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Experimental investigation 
and modelling of the mechanical 
properties of palm oil fuel ash 
concrete using Scheffe’s method
Godwin Adie Akeke 1, Philip‑Edidiong Udo Inem 1, George Uwadiegwu Alaneme 2,3* & 
Efiok Etim Nyah 1

This study explores the enhancement of mechanical properties in concrete blended with palm oil fuel 
ash (POFA) through Scheffe’s optimization. The utilization of POFA as supplementary cementitious 
material in concrete has gained attention for its potential environmental benefits. Utilizing a (5,2) 
simplex‑lattice design, a systematic approach is employed for optimizing mixture proportions based 
on response parameters. The laboratory tests to evaluate concrete’s mechanical behavior were 
conducted using the computed mixture ratios from the design experimental points after 28 days of 
hydration. The results showed maximum flexural strength at 8.84 N/mm2 and compressive strength at 
31.16 N/mm2, achieved with a mix of 0.65:0.54:2.3:3.96:0.35 for cement, water, coarse aggregate, fine 
aggregate, and POFA. Additionally, maximum splitting tensile strength reached 8.84 N/mm2 with a 
mix of 0.62:0.55:2.09:3.86:0.38 for the same components. Conversely, the minimum flexural, splitting 
tensile and compressive strength within the experimental factor space was 4.25, 2.08 and 19.82 N/
mm2 respectively. The results obtained indicated a satisfactory mechanical strength performance 
at POFA replacement of 35 percent in the concrete mixture. The developed mathematical model 
was statistically validated using analysis of variance (ANOVA) at a 95% confidence interval which 
showed satisfactory prediction performance. The findings from this study provide valuable insights 
into optimizing POFA‑blended concrete for enhanced mechanical performance, offering potential 
sustainable solutions for the construction industry.

In concrete technology, the key goal is improving mechanical properties while embracing sustainability. Opti-
mization techniques are pivotal for this  purpose1. An innovative sustainable construction approach involves 
using agro waste ash in concrete, reducing environmental  impact2,3. Agro waste, from agriculture, can make 
traditional concrete eco-friendlier and more efficient. This shift diverts agricultural residues from landfills and 
enhances concrete’s performance and  sustainability4. Ashes like rice husk, sugarcane bagasse, and palm oil fuel 
gain importance. Processed, they become valuable additives in concrete, improving workability, durability, and 
strength while reducing the carbon  footprint5,6. This exploration delves into agro waste ash in concrete, from 
agricultural remnants to improving the built environment. Agro waste ash showcases sustainability and technol-
ogy synergy, guiding us towards eco-conscious construction and a greener  future7.

Scheffe mixture optimization is a systematic methodology used in various fields to enhance mixture perfor-
mance, including materials science, engineering, and  manufacturing8. It identifies optimal combinations of com-
ponents within a mixture to achieve desired outcomes, considering interactions and component  proportions9,10. 
In concrete, Scheffe optimization optimizes properties by adjusting proportions of cement, aggregates, and 
other  materials11. Researchers and engineers can efficiently design mixtures, unlocking material potential and 
achieving desired performance with minimal  experimentation12. The optimization of palm oil fuel ash (POFA) 
concrete using Scheffe’s optimization approach has garnered considerable attention in recent literature. Research-
ers have explored this methodology to enhance various mechanical and durability properties of POFA concrete, 
contributing to the advancement of sustainable construction  practices13. Hamada et al.14 investigated the use 
of response surface methodology to optimize the mechanical properties of palm oil clinker and nano-palm oil 
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fuel ash blended concrete. Moreover, Mulizar et al.15 examined the engineering characteristics of geopolymer 
mortar derived from a blend of fly ash and POFA precursor. They achieved the highest compressive strength 
of 23 MPa when adding 5% POFA to the mix. The scanning electron microscopy analysis revealed that POFA 
particles have a coarse surface texture, which adversely affected workability and extended the setting time com-
pared to fly ash-based geopolymer blends. Also, Onyia et al.16 carried out mathematical modeling of compressive 
strength in recycled ceramic tile aggregate concrete using a modified regression theory. The study explores the 
relationship between variables and compressive strength, offering insights into the properties of this sustainable 
construction material. Furthermore, The Okere et al.17 focuses on optimizing the cost of concrete mixes using 
Scheffe’s simplex lattice theory. It explores efficient mix designs to minimize costs while maintaining quality. The 
research emphasized the role of Scheffe’s optimization in aligning concrete design with sustainability goals. The 
literature on optimizing the mechanical properties of Palm Oil Fuel Ash (POFA) concrete using Scheffe’s Method 
reveals several research gaps. These gaps include the limited focus on specific properties, variability in POFA 
characteristics, the influence of environmental factors, real-world project applications, and optimization under 
various constraints. Addressing these gaps is essential for advancing the understanding and practical application 
of Scheffe’s optimization in enhancing POFA concrete’s mechanical properties while promoting sustainability 
in the construction industry.

