj)κ1 ⊗ I(bj)

κ2 = I(bj)
κ1+κ2 . 	�  �

Aggregation operators for CPHFNSS
In this section we will develop aggregation operators for CPHFNSSs such as CPHFNS weighted averaging aggre-
gation (CPHFNSWA) operator, generalized weighted averaging aggregation (GCPHFNSWA) operator, weighted 
geometric aggregation (CPHFNSWG) operator, and generalized weighted geometric aggregation (GCPHFN-
SWG) operator. We will also provide their theorems and related properties such as idempotency, boundedness 
and monotonicity etc. with proofs.

Definition 4.1  Let I(bj) = �(ρi , sij), hI
(

φje
2π iεj |Pj

)

� is the element of CPHFNSS, and let υ = {υ1, υ2, υ3, ..., υs} 

represents the weight vector of I(bj) (j = 1, 2, 3, ..., s), where υj ≥ 0 and 
s
∑

j=1
υj = 1 . Then the CPHFNSWA operator 

is defined as:

Theorem 4.2  Let I(bj) = �(ρi , sij), hI
(

φje
2π iεj |Pj

)

� is the element of CPHFNSS, and let υ = {υ1, υ2, υ3, ..., υs} rep-

resents the weight vector of I(bj) (j = 1, 2, 3, ..., s), where υj ≥ 0 and 
s
∑

j=1
υj = 1 . Then the CPHFNSWA operator is 

defined as:

(

1−
(

1− φj
)κ1

)

⊕
(

1−
(

1− φj
)κ2

)

=
(

1−
(

1− φj
)κ1

)

+
(

1−
(

1− φj
)κ2

)

−
(

1−
(

1− φj
)κ1

)

(

1−
(

1− φj
)κ2

)

= 2−
(

1− φj
)κ1 −

(

1− φj
)κ2 −

[

1−
(

1− φj
)κ2 −

(

1− φj
)κ1+

(

1− φj
)κ1+κ2

]

= 2−
(

1− φj
)κ1 −

(

1− φj
)κ2 − 1+

(

1− φj
)κ2 +

(

1− φj
)κ1−

(

1− φj
)κ1+κ2

= 1−
(

1− φj
)κ1+κ2 .

(

1−
(

1− εj
)κ1

)

⊕
(

1−
(

1− εj
)κ2

)

= 1−
(

1− εj
)κ1+κ2 .

κ1I(bj)⊕ κ2I(bj) =
〈

(ρi , sij), hI

(

(

1−
(

1− φj
)κ1+κ2

)

e2π i
(

1−(1−εj)
κ1+κ2

)

∣

∣Pj

)〉

= (κ1 + κ2)I(bj)

= R.H .S.

I(bj)
κ1 ⊗ I(bj′)

κ2 =
〈

(ρi , sij), hI

(

(φj)
κ1e2π i(εj)

κ1
∣

∣Pj

)

〉

⊗
〈

(ρi , sij), hI

(

(φj)
κ2e2π i(εj)

κ2
∣

∣Pj

)

〉

=
〈

(ρi , sij), hI

(

(

(φj)
κ1(φj)

κ2
)

e2π i((εj)
κ1 (εj)

κ2)
∣

∣Pj

)

〉

=
〈

(ρi , sij), hI

(

(φj)
κ1+κ2e2π i(εj)

κ1+κ2
∣

∣Pj

)

〉

= I(bj)
κ1+κ2

= R.H .S.

CPHFNSWA(I(b1), I(b2), ..., I(bs)) =
s

⊕

j=1

υjI(bj).
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Proof  We will use mathematical induction to prove on s.
• For s = 2, we have

By using operational laws, we have

We will do firstly for amplitude term;

Similarly for phase term;

Thus,

⇒
It is true for s = 2.
•
Suppose Eq. (3) holds for s = t, that is;

Consequently, the overall sum is a CPHFNS number. Continuing that,when s = t +1 , then by using opera-
tional laws, we have

Now, Eq. (3) is true for s = t + 1, thus it is true for all s. The proof is completed. 	�  �

(3)

CPHFNSWA
(

I(b1), I(b2), ..., I(bs)
)

=
s

⊕

j=1

υjI(bj)

=
〈

(

ρi ,maxsj=1sij
)

, hI

(

(

1−
s

∏

j=1

(

1− φj
)υj

)

e
2π i

(

1−
s
∏

j=1
(1−εj)

υj
)

∣

∣

∣

s
∏

j=1

Pj

)〉

.

CPHFNSWA(I(b1), I(b2)) =
2

⊕

j=1

υjI(bj) = υ1I(b1)⊕ υ2I(b2).

υ1I(b1)⊕ υ2I(b2) =
〈

(ρi , si1), hI

(

(

1− (1− φ1)
υ1
)

e2π i(1−(1−ε1)
υ1 )

∣

∣P1

)〉

⊕
〈

(ρi , si2), hI

(

(

1− (1− φ2)
υ2
)

e2π i(1−(1−ε2)
υ2 )

∣

∣P2

)〉

.

1−
(

1− φ1
)υ1 ⊕ 1−

(

1− φ2
)υ2 = 1−

(

1− φ1
)υ1 + 1−

(

1− φ2
)υ2 −

(

1−
(

1− φ1
)υ1

)(

1−
(

1− φ2
)υ2

)

= 1−
(

1−
(

1− φ1
)υ1

)(

1−
(

1− φ2
)υ2

)

.

1−
(

1− ε1
)υ1 ⊕ 1−

(

1− ε2
)υ2 = 1−

(

1−
(

1− ε1
)υ1

)(

1−
(

1− ε2
)υ2

)

.

υ1I(b1)⊕ υ2I(b2) =
〈

(

ρi ,max2j=1sij
)

, hI

((

1−
(

1− (1− φ1)
υ1
)(

1− (1− φ2)
υ2
))

e2π i(1−(1−(1−ε1)
υ1 )(1−(1−ε2)

υ2 ))
∣

∣P1P2

)

〉

.

CPHFNSWA(I(b1), I(b2), ..., I(bt)) =
t

⊕

j=1

υjI(bj)

=

〈

(

ρi ,maxtj=1sij
)

, hI

(

(

1−
t
∏

j=1

(1− φj)
υj
)

e
2π i(1−

t
∏

j=1
(1−εj)

υj )∣
∣

∣

t
∏

j=1

Pj

)

〉

.

