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Identification of urinary volatile 
organic compounds as a potential 
non‑invasive biomarker 
for esophageal cancer
Qi Liu 1,2,5, Shuhai Li 3,5, Yaping Li 1,2, Longchen Yu 1,2, Yuxiao Zhao 1,2, Zhihong Wu 4*, 
Yingjing Fan 1,2, Xinyang Li 1,2, Yifeng Wang 1,2, Xin Zhang 1,2 & Yi Zhang 1,2*

Early diagnosis of esophageal cancer (EC) is extremely challenging. The study presented herein 
aimed to assess whether urinary volatile organic compounds (VOCs) may be emerging diagnostic 
biomarkers for EC. Urine samples were collected from EC patients and healthy controls (HCs). Gas 
chromatography-ion mobility spectrometry (GC-IMS) was next utilised for volatile organic compound 
detection and predictive models were constructed using machine learning algorithms. ROC curve 
analysis indicated that an 8-VOCs based machine learning model could aid the diagnosis of EC, with 
the Random Forests having a maximum AUC of 0.874 and sensitivities and specificities of 84.2% and 
90.6%, respectively. Urine VOC analysis aids in the diagnosis of EC.

Esophageal cancer (EC) is a malignant tumor originating from the epithelium of the esophagus. EC is mainly 
classified into squamous cell carcinoma and adenocarcinoma dependent on the type of pathology1. In 2020, there 
were an estimated 604,000 new cases and 544,000 deaths associated with EC worldwide2. In China, EC has the 
sixth highest incidence rate and the fifth highest mortality rate3. Although there has been a steady reduction 
in incidence in recent years, the overall disease burden is still high due to the high risk of EC to human health. 
According to statistics, over 90% of the Chinese population has squamous epithelial carcinoma, making it dif-
ficult to draw conclusions from research findings on adenocarcinoma in Western countries. In the early stages 
of its development, EC mainly presents as a choking sensation when swallowing food, a foreign body sensation, 
or difficulty in swallowing. As such, EC is often overlooked. Currently, the treatment of EC is a combination 
of surgery, radiotherapy and chemotherapy, but due to late diagnosis, most patients cannot undergo surgical 
excision4. Tumor markers play a significant role in monitoring and treating tumors. However, common biomark-
ers, such as CEA, CA 19–9 and CA 125, have low sensitivity and specificity5–7. Moreover, false positives can have 
bee reported due to nonspecific elevations in distinct digestive tract disorders8–11. The described issues often 
result in a poor prognosis for EC, with a 5-year survival rate of only 15–25%12. Thus, developing new biomarkers 
for EC represent an urgent unmet medical need.

Volatile organic compounds (VOCs) are an important component of human metabolites and can be detected 
by headspace analysis. As the occurrence of VOCs is primarily associated with oxidative stress, inflammation 
and changes in cellular metabolism, VOCs are considered to be a systemic and local biomarker that can provide 
unique information about ongoing biochemical processes and thus an individual’s health status13–15. Exploring 
changes in human VOCs has been reported to be useful in the diagnosis of tumors. VOCs detected in urine 
can be used in combination to construct an effective diagnostic model16–22 (Supplementary Table S1). Similarly, 
studies investigating diagnostic models based on VOCs detected in exhaled breath have been reported in lung 
cancer23. VOCs in bile and other samples have further been demonstrated to be useful for the diagnosis of 
tumors24.

The aim of the present study was to identify differential VOCs in patients with EC compared to healthy con-
trols (HCs) and to subsequently develop a volatile biomarker model that could aid in the early diagnosis of EC. 
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To our knowledge, we have revealed for the first time that VOC levels detected by using Gas chromatography-ion 
mobility spectrometry (GC-IMS) can be utilised as noninvasive biomarkers for the diagnosis of EC.