This research explores palm oil fuel ash (POFA), a waste byproduct with potential in concrete applications, 
using Scheffe’s optimization—a statistical method. The goal is to determine the precise mix proportions and con-
ditions that enhance POFA concrete’s mechanical strength. By leveraging Scheffe’s optimization, this study aims to 
elevate POFA concrete’s mechanical properties in line with the concrete industry’s shift toward  sustainability18,19. 
Material proportions, mix design, and mechanical responses take center stage. POFA, a byproduct of the palm 
oil industry, holds promise for improving concrete properties and responsibly using industrial waste in a sus-
tainable construction  context20. Scheffe’s optimization is a statistical approach for systematically identifying the 
optimal ingredient proportions in concrete to achieve desired properties. It employs mathematical modeling and 
statistical analysis to discover the ideal combination of factors like cement, water, aggregates, and  additives21. 
In contrast, the traditional method depends on practical experience and intuition, typically requiring multiple 
trial batches and adjustments, which can be a time-consuming  process22. This study on Scheffe’s optimization of 
POFA concrete is highly relevant in sustainable construction and materials science. It employs Scheffe optimiza-
tion to enhance mechanical performance while promoting eco-conscious  practices23. The research aims to reveal 
POFA concrete’s untapped potential and establish a paradigm for optimizing concrete properties in line with 
sustainability. This journey seeks to reshape concrete’s mechanical landscape and contribute to an ecologically 
balanced construction ecosystem. Ultimately, the focus on Scheffe’s optimization for POFA concrete aligns with 
contemporary construction demands, offering stronger, sustainable, and economically viable concrete solutions 
for our evolving world.

Methodology
The methodology for this research study combines experimental design, mathematical modeling, and statistical 
validation to systematically optimize the mechanical properties of POFA concrete. Scheffe’s mixture optimization 
is a robust methodology employed to optimize the composition of POFA concrete mixtures by determining the 
ideal proportions of their  components24,25. Overall, Scheffe’s mixture optimization is a valuable tool for efficiently 
and effectively optimizing mixture compositions, reducing trial and error, and enhancing material performance. 
Key steps in Scheffe’s mixture optimization deployed in this study according to Attah et al.26:

1. Experimental Design: Designing a set of experiments with varying proportions of components in the mixture.
2. Response Variables: Identifying the properties or responses of interest that need optimization.
3. Data Collection: Conducting experiments and measuring the responses for each mixture.
4. Mathematical Modeling: Developing mathematical models to describe the relationships between component 

proportions and response variables.
5. Optimization: Using the model to find the optimal mixture proportions that yield desired response values.
6. Validation: Ensuring the optimized results are valid and reliable through additional tests or statistical analysis.

Mathematical model development
Scheffe’s concrete mixture optimization is a systematic methodology that employs Scheffe’s principles to fine-tune 
the proportions of concrete  constituents27. This approach is used to enhance specific properties of concrete, such 
as strength, durability, and workability. By systematically varying the mixture components within predefined 
ranges, engineers and researchers can determine the optimal combination that maximizes the desired properties 
while minimizing undesired  effects28,29. Scheffe’s optimization technique considers not only the individual contri-
butions of each component but also their potential interactions. This comprehensive approach allows for a more 
accurate representation of how changes in component proportions affect the overall concrete  performance30. 
Moreover, through mathematical modeling and statistical analysis, Scheffe’s concrete mixture optimization helps 
to navigate the complex relationships among ingredients, ensuring the achievement of targeted concrete proper-
ties. This method offers a powerful tool for achieving high-quality concrete formulations that align with specific 
project requirements and sustainability  goals31.