CPHFNSWA
(

I(b1), I(b2), ..., I(bt+1)
)

=
t+1
⊕

j=1

υjI(bj)

= υ1I(b1)⊕ υ2I(b2)⊕ ...⊕ υtI(bt)⊕ υt+1I(bt+1)

=

〈

(

ρi ,maxtj=1sij
)

, hI

((

1−
t
∏

j=1

(

1− φj
)υj

)

e
2π i

(

1−
t
∏

j=1
(1−εj)

υj
)

∣

∣

t
∏

j=1

Pj

)

〉

⊕
〈

(ρi , sit+1), hI

(

(

1− (1−∅t+1)
υt+1

)

e2π i(1−(1−⊖t+1)
υt+1)

∣

∣Pt+1

)〉

=

〈

(

ρi ,maxt+1
j=1 sij

)

, hI

((

1−
t+1
∏

j=1

(

1− φj
)υj

)

e
2π i

(

1−
t+1
∏

j=1
(1−εj)

υj
)

∣

∣

t+1
∏

j=1

Pj

)

〉

.
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Property 4.3  (Idempotency) If  I(bj) (j = 1, 2, ..., s) all are equal, i.e., I(bj) = I(b) for all j , then

Proof  Let I(bj) = I(b) , and then

Since 
s
∑

j=1
υj = 1.

	�  �

Property 4.4  (Monotonicity) Let I(bj) (j = 1, 2, ..., s) and I′(bj) be the two families of CPHFNSNs. If the grading 
and hesitant elements of I(bj) ≥ I′(bj) , then

Proof  Because sij of I(bj) ≥ sij of I′(bj) and hI ≥ hI′ we could assume that φj ≥ φ′
j , εj ≥ ε′j for all j, while sum of 

probability of each hesitant element is equal to 1. As the collective outcome of CPHFNSWA operator is also an 
CPHFNSE. We will discuss the amplitude, phase and probability term separately.

Firstly, amplitude term:
As

Similarly for phase term:

Also the sum of probability of hesitant element is equal to 1. Thus,

	�  �

Property 4.5  (Boundedness) Let I(bj) (j = 1, 2, ..., s) be the two family of CPHFNS numbers. The CPHFNSWA lies 
in between the maximum and minimum operators.

Proof  Let min
(

I(b1), I(b2), ..., I(bs)
)

= b and max
(

I(b1), I(b2), ..., I(bs)
)

= B.
Since b ≤ CPHFNSWA

(

I(b1), I(b2), ..., I(bs)
)

≤ B . We get the following results by using Property 4.4.

CPHFSNWA
(

I(b1), I(b2), ..., I(bs)
)

= I(b).

CPHFNSWA
(

I(b1), I(b2), ..., I(bs)
)

= CPHFNSWA
(

I(b), I(b), ..., I(b)
)

=
s

⊕

j=1

υjI(b)

=
〈

(

ρi ,maxsj=1sij
)

, hI

(

(

1−
s

∏

j=1

(1− φ)υk
)

e
2π i(1−

s
∏

j=1
(1−ε)

υj )∣
∣

∣
P

)〉

=
〈

(ρi , sij), hI

(

(

1−
(

1− φ
)υ1+...+υs

)

e2π i
(

1−(1−ε)υ1+···+υs
)

∣

∣

∣
P

)〉

.

CPHFNSWA
(

I(b1), I(b2), ..., I(bs)
)

=
〈

(ρi , sij), hI

(

(

1− 1+ φ
)

e2π i
(

1−1+ε
)

∣

∣

∣
P

)〉

=
〈

(ρi , sij), hI

(

φ e2π i(ε)
∣

∣

∣
P
)

〉

= I(b).

CPHFNSWA
(

I(j1), I(j2), ..., I(js)
)

≥ CPHFNSWA
(

I
′(j1), I

′(j2), ..., I
′(js)

)

.

φj ≥ φ′
j

⇒ 1− φj ≤ 1− φ′
j

s
∏

j=1

(1− φj)
υj ≤

s
∏

j=1

(1− φ′
j)
υj

⇒ 1−
s

∏

j=1

(1− φj)
υj ≥ 1−

s
∏

j=1

(1− φ′
j)
υj .

1−
s

∏

j=1

(1− εj)
υj ≥ 1−

s
∏

j=1

(1− εj′)
υj .

CPHFNSWA
(

I(j1), I(j2), ..., I(js)
)

≥ CPHFNSWA
(

I
′(j1), I

′(j2), ..., I
′(js)

)

.

min
(

I(b1), I(b2), ..., I(bs)
)

≤ CPHFNSWA
(

I(b1), I(b2), ..., I(bs)
)

≤ max
(

I(b1), I(b2), ..., I(bs)
)

.

s
⊕

j=1

υjb ≤
s

⊕

j=1

υjI(bj) ≤
s

⊕

j=1

υjB.
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This implies that:

That is:

	�  �

Definition 4.6  Let I(bj) = �(ρi , sij), hI
(

φje
2π iεj |Pj

)

� is the element of CPHFNSS, and let υ = {υ1, υ2, υ3, ..., υs} 
represents the weight vector of I(bj) (j = 1, 2, 3, ..., s), where υj ≥ 0 and 

∑s
j=1 υj = 1 . Then the GCPHFNSWA 

operator is defined as:

Theorem 4.7  Let I(bj) = �(ρi , sij), hI
(

φje
2π iεj |Pj

)

� is the element of CPHFNSS, and let υ = {υ1, υ2, υ3, ..., υs} rep-

resents the weight vector of I(bj) (j = 1, 2, 3, ..., s), where υj ≥ 0 and 
s
∑

j=1
υj = 1 . Then the GCPHFNSWA operator 

is defined as:

The proof can be demonstrated analogously as above proof so we omit it.

Property 4.8  (Idempotency) If  I(bj) (j = 1, 2, ..., s) all are equal, i.e., I(bj) = I(b) for all j , then

Property 4.9  (Monotonicity) Let I(bj) (j = 1, 2, ..., s) and I′(bj) be the two families of CPHFNS numbers. If the 
grading and hesitant elements of I(bj) ≥ I′(bj) , then

Property 4.10  (Boundedness) Let I(bj) (j = 1, 2, ..., s) be the two family of CPHFNS numbers. The GCPHFNSWA 
lies in between the maximum and minimum operators.