Results
Participant characteristics
The overall study design is shown in Fig. 1 In the discovery study, the headspace outputs from 241 urine samples 
were analyzed after 23 patients were excluded prior to surgery. Another 19 patients were excluded after post-
operative pathological confirmation. In addition, 37 HCs were excluded; the specific reasons for these exclusions 
are shown in Supplementary Fig. S1A. Finally, sample data from 162 (EC = 87, HC = 75) patients were included 
in the analysis for collation (Table 1). Similarly, in the validation study (Supplementary Fig. S1B), the headspace 
outputs of 125 urine samples were initially analyzed. Nineteen patients were excluded before the surgery and an 
additional 14 patients were excluded after postoperative pathological confirmation. Furthermore, 22 HCs were 
excluded. Finally, data from 70 patient samples (EC = 38, HC = 32) were included in the analysis (Table 1). The 
final analyzed cohort is illustrated in Supplementary Fig. S1C.

VOC profile analysis in EC and HC patients
Similar to our previous studies, substances were characterized by the retention index of the molecule and the 
drift time of its ions before being quantified by the intensity of the signal peaks24. Therefore, for each sample to 
be measured, three-dimensional data (retention index, drift time, peak strength) was obtained (Fig. 2A). The data 
was analyzed by comparing the mean of a 2D spectrogram (top view of a 3D spectrogram, with colors indicating 
peak intensity), where each “dot” (Fig. 2B) was a signal peak. The 2D coordinates of the signal peak location were 
retrieved (retention index × drift time) to characterize the compound, and the integration region was boxed to 
integrate the signal peak to obtain the peak height. Thirty-seven VOC peaks were selected based on retention 
indices and drift times (Supplementary Table S2). See Supplementary Table S3 for specific peak height values.

Diagnostic performance of urine VOCs with machine learning algorithms
We used a machine learning approach to analyze heterogeneous VOC signals in EC patients and HCs. Combined 
with the peak height of the above VOCs, four popular machine learning algorithms (random forests (RF), neural 
network (NN), support vector machines (SVM), decision trees (DT)) were used to construct diagnostic models. 
Table 2 demonstrates the results of receiver operating characteristic (ROC) analysis of the four models from the 
urine validation study. The RF model had the highest area under the curve (AUC) of 0.863, with a sensitivity of 
78.9% and a specificity of 93.8%. Note: The F1 value is the reconciled mean of the check accuracy and the check 
completeness rates, and measures the balance of precision and recall of the model. F1 = (2Precision × Recall)/
(Precision + Recall).

Estimation of importance of the urinary VOCs using Random forests analysis
The results in Table 2 are obtained from the four machine learning models based on the analysis of all 37 VOCs. 
The RF algorithm showed the most superior results, so we used RF for the final model construction in the 

Figure 1.   Flowchart of study design.
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subsequent analysis. Through RF model analysis, the top eight VOCs with Gini coefficients were further analyzed 
(Fig. 3A). Detailed importance ranking of 37 VOCs are shown in Supplementary Fig. S2. Compared to HCs, five 
that were up-regulated (2,3-Butandiol, 2-Acetylfuran, Dimethyl trisulfide, 2-Methyl-butanoic acid methyl ester, 
Methyl decanoate) and three that were down-regulated ((E)-Ethyl-2-hexenoate, 2-Isopropyl-3-methoxy pyrazine, 
Cyclohexanone-D) (Fig. 3B). In combination with these eight VOCs, we used RF to build a new diagnostic model. 
The AUC area of 8-VOCs model reached 0.874 (Fig. 4A). In addition, HCs and four EC staging groups were 

Table 1.   Patient characteristics. Data are the mean ± standard deviation or number (%). BMI body mass index, 
IQR interquartile range, SC squamous carcinoma, AC adenocarcinoma, N number.