Scheffe’s mixture model reveals a distinct correlation between component levels, impacting mixture uniform-
ity. Changes in one component influence ingredient ratios for a consistent solution. Unlike regression models, it 
lacks an intercept term, assuring zero response with null factors. It adheres to a sum-to-one constraint and the 
total factor levels equate to unity, captured in Eqs. (1, 2) where  xi represents the fractions of mixture components 
and q is the total number of mixture  ingredients32.
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The assessment of mixture response properties involves employing a mathematical (polynomial) function of 
degree m-order and q, where q represents the count of mixture components. This yields a (q, m) polynomial in 
the overall structure outlined in Eq. (3) and the parameter Y represents the response  function33.

where 
(

1 ≤ i ≤ q, 1 ≤ i ≤ j ≤ q, 1 ≤ i ≤ j ≤ k ≤ q
)

 and bi is the model coefficient

Scheffe’s Simplex lattice design
Scheffe’s Simplex lattice design is a structured experimental approach used to optimize mixture compositions for 
various properties. It involves arranging experimental points in a systematic manner on a simplex lattice, where 
each point represents a specific mixture proportion. This design allows for the exploration of multiple factors 
simultaneously and accounts for their  interactions34,35. The resulting data is used to create mathematical models 
that predict how changes in component proportions affect the desired  outcomes36. A simplex is a geometrical 
shape with one more vertex than variable factor spaces (q), projected from n-dimensional space to n-1-di-
mensional coordinates. For q = 1, it’s a two-vertex line; q = 2 forms a triangle, and q = 3 creates a  tetrahedron37. 
 Scheffe28 expanded and generalized the simplex lattice design, pioneering it in mixture design. His work estab-
lished the notion of each component as a vertex within a regular simplex-lattice with q-1 factor space. Scheffe’s 
simplex lattice patterns have become a widely recognized term for lattice designs, setting the stage for optimizing 
mixture compositions. Scheffe’s Simplex lattice design is particularly useful in industries like materials science, 
where the properties of mixtures (e.g., in concrete or polymers) need to be optimized efficiently. It simplifies the 
experimentation process, reduces resource consumption, and provides insights into the complex relationships 
among mixture  components38.

A simplex design is a form of mixture design where design points are systematically positioned on a simplex 
lattice. The coordinate system employed for each ingredient’s value xi(i = 1, 2, …, q) is referred to as the simplex 
coordinate system. Here, q signifies the count of ingredients for each experimental  run45. The simplex coordinate 
system is defined as xi = 0, 1

m , 2
m , . . . 1 . The design space encompasses all rational combinations of factor values, 

where m represents the lattice degree (or dimensional space). When considering an entire factor space in the 
design, a (q, m) simplex lattice emerges, characterized by uniformly distributed and saturated  points39. Propor-
tions assigned to each factor comprise m + 1 evenly spaced levels within the simplex coordinate system, with 
all feasible combinations stemming from these component concentration values. In the scenario of a quadratic 
lattice (q, 2), where the response surface is approximated by second-degree polynomials (m = 2), the simplex 
cooinate xi = 0, 12 , . . . , 1 . is utilized, signifying 3 spaced levels. Similarly, in a full cubic mixture design model 
with m = 3, the simplex lattice coordinate xi = 0, 13 ,

2
3 , . . . , 1 indicates 4 spaced  levels40. Every combination of 

these variables is applied in an experiment run, denoted as space points  Ai,  Aij, or  Aijk for (i ≠ j ≠ k = 1, 2, 3, …, q). 
The summation of component volume fractions equates to one, and this constraint defines a regular tetrahedron 
in the simplex factor space. This arrangement is illustrated in Fig. 1.

(1)x1 + x2 + x3 + · · · + xq−1 + xq = 1

(2)
q

∑

i=1

xi = 1

(3)Y = b0 +
∑

bixi +
∑

bijxixj +
∑

bijkxixjxk +
∑

bi1,i2 . . . inxi1xi2xim

Figure 1.  Scheffe’s simplex lattice structure with 15 experimental  runs48.
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Scheffe’s factor space and components interaction
Mixture experiment designs are arrangements for response surface experiments where each component adheres 
to a scale value between 0 and 1, with the sum of components equating to one. In a mixture containing q compo-
nents, the shape and layout of experimental points are defined by q−1 component. These constraints establish a 
(q−1) dimensional design space known as a simplex. Essentially, the design space dimension is consistently one 
less than the component count (Borkowski et al., 2014). Consequently, the factor space manifests as a regular 
(q−1) dimensional  simplex41.