Definition 4.11  Let I(bj) = �(ρi , sij), hI
(

φje
2π iεj |Pj

)

� is the element of CPHFNSS, and let υ = {υ1, υ2, υ3, ..., υs} 
represents the weight vector of I(bj) (j = 1, 2, 3, ..., s), where υj ≥ 0 and 

s
∑

j=1
υj = 1 . Then the CPHFNSWG opera-

tor is defined as:

Theorem 4.12  Let I(bj) = �(ρi , sij), hI
(

φje
2π iεj |Pj

)

� is the element of CPHFNSS, and let υ = {υ1, υ2, υ3, ..., υs} 
represents the weight vector of I(bj) (j = 1, 2, 3, ..., s), where υj ≥ 0 and 

s
∑

j=1
υj = 1 . Then the CPHFNSWG operator 

is defined as:

Proof  We will use mathematical induction to prove on s.
• For s = 2, we have

b ≤
s

⊕

j=1

υjI(bj) ≤ B.

min
(

I(b1), I(b2), ..., I(bs)
)

≤ CPHFSHA
(

I(b1), I(b2), ..., I(bs)
)

≤ max
(

I(b1), I(b2), ..., I(bs)
)

.

GCPHFNSWA(I(b1), I(b2), ..., I(bs)) =
(

s
⊕

j=1

υjI(bj)
κ
)

1
κ
.

GCPHFNSWA
(

I(b1), I(b2), ..., I(bs)
)

=
(

s
⊕

j=1

υjI(bj)
κ
)

1
κ

=
〈

(

ρi ,maxsj=1sij
)

, hI

(

(

1−
s

∏

j=1

(

1− φκ
j

)υj
)

1
κ
e
2π i(

(

1−
s
∏

j=1

(

1−εκj

)υj
)

1
κ
∣

∣

∣

s
∏

j=1

Pj

)〉

.

GCPHFSNWA
(

I(b1), I(b2), ..., I(bs)
)

= I(b).

GCPHFNSWA
(

I(j1), I(j2), ..., I(js)
)

≥ GCPHFNSWA
(

I
′(j1), I

′(j2), ..., I
′(js)

)

.

min
(

I(b1), I(b2), ..., I(bs)
)

≤ GCPHFNSWA
(

I(b1), I(b2), ..., I(bs)
)

≤ max
(

I(b1), I(b2), ..., I(bs)
)

.

CPHFNSWG(I(b1), I(b2), ..., I(bs)) =
s

⊗

j=1

(I(bj))
υj .

(4)

CPHFNSWG
(

I(b1), I(b2), ..., I(bs)
)

=
s

⊗

j=1

I(bj)υj

=
〈

(

ρi ,minsj=1sij
)

, hI

(

(

s
∏

j=1

φ
υj
j

)

e
2π i

( s
∏

j=1
ε
υj
j

)

∣

∣

∣

s
∏

j=1

Pj

)〉

.
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By using operational laws, we have

⇒ It is true for s = 2.
• Suppose Eq. (4) holds for s = t, that is;

Consequently, the overall sum is a CPHFNS number. Continuing that, when s = t +1 , then by using opera-
tional laws, we have

Now, Eq. (4) is true for s = t + 1, thus it is true for all s. The proof is completed. 	�  �

Property 4.13  (Idempotency) If  I(bj) (j = 1, 2, ..., s) all are equal, i.e., I(bj) = I(b) for all j , then

Proof  Let I(bj) = I(b) , and then

Since 
∑s

j=1 υj = 1.

	�  �

CPHFNSWG(I(b1), I(b2)) =
2

⊗

j=1

I(bj)
υj = I(b1)

υ1 ⊗ I(b2)
υ2 .

I(b1)
υ1 ⊗ I(b2)

υ2 =
〈

(ρi , si1), hI

(

φ
υ1
1 e

2π i
(

ε
υ1
1

)

∣

∣P1

)〉

⊗
〈

(ρi , si2), hI

(

φ
υ2
2 e

2π i
(

ε
υ2
2

)

∣

∣P2

)〉

=
〈

(

ρi ,min2j=1sij
)

, hI

(

(

φ
υ1
1 φ

υ2
2

)

e
2π i

(

ε
υ1
1 ε

υ2
2

)

∣

∣P1P2

)

〉

.

CPHFNSWG(I(b1), I(b2), ..., I(bt)) =
t

⊗

j=1

I(bj)
υj

=

〈

(

ρi ,mintj=1sij
)

, hI

(( t
∏

j=1

φ
υj
j

)

e
2π i

(

t
∏

j=1
ε
υj
j

)

∣

∣

∣

t
∏

j=1

Pj

)

〉

.

CPHFNSWA
(

I(b1), I(b2), ..., I(bt+1)
)

=
t+1
⊗

j=1

I(bj)
υj

= I(b1)
υ1 ⊗ I(b2)υ2 ⊗ ...⊗ I(bt)

υt ⊗ I(bt+1)
υt+1

=

〈

(

ρi ,mintj=1sij
)

, hI

(( t
∏

j=1

φ
υj
j

)

e
2π i

( t
∏

j=1
ε
υj
j

)

∣

∣

t
∏

j=1

Pj

)

〉

⊗
〈

(ρi , sit+1), hI

(

(

∅
υt+1
t+1

)

e
2π i

(

⊖
υt+1
t+1

)

∣

∣Pt+1

)〉

=

〈

(

ρi ,mint+1
j=1 sij

)

, hI

(( t+1
∏

j=1

φ
υj
j

)

e
2π i

( t+1
∏

j=1
ε
υj
j

)

∣

∣

t+1
∏

j=1

Pj

)

〉

.

CPHFSNWG
(

I(b1), I(b2), ..., I(bs)
)

= I(b).

CPHFNSWG
(

I(b1), I(b2), ..., I(bs)
)

= CPHFNSWG
(

I(b), I(b), ..., I(b)
)

=
s

⊗

j=1

I(b)υj

=
〈

(

ρi ,minsj=1sij
)

, hI

(

(

s
∏

j=1

φυk

)

e
2π i(

s
∏

j=1
ε
υj )∣
∣

∣
P

)〉

=
〈

(ρi , sij), hI

(

(

φυ1+...+υs
)

e2π i
(

ευ1+...+υs
)

∣

∣

∣
P

)〉

.