Characteristics

EC (N = 125) HC (N = 107)

Discovery Validation Discovery Validation

Cases 87 38 75 32

Demographic data

 Age, years, means ± SD 63.9 ± 7.4 65.1 ± 8.9 57.2 ± 9.1 57.1 ± 7.6

 Gender (male) 75 (86.2) 33 (86.8) 64 (85.3) 22 (68.8)

 Body height, cm, means ± SD 168.3 ± 6.7 168.1 ± 7.2 170.3 ± 8.4 171.4 ± 8.2

 Weight, means ± SD 67.7 ± 12.4 65.7 ± 9.1 63.5 ± 5.3 62.5 ± 6.4

 BMI, medians (IQR) 23.2 (21.1–26.2) 22.9 (21.7–24.3) 22.1 (20.7–22.8) 21.4 (20.5–22.0)

 Smoking history 63 (72.4) 24 (63.2) 18 (24.0) 5 (15.6)

 Current smoking 43 (49.4) 11 (28.9) 14 (18.7) 2 (6.3)

 Alcohol history 57 (65.5) 27 (71.1) 16 (21.3) 4 (12.5)

 Current alcohol drinking 39 (44.8) 15 (39.5) 12 (16.0) 3 (9.4)

Comorbidities

 Diabetes 7 (8.0) 4 (10.5) 7 (9.3) 2 (6.3)

 Cardiovascular disease 5 (5.7) 3 (7.9) 6 (8.0) 3 (9.4)

 Respiratory disease 2 (2.3) 0 2 (2.7) 0

Pathological data

 Cancer type

  SC/AC 84/3 (96.6/3.4) 35/3 (92.1/7.9)

 Pathological stage

  I/II/III/IV
18/27/29/13 6/12/16/4

(20.7/31.1/33.3/14.9) (15.8/31.6/42.1/10.5)

 Vascular embolus or neural invasion 46 (52.9) 16 (42.1)

 Lymph node metastasis 43 (49.4) 21 (55.3)

 Differentiation degree

  G1 22 (25.3) 7 (18.4)

  G2 28 (32.2) 11 (28.9)

  G3 37 (42.5) 20 (52.6)

Figure 2.   Urine VOCs profile detected in EC and HC. (A) 3D spectral map of VOC generated by GC-IMS. (B) 
A 2D map showed the difference in the VOCs when comparing an EC sample and an HC sample so that the 
drift time and retention index of different VOCs can be intuitively observed.
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compared using the 8-VOCs model, a diagnostic model that can well distinguish the different staging groups 
from controls (Fig. 4B and Supplementary Table S4).

Urine biomarkers and pathological parameters
As shown in Table 1, in the discovery study, the majority of patients exhibited squamous carcinomas (96.6%) 
while a minority presented with adenocarcinomas (3.4%). The proportions were 51.8% and 48.2% for early 
(I + II) and advanced (III + IV) stages, respectively. As clinical stage plays an extremely important role in the 
prognosis of patients with EC, we compared the levels of these eight VOCs in controls and patients with dif-
ferent stages. Controls had higher levels of (E)-Ethyl-2-hexenoate, 2-Isopropyl-3-methoxy pyrazine and lower 
levels of 2-Acetylfuran when compared to stage I, II, III EC patients. 2-Methyl-butanoic acid methyl ester was 
significantly higher in stages III and IV than in controls, whereas no significant differences were observed in 
stages I and II (Supplementary Table S5). Regarding comparisons of VOCs among different cancer stages (Sup-
plementary Fig. S3), 2-Isopropyl-3-methoxy pyrazine provided a significantly higher peak height in patients at 
stage IV, but the difference in peak height between stages for the other VOCs was not statistically significant.

Correlation analysis of VOCs in urine
Correlation analyses demonstrated a significant differential enrichment of metabolically generated VOCs in urine 
when comparing levels in the EC and HC populations (Supplementary Fig. S4). These data suggest a different 
pattern of VOC associations between the two groups.