In a (q−1) dimensional simplex, when q = 2, two connecting points create a straight-line simplex lattice. For 
q = 3, a triangular simplex lattice forms with equal sides; similarly, q = 4 yields a tetrahedron simplex lattice. (q−1) 
dimensions shape the boundary where q components interact within a mixture. The number of design space 
points N, represented as  Ai or Aij or  Aijk for (i ≠ j ≠ k = 1, 2, 3, …, q), is determined by Eq. 3.4 in a simplex lattice 
design. This result guides the required number of experimental  runs42.

Thus, in the general canonical form of mixture models is mathematically expressed in Eqs. (5–7); for Linear, 
Second order/Quadratic and Cubic function respectively.

Substituting the values of i and j in Eq. (5) the quadratic equation for (0 ≤ i ≤ j ≤ 4) transforms to Eq. (7).

Here, bi represents the linear mixing proportion attributed to the pure blend when xi = 1 and xj = 0, where 
i  = j  = k . The expected response is denoted as E

(

y
)

 . bij . signifies the quadratic non-linear blending between 
pairs of components, featuring parameters that could demonstrate either synergistic or antagonistic blending 
effects. Similarly, bijk stands for the complete cun-linear blending coefficients among components, where param-
eters may indicate either synergistic or antagonistic blending  interactions43,44.

Derivation of Scheffe’s quadratic response function
Further expansion of Eq. 6 through the substitution of 

(

0 ≤ i ≤ j ≤ 5
)

 into the values of i and j transforms to 
Eq. (8).

Multiplying Eq. (1) by  bo we obtain a mathematical expression presented in Eq. (9)

Multiplying in succession Eq. (2) by  X1,  X2,  X3,  X4, and  X5 we get the relationship in Eq. (10)

By inserting Eqs. (9 and 10) into Eq. (8), we derived the comprehensive quadratic polynomial model structure 
for a mixture consisting of five components, resulting in the expression given in Eq. (11).

(4)N =

(

q +m− 1
)

!

m!
(

q− 1
)

!

(5)E
(

y
)

=

q
∑

i=1

bixi

(6)E
(

y
)

=

q
∑

i=1

bixi +
∑

q
∑

i<j

bijxixj

(7)E
(

y
)

=

q
∑

i=1

bixi +
∑

q
∑

i<j

bijxixj +
∑

q
∑

i<j

bijxixj
(

xi − xj
)

+
∑∑

q
∑

i<j<k

bijkxixjxk

(8)

Y = bo + b1X1 + b2X2 + b3X3 + b4X4 + b5X5

+ b11X
2
1 + b12X1X2 + b13X1X3 + b14X1X4 + b15X1X5

+ b22X
2
2 + b23X2X3 + b24X2X4 + b25X2X5

+ b33X
2
3 + b34X3X4 + b35X3X5 + b44X

2
4 + b45X4X5 + b55X

2
5

(9)b0 = b0(X1 + X2 + X3 + X4 + X5)

(10)

X2
1 = X1− X1X2 − X1X3 − X1X4 − X1X5

X2
2 = X2− X1X2 − X2X3 − X2X4 − X2X5

X2
3 = X3 − X1X3 − X2X3 − X3X4 − X3X5

X2
4 = X4 − X1X4 − X2X4 − X3X4 − X4X5

X2
5 = X5− X1X5 − X2X5 − X3X5 − X4X5
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We denote the mathematical relationship between the pure blends coefficients (βi) and the tenary blends (βij) 
as shown in Eqs. (12, 13)

Then we derive the second-degree polynomial for the response function as presented in Eq. (14).

Here, xi signifies the coded variables known as pseudo components within the mixture design, whereas βi rep-
resents the response model coefficients in Scheffe’s optimization equation. These coefficients can be denoted as 
βi  for pure or binary blends, and as βij for ternary blends or the amalgamation of mixture components. Their 
definition is formulated using the mathematical expression presented in Eq. (15)45.

Where βi = Yi and βij = 4Yij − 2Yi − 2Yj.