CPHFNSWG
(

I(b1), I(b2), ..., I(bs)
)

=
〈

(ρi , sij), hI

(

(

φ e2π i
(

ε
)

∣

∣

∣
P

)〉

=
〈

(ρi , sij), hI

(

φ e2π i(ε)
∣

∣

∣
P
)

〉

= I(b).
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Property 4.14  (Monotonicity) Let I(bj) (j = 1, 2, ..., s) and I′(bj) be the two families of CPHFNS numbers. If the 
grading and hesitant elements of I(bj) ≥ I′(bj) , then

Proof  Because sij of I(bj) ≥ sij of I′(bj) and hI ≥ hI′ we could assume that φj ≥ φ′
j , εj ≥ ε′j for all j, while sum of 

probability of each hesitant element is equal to 1. As the collective outcome of CPHFNSWG operator is also an 
CPHFNSE. We will discuss the amplitude, phase and probability term separately.

Firstly, amplitude term:
As

Similarly for phase term:

Also the sum of probability of hesitant element is equal to 1. Thus,

	�  �

Property 4.15  (Boundedness) Let I(bj) (j = 1, 2, ..., s) be the two family of CPHFNS numbers. The CPHFNSWG 
lies in between the maximum and minimum operators.

Proof  Let min
(

I(b1), I(b2), ..., I(bs)
)

= b and max
(

I(b1), I(b2), ..., I(bs)
)

= B.
Since b′ ≤ CPHFNSWG

(

I(b1), I(b2), ..., I(bs)
)

≤ B′ . We get the following results by using Property 4.14.

This implies that:

That is:

	�  �

Definition 4.16  Let I(bj) = �(ρi , sij), hI
(

φje
2π iεj |Pj

)

� is the element of CPHFNSS, and let υ = {υ1, υ2, υ3, ..., υs} 
represents the weight vector of I(bj) (j = 1, 2, 3, ..., s), where υj ≥ 0 and 

s
∑

j=1
υj = 1 . Then the GCPHFNSWG 

operator is defined as:

Theorem 4.17  Let I(bj) = �(ρi , sij), hI
(

φje
2π iεj |Pj

)

� is the element of CPHFNSS, and let υ = {υ1, υ2, υ3, ..., υs} 
represents the weight vector of I(bj) (j = 1, 2, 3, ..., s), where υj ≥ 0 and 

s
∑

j=1
υj = 1 . Then the GCPHFNSWG operator 

is defined as:

CPHFNSWG
(

I(j1), I(j2), ..., I(js)
)

≥ CPHFNSWG
(

I
′(j1), I

′(j2), ..., I
′(js)

)

.

φj ≥ φ′
j

s
∏

j=1

(φj)
υj ≥

s
∏

j=1

(φ′
j)
υj .

s
∏

j=1

(εj)
υj ≥

s
∏

j=1

(εj′)
υj .

CPHFNSWG
(

I(j1), I(j2), ..., I(js)
)

≥ CPHFNSWG
(

I
′(j1), I

′(j2), ..., I
′(js)

)

.

min
(

I(b1), I(b2), ..., I(bs)
)

≤ CPHFNSWG
(

I(b1), I(b2), ..., I(bs)
)

≤ max
(

I(b1), I(b2), ..., I(bs)
)

.

s
⊗

j=1

b′υj ≤
s

⊗

j=1

I(bj)
υj ≤

s
⊗

j=1

B′υj .

b′ ≤
s

⊗

j=1

I(bj)
υj ≤ B′.

min
(

I(b1), I(b2), ..., I(bs)
)

≤ CPHFSHG
(

I(b1), I(b2), ..., I(bs)
)

≤ max
(

I(b1), I(b2), ..., I(bs)
)

.

GCPHFNSWG(I(b1), I(b2), ..., I(bs)) =
1

κ

s
⊗

j=1

(κ(I(bj))
υj .
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The proof can be demonstrated analogously as above proof so we omit it.

Property 4.18  (Idempotency) If  I(bj) (j = 1, 2, ..., s) all are equal, i.e., I(bj) = I(b) for all j , then

Property 4.19  (Monotonicity) Let I(bj) (j = 1, 2, ..., s) and I′(bj) be the two families of CPHFNS numbers. If the 
grading and hesitant elements of I(bj) ≥ I′(bj) , then

Property 4.20  (Boundedness) Let I(bj) (j = 1, 2, ..., s) be the two family of CPHFNS numbers. The GCPHFNSWG 
lies in between the maximum and minimum operators.

Framework of multi‑parameter group decision making
In this section, we will put forth the decision-making framework that captures the ambiguity and considers 
healthcare-challenging situations while also taking into account the psychological state of the decision-makers. 
Finding the optimal solution to an issue is usually vital for achieving the greatest outcome. Algorithms are the 
process through which individuals make choices. An algorithm is a predefined, comprehensive sequence of 
actions that provides the optimal solution to a particular issue. If complete precision is desired, it is better to 
employ an algorithm since the usage of an algorithm improves accuracy and reduces the risk of mistakes.

In this work, we provide an algorithm for selecting choices using CPHF data that takes into account parameters 
and grading where we assume k distinct alternatives Z = {ρ1, ρ2, ρ3, ..., ρk} and s parameters B = {b1, b2, ..., bs} 
and the weight vectors for each parameter is υ = {υ1, υ2, υ3, ..., υs} where υj ≥ 0 , (j = 1, 2, ..., s), and 

∑s
j=1 υj = 1 . 

Consider a situation where there are y decision-makers, X = {x1, x2, ..., xy} and their assigning weight vectors 
are η = {η1, η2, η3, ..., ηy} , where ηα ≥ 0 , (α = 1, 2, ..., y), and 

∑y
α=1 ηα = 1 . 

Algorithm 5.1.

Step 1 Take as input the universal set, the set of experts, and the set of parameters with their corresponding weight vectors.

Step 2 Gather evaluation data from each specialists on the parameters of each alternative, and then construct the CPHFNSS matrix.

Step 3 Normalize the CPHFNSS matrix by using the Definition 3.9 if the criteria is cost type. While the benefit type criteria need no further 
actions.

Step 4 Use the GCPHFNSWA or GCPHFNSWG operator to aggregate the information of each parameter relative to each alternative of all 
decision-makers as follows.

X (bj) = GCPHFNSWA
(

x1(bj), x2(bj), ..., xy(bj)
)

=
( y
⊕

α=1

ηα
(

xα(bj)
)κ
)

1
κ

or

X
′(bj) = GCPHFNSWG

(

x1(bj), x2(bj), ..., xy(bj)
)

= 1
κ

y
⊗

α=1

(κ(xα(bj))
ηα

Step 5 Aggregate the parameters of each alternative, using the CPHFNSWA or CPHFNSWG operator.