Discussion
In the present study, we explored the measurement of urinary VOCs for the early diagnosis of EC and subsequent 
data analysis resulted in several meaningful findings. Firstly, GC-IMS was efficient in differentiating between 
patients with EC and healthy subjects by the detection of VOCs. Secondly, a diagnostic model was constructed 
by machine learning to clarify the diagnostic value of VOCs in urine. Thirdly, eight different VOCs were identi-
fied in urine that may play a relevant role in the diagnosis of EC.

Although research regarding VOCs in EC metabolites has been ongoing for many years, there are currently 
no biomarkers for VOCs that can be utilized in clinical screening. Previous studies of VOCs in human metabo-
lites in patients diagnosed with EC versus non-cancerous subjects have differed in many aspects25–29. Broadly, 
all relevant studies have achieved a diagnostic accuracy of over 80%, and strikingly, a diagnostic model AUC 
area of 0.97 was achieved in a study exploring exhaled breath VOCs in EC. The primary categories of differential 
VOCs reported so far are aldehydes, ketones, acids and phenols, however, differences in the specific compound 
categories remains an issue. The platforms most frequently used in previous studies were selected ion flow tube 
mass spectrometry (SIFT-MS) and proton transfer reaction mass spectrometer (PTR-MS). In this regard, an 
innovative method employing GC-IMS assays in our study led to similar results. Previously, teams have used GC-
IMS to detect and characterise differences in VOCs between pancreatic, colorectal and liver cancer patients and 
their non-cancer control populations16,30,31. Of course, variation in results is present when comparing different 
metabolic platforms, sample types, and methodological procedures. These aspects will require refinement in the 
future by more extensive clinical studies in which sufficient sample data are collected, and by the development 
of standardized sample handling protocols.

A variety of metabolite VOCs have been extensively studied in previous reports. Exhaled breath is one of 
the earlier body fluid samples to be used for VOCs detection due to its ease of collection and other advantages. 
Kumar et al. clearly differentiated EC from patients with benign gastrointestinal disorders based on exhaled gas 
VOCs27,32. In addition, through a multicentre validation study, Markar et al. constructed a diagnostic model for 
5-VOCs based on the composition of butyric acid, valeric acid, hexanoic acid, butyraldehyde, and decanal by 
analysing exhaled breath samples from esophagogastric cancer patients and control patients using SIFT-MS28. 
The exploration of urinary VOCs has mainly focused on urological tumors such as prostate cancer and bladder 
cancer. Gao et al. constructed an 11-VOCs model for differentiation between prostate cancer and non-cancer 
patients based on their urinary VOCs by GC–MS assay. Gao et al. constructed an 11-VOCs model for differ-
entiation between prostate cancer and non-cancer patients based on their urinary VOCs by GC–MS assay17. 
Similarly, Tyagi’s team examined urinary VOCs in patients with prostate and bladder cancer and, in addition to 
finding differences between the tumor and control groups, the VOCs were similarly different between patients 
with the two types of tumors22. There are also studies on bile, faeces and other VOCs, which have established 
new methods for the diagnosis of cholangiocarcinoma, pancreatic cancer and colorectal cancer, respectively33–36.

Table 2.   Diagnostic performance of VOCs with machine learning algorithm. Recall is equivalent to sensitivity. 
RF random forests, NN neural network, SVM support vector machines, DT decision trees, AUC​ area under the 
curve.

Model Accuracy Precision Recall F1 Specificity AUC​

RF 0.857 0.938 0.789 0.857 0.938 0.863

NN 0.786 0.829 0.763 0.795 0.812 0.788

SVM 0.786 0.848 0.737 0.789 0.844 0.790

DT 0.829 0.906 0.763 0.829 0.906 0.835
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Unlike in previous studies, we first screened for potential diagnostic VOCs based on differences identified 
between the urine of cancer patients and of healthy patients. Four diagnostic models were used for the analysis. 
To avoid overfitting of the model, the feasibility of the model was subsequently confirmed by external valida-
tion. Afterwards, we selected the RF with the best performance as the diagnostic model for analysis, and finally 
selected eight VOCs for model construction. The effects of patient diet, medication and serious complications 
were overcome by stratification and exclusion criteria during the sample collection process. The effects of air 
exposure were limited by reducing the time taken for samples to travel from the ward to the laboratory. Stor-
age times prior to final VOC testing were kept consistent to avoid differences in long-term storage loss at low 
temperatures. Distinct to previous studies, herein we have collated a urine metabolomics database consisting of 
125 patients with EC and 107 HCs. To our knowledge, we have obtained the largest number of samples for the 
study of urinary VOCs in patients with EC.