Actual components and pseudo components
Pseudo-components are designated as fictitious or encoded variables adopted to streamline design creation and 
model adjustment. This approach curtails the linkages between component boundaries in constrained designs, 
resulting in reduced correlations among coefficients. This is accomplished by converting actual components, Z, 
into pseudo-components, X. Essentially, pseudo-components recalibrate the restricted data space to align with 
zero as the minimum permissible value (lower bound) for each component in mixture designs, similar to Scheffe’s 
 model46. This mathematical association is illustrated in Eq. (16).

Z signifies the real components which is the actual fraction of ingredients added to the mixture for a given 
run of experiment, whereas X stands for the surrogate components, with A as the constant, represented by a 
5 × 5 matrix. The matrix A components are derived from the initial five mix ratios, forming a q× q dimensional 
matrix based on this preliminary experimental  mixture47.

Mix ratio development
The generation of initial trial mixes was initiated through a combination of expert judgment, practical experience, 
economic considerations, and insights from pertinent literature. This approach aimed to initiate the calculation 
of interaction points using Eq. (16) The aim is to find an optimal blend of mixture components that enhances 
desired properties. Scheffe’s methodology enables the identification of interactions and correlations between 
components, leading to a refined mix ratio that achieves enhanced performance in various applications such as 
concrete, materials, and other fields. By iteratively adjusting the mixture proportions and evaluating the pre-
dicted responses, the optimal mix ratio can be identified that maximizes or minimizes the desired  properties48.

Mixture formulation computation
The initial mix ratios are:

Z1 [0.95 :0.46 :2.0 :4.0 :0.05], Z2 [0.85 :0.46 :1.85 :3.75 :0.15], Z3 [0.70 :0.5 :2.15 :4.15 :0.3], Z4 
[0.65:0.55:2.25:3.92:0.35], Z5 [0.5:0.6:1.75:3.64:0.5].

The corresponding pseudo mix ratios are:
X1 [1:0:0:0:0], X2 [0:1:0:0:0], X3 [0:0:1:0:0], X4 [0:0:0:1:0], X5 [0:0:0:0:1].
Substitution of  Xi and  Zi into Eq. (16) helps to calculate the pseudo components from the corresponding 

actual mixture components.
X1 = fraction of ordinary Portland cement;  X2 = fraction of water cement ratio;  X3 = fraction of fine aggregate.
X4 = fraction of coarse aggregate;  X5 = fraction of POFA.
The matrix notation form of Eq. (16) which was utilized for computation of the components’ ratio for the 

concrete mixture.

(11)

Ŷ = (b0 + b1 + b11) X1 + (b0 + b2 + b22) X2 + (b0 + b3 + b33) X3 + (b0 + b4 + b44) X4

+ (b0 + b5 + b55) X5 + (b12− b11 − b22) X1X2 + (b13− b11 − b33) X1X3

+ (b14− b11 − b44) X1X4 + (b15− b11 − b55) X1X5 + (b23 − b22 − b33) X2X3

+ (b24 − b22 − b44) X2X4 + (b25− b11−−b55) X2X5 + (b34 − b33 − b44) X3X4

+ (b35 − b33 − b55) X3X5 + (b45 − b44 − b55) X4X5

(12)βi = b0 + bi + bii

(13)βij = bij − bii − bjj

(14)
E
(

y
)

= β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β12x1x2

+ β13x1x3 + β14x1x4 + β15x1x5 + β23x2x3 + β24x2x4

+ β25x2x5 + β34x3x4 + β35x3x5 + β45x4x5

(15)
β12 = 4Y12− 2Y1− 2Y2,β13 = 4Y13− 2Y1− 2Y3,

β14 = 4Y14− 2Y1− 2Y4,β23 = 4Y23− 2Y2− 2Y3,

β24 = 4Y24− 2Y2− 2Y4,β34 = 4Y34− 2Y3− 2Y4

(16)Z = AX
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For the first run

a11 = 0.97, a21 = 0.44, a31 = 2.18, a41 = 3.85, a51=0.03
For the second run

a12 = 0.88, a22 = 0.47, a32 = 1.89, a42 = 4.15, a52 = 0.12
For the third run

a13 = 0.74, a23 = 0.5, a33 = 2.23, a43 = 4.0, a53 = 0.26
For the fourth run

a14 = 0.65,  a24 = 0.55,  a34 = 2.30, a44 = 3.96,  a54 = 0.35
For the fifth run

a15 = 0.5,  a25 = 0.6 ,  a35 =1.95, a45 = 3.75,  a55 = 0.5
Substituting the values of the constants, we have [A] matrix.