Step 6 Apply the Definitions 3.14–3.17 to figure out the score for each alternative.

Step 7 Rank all viable options in decreasing order, then choose the best desirable choice as the output.

A case study in healthcare decision‑making
The prevalence of mental health issues among people in low- and middle-income nations is a growing public 
health concern. Mental health issues are widespread in South Africa, with bad childhood experiences, socioeco-
nomic position, geographical region, age, parental status, and levels of education influencing the incidence of 
mental disorder. The case study is taken from the article “ The prevalence of probable depression and probable 
anxiety, and associations with adverse childhood experiences and socio-demographics: A national survey in 
South Africa” published on 28 October in 202254 (Figs. 1, 2, 3).

In a 2009 research conducted in South Africa, a middle-income nation with large economic disparities, it 
was found that approximately 20% of people suffer from poor mental health, with fewer than 25% of this group 
ever receiving mental health therapy. According to a 2013 research, the Eastern Cape, one of the poorest regions 
in South Africa, has the highest lifetime prevalence rate of depression (31.4%). A 2018 research done in urban 
informal settlements in South Africa indicated that almost one in five women expressed moderate to severe 

GCPHFNSWG
(

I(b1), I(b2), ..., I(bs)
)

=
1

κ

s
⊗

j=1

(κ(I(bj))
υj

=
〈

(

ρi ,minsj=1sij
)

, hI

(

(

1−
(

1−
s

∏

j=1

(

1−
(

1− φj
)κ)υj

)
1
κ
)

e
2π i(

(

1−
(

1−
s
∏

j=1

(

1−
(

1−εj

)κ)υj
)

1
κ
)

∣

∣

∣

s
∏

j=1

Pj

)〉

.

GCPHFSNWG
(

I(b1), I(b2), ..., I(bs)
)

= I(b).

GCPHFNSWG
(

I(j1), I(j2), ..., I(js)
)

≥ GCPHFNSWG
(

I
′(j1), I

′(j2), ..., I
′(js)

)

.

min
(

I(b1), I(b2), ..., I(bs)
)

≤ GCPHFNSWG
(

I(b1), I(b2), ..., I(bs)
)

≤ max
(

I(b1), I(b2), ..., I(bs)
)

.
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anxiety. It has also been stated that more than 50% of South African adults had been subjected to adverse child-
hood experiences (ACEs) such as emotional or sexual abuse throughout childhood, with around forty percent 
having suffered some kind of emotional neglect before the age of eighteen54. In 2022 the cross-sectional research 
examined a nationally representative sample of people (aged 18 and above) by54. This research demonstrated that 
more than one-fourth of South Africans suffer from probable depression, with various regions having greater 
rates. During the course of nine provinces in South Africa which are graphically represented in Fig. 1 from54, a 
team of 180 experienced fieldworkers drew on a well-established network of research facilities and a streamlined 
method for coordinating their efforts to gather data. It demonstrates that 17.8% of respondents indicated prob-
able anxiety (GAD-7) and 23.6% reported significant exposure to ACE. The prevalence of probable depression, 

Figure 1.   Demographics of the nine provinces of South Africa’s population.

Figure 2.   Prevalence of mental health risk across South Africa.
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anxiety, and adverse childhood experiences varied across the country’s nine provinces, according to their findings. 
The graphical representation of this study illustrated in Fig. 2 from54. While the risk factors for mental illness are 
classified according to marital status by (A); age categories by (B); employment status by (C); household asset 
score by (D); urban city by (E); and education level by (F) is illustrated in Fig. 3 from54.

There are many different mental disorders that exist, and the exact number can vary depending on how they 
are classified and diagnosed. The most widely used classification system is the Diagnostic and Statistical Manual 
of Mental Disorders (DSM-5), which identifies and defines more than 200 different mental disorders. Inadequa-
cies in mental health treatment have been linked to a variety of factors. The absence of a comprehensive mental 
health strategy is a serious infrastructure and planning issue. So, if society wants to offer individuals with better 
healthcare and increase their level of life, it is essential that we comprehend, treat, and prevent mental disease. 
Physicians may use Algorithm 1 scores to assess a patient’s overall prognosis, and researchers can use them to 
identify specific risks faced by people with multiple mental disorders. In this case, we provide an example to 
help visualize the numerical example.

There exist two doctors for the examination of patients. Let Z = {ρ1, ρ2, ρ3, ρ4, ρ5} be the set of disorders and 
the set of the parameters consist of symptoms or clinical characteristics involved in these disorders which is 
under consideration that is, B = {b1, b2, b3} . The weight vectors for each parameter is υ = {0.25, 0.4, 0.35} where 

υj ≥ 0 , (j = 1, 2, 3), and 
3
∑

j=1
υj = 1 . R = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} be the set of ordered grades concerning the 

Figure 3.   Mental health risk stratified.
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severity of disease, where zero represents that there exist no severity of the disease while 9 indicate the entire 
severity of the disease. The doctors will collect the data in CPHFNSS as described in Step 2 where the amplitude 
term of membership grade represents the belongingness of the disease and the phase term represents the durabil-
ity of the symptom concerning the disease while probability indicates how likely is that a particular statement 
given by the patient is accurate. Their assigning weight vectors are η = {0.55, 0.45} , where ηα ≥ 0 , (α = 1, 2), 

and 
2
∑

α=1
ηα = 1 . Tables 4 and 5 represent the data collected by the doctors from the patient.

Step 3 There is no need of normalization.
Step 4 Here we will aggregate the information of all doctors with respect to each parameter of each alterna-

tive as represented in Tables 6 and 7 using GCPHFNSWA and GCPHFNSWG operator respectively and κ = 1.
Step 5 Aggregate the parameters of each alternative using υ weight vectors as represented in Table 8.
Step 6 Evaluation of score values of each alternative is represented in Table 9.
Step 7 Rank all viable options in decreasing order, then choose the best desirable choice as the output as 

presented in Table 10.
This indicates that the patient has greater chances to suffer with ρ3 mental disorder as compared to others. 

The graphical representation of the ranking is illustrated in Fig. 4.
The choice between averaging and geometric aggregation operators depends on the specific context and the 

goals of the aggregation process. Here are some general guidelines for when each operator might be preferred:
Averaging aggregation:

•	 When the input values are on the same scale and have similar magnitudes.
•	 When the input values are subject to measurement errors or other sources of variability that can be smoothed 

out by taking the average.