Machine learning has been widely used in the medical field, and several medical-related algorithms are briefly 
described below37. Random forest is an idea of integrated learning, where data obtained by random sampling 
is fed into numerous weak learners and voted on to obtain the final output. Neural Networks, also known as 
Artificial Neural Networks, are algorithms that attempt to mimic the concepts of how the human brain interprets 
and draws conclusions from information using multiple layers of computation. The learning process of NNs 
can be supervised or unsupervised, and are essentially mathematical models designed to deal with complex and 
disparate information. Support Vector Machine is a supervised learning algorithm widely used in classification 
and regression tasks. The core idea of SVM is to find a hyperplane that maximises the spacing between two classes 
to achieve good classification. The decision tree algorithm is a method for approximating the value of a discrete 
function. It is a typical classification method, where the data is first processed, an inductive algorithm is used 
to generate readable rules and a decision tree, and then the new data is analysed using the decisions. Essentially 
decision tree is the process of classifying data by a set of rules.

Endogenous VOCs are primarily produced by human cells in the process of energy metabolism and oxida-
tive stress. VOCs eventually reach alveolar cells, renal epithelial cells and intestinal epithelial cells via the blood 
to be excreted, and as such they directly reflect changes in human metabolism. Many studies have confirmed 
the validity of analysis of VOC in exhaled breath for tumor diagnosis38,39. However, VOCs in exhaled breath are 
easily influenced by other airborne substances, leading to confounding of analysis. The choice of urine as study 
samples is likely to avoid interference from external factors and to yield reliable conclusions.

For the known VOCs detected, we were able to explore their relationship with tumors. The model constructed 
on the basis of the eight VOCs could distinguish them well in the urine of patients when comparing between the 
early and late stages of tumor development. These findings may suggest that certain VOCs are associated with 
the proliferative migration of tumors.

Of the VOCs associated with EC discovered in this study, some have been demonstrated to have potential 
as diagnostic biomarkers for other diseases. For instance, 2-Acetylfuran was significantly reduced in plasma 
extracellular vesicles in Severe acute pancreatitis (SAP) patients40, and dimethyl trisulfide in exhaled breath 
and 4-Heptanone in urine samples are significantly different from breast cancer patients than from non-cancer 
patients41,42. Moreover, 2-Butanone has the potential to be a biomarker for tumors associated with breast43 and 
hepatocellular carcinoma30 cancers. In addition, levels of 1-Octen-3-ol and (E)-2-nonenal have been shown to 
be significantly altered in saliva samples from oral cancer patients compared to the non-cancer patient group44. 
Meanwhile, cyclohexanone has been shown to be differentially expressed in bile samples from gallbladder cancer 
patients24 and in exhaled breath samples from breast45 and colorectal cancer patients46.

There is a growing interest in investigation of metabolite VOCs in oncology patients. Metabolites such as: 
urine, bile, exhaled breath, serum and feces have been shown to have potential diagnostic value as tumor iden-
tifiers. Unfortunately, research on the mechanisms of production of metabolite VOCs is extremely limited. 
Metabolic regulation plays a key role in cancer adaptation to oxidative stress47, and tumor cells have been 
reported to promote cancer development and progression through the readjustment of metabolic processes. The 
relationship between VOCs in urine and oxidative stress has been demonstrated15. As such, dimethyl trisulfide 
has been reported to be associated with oxidative stress48. For substance-specific changes, tumor cells are usually 