Geometric aggregation:

•	 When the input values are on different scales or have different magnitudes and need to be normalized or 
standardized.

•	 When the goal is to obtain an aggregate value that reflects the combined effect of multiple input values, and 
that is more sensitive to small changes in the input values.

Table 4.   Data collected by the doctor 1.

(x1,B1, 10) b1 b2 b3

ρ1

(

4,

{

0.7e2π i0.7|0.5,
0.6e2π i0.7|0.5

}) (

6,

{

0.3e2π i0.8|0.4,
0.2e2π i0.4|0.6

})

(

2,
{

0.3e2π i0.9|1
})

ρ2
(

9,
{

0.6e2π i0.6|1
})

(

0,

{

0.8e2π i0.4|0.1,
0.6e2π i0.1|0.9

}) (

8,

{

0.3e2π i0.8|0.3,
0.3e2π i0.5|0.7

})

ρ3
(

7,
{

0.4e2π i0.7|1
}) (

7,
{

0.5e2π i0.6|1
})

(

4,

{

0.4e2π i0.3|0.3,
0.5e2π i0.8|0.7

})

ρ4

(

1,

{

0.2e2π i0.9|0.4,
0.5e2π i0.3|0.6

})

(

7,
{

0.3e2π i0.8|1
}) (

3,
{

0.2e2π i0.1|1
})

ρ5

(

3,

{

0.4e2π i0.6|0.2,
0.8e2π i0.6|0.8

}) (

5,

{

0.3e2π i0.2|0.1,
0.6e2π i0.4|0.9

})

(

1,
{

0.1e2π i0.1|1
})

Table 5.   Data collected by the doctor 2.

(x2,B2, 10) b1 b2 b3

ρ1

(

3,

{

0.8e2π i0.7|0.5,
0.7e2π i0.6|0.5

})

(

7,
{

0.2e2π i0.5|1
}) (

2,
{

0.3e2π i0.9|1
})

ρ2
(

8,
{

0.5e2π i0.5|1
})

(

1,

{

0.9e2π i0.5|0.4,
0.8e2π i0.3|0.6

})

(

8,
{

0.3e2π i0.5|1
})

ρ3
(

8,
{

0.5e2π i0.7|1
}) (

7,
{

0.5e2π i0.6|1
})

(

3,

{

0.5e2π i0.6|0.4,
0.5e2π i0.8|0.6

})

ρ4

(

0,

{

0.3e2π i0.8|0.4,
0.4e2π i0.4|0.6

}) (

8,

{

0.3e2π i0.8|0.4,
0.4e2π i0.8|0.6

})

(

2,
{

0.1e2π i0.1|1
})

ρ5

(

3,

{

0.4e2π i0.6|0.2,
0.8e2π i0.6|0.8

}) (

6,

{

0.4e2π i0.3|0.2,
0.6e2π i0.5|0.8

})

(

2,
{

0.2e2π i0.1|1
})
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Comparison analysis
We devised an approach by combining the theory of constraints with multi-parameter and multiobjective deci-
sion making techniques in order to find a solution to a challenging problem that still exists in the real world. In 
the context of the CPHFNSS, we examined two different algorithms. Both approaches provide a ranked list of 
all viable options, regardless of whether or not there is a single best answer. However, none of the existing works 
are up to the task of handling the kind of information supplied by CPHFNSS to a decision maker. While the sug-
gested method is capable of handling data from pre-existing methods as well, it has the potential to significantly 
improve upon them. Several structures supplied by various researchers were compared to show how well the 
proposed method performed in contrast to the existing methods for multi-parameter group decision-making. 
The comparison is given in Table 11, which concludes that our proposed study is superior and more reliable 
than the ones currently in use.

Further, we compare our proposed method with the other methods. This method consist of the soft max-
AND operator introduced by Ashraf et al.53. The group data is represented in the Tables 12 and 13 while the 
comparison results are available in Table 14.

Upon careful examination of the table, it becomes evident that ρ3 is the most advantageous solution when 
compared to all other approaches. The observed result provides justification for the validity and applicability of 

Table 6.   Tabular representation of experts collected data.

(X ,B, 10) b1 b2 b3

ρ1









4,















0.75e2π i0.7|0.25,
0.7e2π i0.659|0.25,
0.707e2π i0.7|0.25,
0.649e2π i0.659|0.25























(

7,

{

0.257e2π i0.698|0.4,
0.2e2π i0.447|0.6

})

(

2,
{

0.3e2π i0.9|1
})

ρ2
(

9,
{

0.558e2π i0.558|1
})









1,















0.854e2π i0.447|0.04,
0.8e2π i0.357|0.06,
0.786e2π i0.309|0.36,
0.707e2π i0.196|0.54























(

8,

{

0.3e2π i0.698|0.3,
0.3e2π i0.5|0.7

})

ρ3
(

8,
{

0.447e2π i0.7|1
}) (

7,
{

0.5e2π i0.6|1
})









4,















0.447e2π i0.456|0.12,
0.447e2π i0.602|0.18,
0.5e2π i0.727|0.28,
0.5e2π i0.8|0.42























ρ4









1,















0.247e2π i0.863|0.16,
0.297e2π i0.776|0.24,
0.418e2π i0.602|0.24,
0.457e2π i0.347|0.36























(

8,

{

0.3e2π i0.8|0.4,
0.347e2π i0.8|0.6

})

(

3,
{

0.156e2π i0.1|1
})

ρ5









3,















0.4e2π i0.6|0.04,
0.634e2π i0.6|0.16,
0.672e2π i0.6|0.16,
0.8e2π i0.6|0.64































6,















0.347e2π i0.247|0.02,
0.456e2π i0.353|0.08,
0.52e2π i0.357|0.18,
0.6e2π i0.447|0.72























(

2,
{

0.146e2π i0.1|1
})

Table 7.   Tabular representation of experts collected data.

(X ′ ,B, 10) b1 b2 b3

ρ1









3,















0.743e2π i0.7|0.25,
0.7e2π i0.653|0.25,
0.683e2π i0.7|0.25,
0.643e2π i0.653|0.25























(

6,

{

0.25e2π i0.647|0.4,
0.2e2π i0.442|0.6

})

(

2,
{

0.3e2π i0.9|1
})

ρ2
(

8,
{

0.553e2π i0.553|1
})









0,















0.844e2π i0.442|0.04,
0.8e2π i0.351|0.06,
0.72e2π i0.206|0.36,
0.683e2π i0.164|0.54























(

8,

{

0.3e2π i0.647|0.3,
0.3e2π i0.5|0.7

})

ρ3
(

7,
{

0.442e2π i0.7|1
}) (

7,
{

0.5e2π i0.6|1
})









3,















0.442e2π i0.41|0.12,
0.442e2π i0.466|0.18,
0.5e2π i0.703|0.28,
0.5e2π i0.8|0.42























ρ4









0,















0.24e2π i0.854|0.16,
0.273e2π i0.625|0.24,
0.397e2π i0.466|0.24,
0.452e2π i0.341|0.36























(

7,

{

0.3e2π i0.8|0.4,
0.341e2π i0.8|0.6

})

(

2,
{

0.146e2π i0.1|1
})

ρ5









3,















0.4e2π i0.6|0.04,
0.546e2π i0.6|0.16,
0.586e2π i0.6|0.16,
0.8e2π i0.6|0.64































5,















0.341e2π i0.24|0.02,
0.41e2π i0.302|0.08,
0.5e2π i0.351|0.18,
0.6e2π i0.442|0.72























(

1,
{

0.137e2π i0.1|1
})
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Table 8.   Parametric aggregation.

Alternatives CPHFNSWA CPHFNSWG

ρ1























7,











































0.4457e2π i0.7952|0.1,
0.4198e2π i0.7885|0.1,
0.4234e2π i0.7952|0.1,
0.3964e2π i0.7885|0.1
0.4292e2π i0.7392|0.15,
0.4026e2π i0.7306|0.15,
0.4062e2π i0.7392|0.15,
0.3784e2π i0.7306|0.15























































































2,











































0.3499e2π i0.7409|0.1,
0.32e2π i0.6361|0.1,
0.3447e2π i0.7282|0.1,
0.3153e2π i0.6252|0.1
0.3426e2π i0.7409|0.15,
0.3133e2π i0.6361|0.15,
0.3375e2π i0.7282|0.15,
0.3087e2π i0.6252|0.15

































































ρ2























9,











































0.6662e2π i0.5769|0.012,
0.6219e2π i0.5505|0.018,
0.6113e2π i0.5374|0.108,
0.5596e2π i0.5085|0.162,
0.6662e2π i0.4953|0.028,
0.6219e2π i0.4637|0.042,
0.6113e2π i0.4482|0.252,
0.5596e2π i0.4137|0.378























































































1,











































0.5285e2π i0.5344|0.012,
0.5285e2π i0.4881|0.018,
0.5174e2π i0.4874|0.108,
0.5174e2π i0.4453|0.162
0.4961e2π i0.3939|0.028,
0.4961e2π i0.3598|0.042,
0.4857e2π i0.3593|0.252,
0.4857e2π i0.4402|0.378

































































ρ3









8,















0.469e2π i0.5954|0.12,
0.469e2π i0.6283|0.18,
0.4873e2π i0.6743|0.28,
0.4873e2π i0.7079|0.42































4,















0.4645e2π i0.5457|0.12,
0.4645e2π i0.571|0.18,
0.4849e2π i0.6591|0.28,
0.4849e2π i0.6896|0.42























ρ4























8,











































0.2389e2π i0.6922|0.064,
0.252e2π i0.6517|0.096,
0.2866e2π i0.5978|0.096,
0.2988e2π i0.5449|0.144,
0.2598e2π i0.6922|0.096,
0.2725e2π i0.6517|0.144,
0.3061e2π i0.5978|0.144,
0.318e2π i0.5449|0.216























































































1,











































0.2207e2π i0.3927|0.064,
0.2325e2π i0.3927|0.096,
0.228e2π i0.3632|0.096,
0.2401e2π i0.3632|0.144,
0.2504e2π i0.3376|0.096,
0.2637e2π i0.3376|0.144,
0.2586e2π i0.3123|0.144,
0.2723e2π i0.3123|0.216

































































ρ5























































6,











































































































0.2978e2π i0.3156|0.0008,
0.3794e2π i0.3156|0.0032,
0.3963e2π i0.3156|0.0072,
0.4665e2π i0.3156|0.0288,
0.3472e2π i0.3558|0.0032,
0.4231e2π i0.3558|0.0128,
0.4388e2π i0.3558|0.0288,
0.504e2π i0.3558|0.1152,
0.3792e2π i0.3576|0.0032,
0.4513e2π i0.3576|0.0128,
0.4662e2π i0.3576|0.0288,
0.5283e2π i0.3576|0.1152,
0.4228e2π i0.3953|0.0128,
0.4899e2π i0.3953|0.0512,
0.5038e2π i0.3953|0.1152,
0.5615e2π i0.3953|0.4608























































































































































































































2,











































































































0.2578e2π i0.2221|0.0008,
0.2773e2π i0.2435|0.0032,
0.3003e2π i0.2587|0.0072,
0.323e2π i0.2837|0.0288,
0.2787e2π i0.2221|0.0032,
0.2998e2π i0.2435|0.0128,
0.3246e2π i0.2587|0.0288,
0.3492e2π i0.2837|0.1152,
0.2836e2π i0.2221|0.0032,
0.305e2π i0.2435|0.0128,
0.3303e2π i0.2587|0.0288,
0.3553e2π i0.2837|0.1152,
0.3066e2π i0.2221|0.0128,
0.3298e2π i0.2435|0.0512,
0.3571e2π i0.2587|0.1152,
0.3841e2π i0.2837|0.4608

































































































































































Table 9.   Parametric aggregation.

Alternatives CPHFNSWA CPHFNSWG

ρ1 0.05681 0.01404

ρ2 0.06538 0.00638

ρ3 0.1279 0.06229

ρ4 0.04965 0.00413

ρ5 0.01882 0.00442

Table 10.   Ranking results.

CPHFNSWA CPHFNSWG

ρ3 > ρ2 > ρ1 > ρ4 > ρ5 ρ3 > ρ1 > ρ2 > ρ5 > ρ4
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Figure 4.   Ranking results.

Table 11.   Comparison with existing approaches.

Methods
Capable of making decisions 
using probability

Capable of handling two 
dimensional information

Flexible to adapt decision-
makers’ choices

Capable of integrate 
information Flexible to adapt gradings

Zadeh1 No No No No No

Torra2 No No Yes No No

Akram et al.40 No No Yes No Yes

Akram et al.55 No No Yes Yes Yes

Garg et al.56 No Yes Yes No No

Zhang et al.57 Yes No Yes Yes No

Mahmood et al.58 No Yes No No Yes

Proposed approach Yes Yes Yes Yes Yes

Table 12.   Data collected by the expert 1.