Figure 4.   ROC curves analysis for RF machine learning model. (A) The AUC area of 8-VOCs model by RF in 
validation study. (B) Identification of HCs and stage I-IV EC using 8-VOCs model.
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accompanied by elevated aldehyde dehydrogenase (ALDH) activity49, and ALDHs are known to catalyze the 
oxidation of exogenous and endogenous aldehyde substrates to their corresponding carboxylic acids50. These 
findings explain the decrease in aldehyde levels in the EC patients in our study. Moreover, changes in ketone 
levels in metabolites may be associated with altered lipid metabolism in tumor cells51.

Currently, GC-IMS is not widely used for the detection of metabolomic markers and as such, the differential 
VOCs we identified in this study may not be reproducible by other detection platforms. Those platforms for 
detecting oncology VOCs, such as Gas chromatography-mass spectrometry (GC–MS), SIFT-MS, electronic-
nose (eNose), etc. do have different advantages and disadvantages. For example, GC–MS can only be used for 
the separation and identification of low molecular weight (approx. 50–600 Da) and volatile compounds52. For 
the detection of polar, non-thermal and non-volatile metabolites, the use of chemical derivatization is required 
prior to analysis. The derivatization reaction utilised to produce volatile compounds increases the sensitivity 
and accuracy of the assay, enabling efficient analysis of hundreds of compounds53. Moreover, SIFT-MS facilitates 
real-time measurements, and while the instrument is less expensive to maintain and does not require a specialist 
to operate, it does separate fewer VOCs and consequently provides less information about VOC components54. 
The eNose assay is simple to operate, faster and cheaper, but is susceptible to interference from environmental 
factors and cannot separate single VOCs components55. Compared to the above detection platforms, GC-IMS 
not only has a high ability to separate complex components, but the ultra-sensitivity of ion mobility spectrometry 
allows it to detect very small concentrations of VOCs, while the samples do not need to be enriched and con-
centrated, maintaining their true flavour and making it suitable for rapid detection of large numbers of samples. 
In addition, the detection time of GC-IMS is considerably shorter and the accuracy of the results is significantly 
improved compared to other methods56.

Metabolomic testing in urine has proven to be an effective method for identifying biomarkers in EC. In the 
study presented herein, GC-IMS was employed to identify 8 urinary VOCs associated with EC that could accu-
rately distinguish patients with EC from healthy individuals. This study provides an experimental basis for the 
application of VOC analysis in EC, allowing it to be used in the diagnosis of EC, which has extremely promising 
clinical applications.

Limitations of the study
The limitation of this study is that the metabolic pathways of some metabolites in the results have not been 
identified. Meanwhile, the metabolic relationship between the screened markers and esophageal cancer and 
their future value for clinical diagnosis still need to be further explored. In addition, the cohort size of the study 
needs to be further expanded and multi-centre validation needs to be added.

Methods
Study population
In the discovery study, a total of 162 patients, including 87 EC patients and 75 HCs, were enrolled in Qilu Hospital 
of Shandong University from October 2021 to June 2022. Urine samples were collected from all patients before 
they were tested using GC-IMS to identify candidate VOCs prior to the construction of diagnostic models. The 
validation cohort consisted of 38 EC patients and 32 HCs enrolled at Qilu Hospital of Shandong University to 
evaluate the diagnostic model. Inclusion criteria were set as follows: (1) No patients had a history of malignancy, 
previous radiotherapy or other treatment. (2) Patients could provide fresh urine samples and complete medical 
records. (3) Patients had undergone radical resection and were pathologically examined for EC. Simultaneously, 
healthy individuals took physical examinations in our hospital and were selected to serve as the HC group. All 
individuals in the control group had normal urine, liver and kidney function indicators. No tumors or other 
major diseases were identified in individuals in the HC group. The study was carried out in accordance with the 
Declaration of Helsinki. The Ethics Committee of Shandong University’s Qilu Hospital approved this study, and 
each participant signed an informed consent form.

Ultimately, 162 urine samples were obtained for the discovery study (EC = 87, HC = 75), while 70 urine sam-
ples were collected for the validation study (EC = 38, HC = 32).

Sample preparation
The standards were purchased from Sinopharm Chemical Reagent Co., Ltd. for characterisation (including 
esters, acids, ketones, aldehydes, alkanes, ethers, alcohols, aromatic compounds and other compounds); the 
chromatographic column model was MXT-WAX, 15 m long, 0.53 mm ID, 1um film thickness, purchased from 
Restek, USA; and the GC-IMS equipment was purchased from GAS, Dortmund, Germany; High purity nitrogen, 
purity 99.999%.

Fasting urine samples were obtained from all subjects. Urine samples were collected in standard universal 
sterile specimen containers and frozen at -80 °C within 3 h. No chemicals were added to the urine prior to freez-
ing. The urine was thawed in a laboratory refrigerator at 4 °C prior to analysis and 2 ml was added to a 20 mL 
glass sample bottle with a pressurised cap.

Analysis of the VOCs
VOCs were measured using GC-IMS (“FlavorSpec” brand, Dortmund, Germany). GC-IMS pre-separates com-
plex VOC fractions in urine by GC, which is subsequently tandem with IMS, and then achieves secondary 
separation based on the mass of the ion to be measured and the one-dimensional collision cross-sectional area. 
Two-dimensional characterisation can be performed based on retention indices from GC and drift times from 
IMS, and quantification based on signal response intensity. For GC columns we use the strongly polarised column 
MXT-WAX. All samples were treated homogenously. Orthogonal experiments were performed to explore the 
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experimental parameters: the optimal sample volume was derived to be 2 mL, incubated at 100 °C for 5 min, 
and injected with 1000 μL. Firstly, 2 mL of urine was placed in each headspace vial and incubated at 100 °C for 
5 min. Subsequently, 1000 μL of gas was extracted from the headspace vial for analysis. Nitrogen was used as the 
carrier gas. IMS drift gas was maintained at 150 mL/min with the following carrier gas gradients: 0 min: 2 mL/
min; 1 min: 2 mL/min; 8 min: 100 mL/min; 10 min: 150 mL/min; 15 min: 150 mL/min. Additional primary 
parameters were as follows: T1 drift tube temperature: 45 °C; T2 gas chromatography column temperature: 80 °C; 
T3 inlet temperature: 80 °C; T4 connection line 1: 80 °C and T5 connection line 2: 45 °C.

Statistical analysis
The GC retention indices and IMS relative drift times were cross-characterised from the NIST database and the 
drift time data from the self-built IMS database. The peak positions of the compounds were confirmed by com-
parison with the peak positions of the standards and the retention indices and drift times of the compounds to 
be tested had to be consistent with the data of the standards at the same time. All compounds were named from 
the purchased NIST library of spectra.

Continuous data were analyzed using the Mann–Whitney U-test. The R programme (× 64 4.2.0) and the 
“corrplot” package was used for correlation analysis. The Mann–Whitney U test was used to compare the levels 
of each VOC. The AUC was calculated on the ROC curves using MedCalc 9.3.9.0. A tenfold cross-validation 
was used in building the four diagnostic models and was used to select the optimal model parameters. Four 
machine learning models (RF, NN, SVM, DT) were applied to model construction. RF algorithm evaluated by 
Gini coefficient. NN uses the stochastic gradient descent (SGD) optimisation algorithm. SVM uses a nonlinear 
kernel function. The C4.5 algorithm was used for the DT. The error bars in scatter plots represent the median 
and interquartile range.

Ethics declarations
The studies involving human participants were reviewed and approved by the Ethics Committee of Qilu Hospital 
of Shandong University. The study was carried out in accordance with the Declaration of Helsinki. The patients/
participants provided their written informed consent to participate in this study.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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