(A1,B1, 10) b1 b2 b3

ρ1

(

4,

{

0.71e2π i0.72|0.5,
0.63e2π i0.72|0.5

}) (

6,

{

0.33e2π i0.83|0.4,
0.22e2π i0.44|0.6

})

(

2,
{

0.33e2π i0.92|1
})

ρ2
(

9,
{

0.63e2π i0.63|1
})

(

0,

{

0.81e2π i0.44|0.1,
0.63e2π i0.12|0.9

}) (

8,

{

0.33e2π i0.84|0.3,
0.33e2π i0.52|0.7

})

ρ3
(

7,
{

0.44e2π i0.72|1
}) (

7,
{

0.53e2π i0.61|1
})

(

4,

{

0.43e2π i0.33|0.3,
0.53e2π i0.81|0.7

})

ρ4

(

1,

{

0.21e2π i0.92|0.4,
0.52e2π i0.33|0.6

})

(

7,
{

0.33e2π i0.82|1
}) (

3,
{

0.22e2π i0.13|1
})

ρ5

(

3,

{

0.42e2π i0.63|0.2,
0.84e2π i0.63|0.8

}) (

5,

{

0.32e2π i0.24|0.1,
0.63e2π i0.44|0.9

})

(

1,
{

0.12e2π i0.12|1
})



24

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20091  | https://doi.org/10.1038/s41598-023-45991-7

www.nature.com/scientificreports/

the presented methodology. Furthermore, the ranking results reported in this research differ from those obtained 
using other methodologies due to the limitations of these methods. Aggregation operators play a crucial role in 
the integration and manipulation of data across many domains, presenting significant benefits over specialized 
operators such as the soft max-AND and soft min-OR operators. There are many benefits associated with the 
use of aggregation operators in a broad context.

•	 In the proposed methodologies, it is feasible to assign weights to decision makers and parameters based on 
their respective levels of significance, a capability that was absent in prior approaches based on CPHFNSS.

•	 Aggregation operators have the capability to provide valuable insights into the entire decision-making process 
via the assignment of weights or degrees of priority to various aspects or criteria. This transparency assists 
decision-makers in comprehending the reasoning behind a particular decision.

•	 Aggregation operators provide the capability to manage an extensive variety of data and successfully merge 
and evaluate different criteria, which allows for entire decision-making. This task may prove to be more 
complex when using soft max-AND and soft min-OR operators.

Based on the study conducted, it becomes apparent that the two techniques presented in this research have 
notable flexibility and efficacy in comparison to existing problem-solving methodologies.

Conclusion
Depression, anxiety, drug misuse, and job-related stress are prevalent mental health issues that impact people, 
their families, coworkers, and the larger society. This research demonstrates how to use the expertise of special-
ists to determine their preferences for certain mental disorder-related characteristics. While the ambiguity and 
complexity of crises, together with the unpredictability of the external environment, may place overwhelming 
pressure on decision-makers. The most recent development of the probabilistic hesitant fuzzy set is the complex 
probabilistic hesitant fuzzy N-soft set, which aims to handle unexpected situations and psychological behaviour 
in the surrounding environment together with two-dimensional information in a single set. For this purpose, 
we introduced the concept of the complex probabilistic hesitant fuzzy N-soft set. Firstly, we discussed its basic or 
fundamental operations like extended and restricted intersection, extended and restricted union, weak comple-
ment, top and bottom weak complement, as well as aggregation operations with their properties. We developed 
the averaging and geometric aggregation operators to aggregate the information of decision makers effectively. 
Furthermore, we introduced the decision-making procedure, which provides a more accurate and quicker com-
puting procedure than existing methods. Moreover, we illustrated the examples for the identification of mental 
disorders, which provides improvements in the treatment of mental health, care quality, and hospitalizations, 
as well as the potential for enhanced population health. In the last, we compared our proposed model with the 
existing studies to show its efficacy, superiority, and applicability, as represented in Table 11. We are optimistic 
that the insights presented here will lay the groundwork for future research, innovation, and decision support 
systems that help healthcare professionals navigate mental health disorders and improve the well-being and qual-
ity of life of those affected. This study shows its research limitations. The article only gives discrete probability 
information, while continuous probability would better match the real-world situation. Thus, future studies 

Table 13.   Data collected by the expert 2.

(A2,B2, 10) b1 b2 b3

ρ1

(

3,

{

0.81e2π i0.72|0.5,
0.73e2π i0.61|0.5

})

(

7,
{

0.23e2π i0.54|1
}) (

2,
{

0.32e2π i0.93|1
})

ρ2
(

8,
{

0.51e2π i0.54|1
})

(

1,

{

0.92e2π i0.53|0.4,
0.83e2π i0.34|0.6

})

(

8,
{

0.32e2π i0.51|1
})

ρ3
(

8,
{

0.53e2π i0.72|1
}) (

7,
{

0.53e2π i0.64|1
})

(

3,

{

0.52e2π i0.63|0.4,
0.54e2π i0.81|0.6

})

ρ4

(

0,

{

0.32e2π i0.83|0.4,
0.44e2π i0.44|0.6

}) (

8,

{

0.32e2π i0.83|0.4,
0.41e2π i0.81|0.6

})

(

2,
{

0.14e2π i0.12|1
})

ρ5

(

3,

{

0.42e2π i0.62|0.2,
0.84e2π i0.62|0.8

}) (

6,

{

0.43e2π i0.32|0.2,
0.64e2π i0.54|0.8

})

(

2,
{

0.22e2π i0.13|1
})

Table 14.   Comparison with other method.

Methods Ranking

Soft max-AND ρ3 > ρ1 > ρ4 > ρ2 > ρ5

CPHFNSWG ρ3 > ρ1 > ρ2 > ρ5 > ρ4

CPHFNSWA ρ3 > ρ2 > ρ1 > ρ4 > ρ5



25

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20091  | https://doi.org/10.1038/s41598-023-45991-7

www.nature.com/scientificreports/

must focus on continuous probability information. Apart from that, we shall extend our approach to analyze 
the different applications related to emergency supply and the different tools of artificial intelligence, such as 
optimization or neural networks.

Data availability
All data generated or analysed during this study are included in this article.
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