The initial five points correspond to the vertices of the simplex factor space, while the remaining ten points 
situated within the simplex, known as interaction points, are determined by applying Eq. (16) through the fol-
lowing substitution process:

Therefore, for A12

for A13
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for A14

for A15

for A23

for A24

for A25

for A34

for A35

for A45

The computation matrix table for the mixture proportion formulation is presented in Table 1.
The mixture compositions for the experimental control points are also computed. These compositions were 

specifically designed to validate the generated Scheffe’s regression model.
for C1
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Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.5
0
0
0
0.5











=











0.735
0.52
2.065
3.785
0.265





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0
0.5
0.5
0
0











=











0.81
0.485
2.06
4.075
0.19





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0
0.5
0
0.5
0











=











0.765
0.505
2.095
4.055
0.235





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0
0.5
0
0
0.5











=











0.69
0.535
1.92
3.935
0.31





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0
0
0.5
0.5
0











=











0.695
0.52
2.265
3.98
0.305





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0
0
0.5
0
0.5











=











0.62
0.55
2.09
3.86
0.38





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0
0
0
0.5
0.5











=











0.575
0.57
2.125
3.84
0.425
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for C2

for C3

for C4

for C5

for C12

for C13











Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.3
0.3
0.3
0
0.1











=











0.827
0.483
2.085
3.972
0.173





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.3
0.3
0
0.3
0.1











=











0.8
0.495
2.106
3.96
0.2





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.3
0
0.3
0.3
0.1











=











0.758
0.504
2.208
3.915
0.242





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0
0.3
0.3
0.3
0.1











=











0.731
0.513
2.121
4.005
0.269





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.1
0
0.3
0.3
0.3











=











0.664
0.536
2.162
3.889
0.336





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.1
0.3
0
0.3
0.3











=











0.706
0.527
2.06
3.934
0.294











Table 1.  Second order mixture formulation matrix table.

Actual Pseudo

Z1 Z2 Z3 Z4 Z5 Response X1 X2 X3 X4 X5

0.97 0.44 2.18 3.85 0.03 Y1 1 0 0 0 0

0.88 0.47 1.89 4.15 0.12 Y2 0 1 0 0 0

0.74 0.5 2.23 4 0.26 Y3 0 0 1 0 0

0.65 0.54 2.3 3.96 0.35 Y4 0 0 0 1 0

0.5 0.6 1.95 3.72 0.5 Y5 0 0 0 0 1

0.925 0.455 2.035 4 0.075 Y12 0.5 0.5 0 0 0

0.855 0.47 2.205 3.925 0.145 Y13 0.5 0 0.5 0 0

0.81 0.49 2.24 3.905 0.19 Y14 0.5 0 0 0.5 0

0.735 0.52 2.065 3.785 0.265 Y15 0.5 0 0 0 0.5

0.81 0.485 2.06 4.075 0.19 Y23 0 0.5 0.5 0 0

0.765 0.505 2.095 4.055 0.235 Y24 0 0.5 0 0.5 0

0.69 0.535 1.92 3.935 0.31 Y25 0 0.5 0 0 0.5

0.695 0.52 2.265 3.98 0.305 Y34 0 0 0.5 0.5 0

0.62 0.55 2.09 3.86 0.38 Y35 0 0 0.5 0 0.5

0.575 0.57 2.125 3.84 0.425 Y45 0 0 0 0.5 0.5
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for C14

for C15

for C23

for C24

for C25

for C34

for C35

for C45

The computation matrix table for the mixture proportion formulation is presented in Table 2.











Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.1
0.3
0.3
0
0.3











=











0.733
0.515
2.039
3.946
0.267





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.1
0.3
0.3
0.3
0











=











0.778
0.497
2.144
4.018
0.222





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.25
0.25
0.25
0.25
0











=











0.81
0.4875
2.15
3.99
0.19





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.25
0.25
0.25
0

0.25











=











0.7725
0.525
2.0625
3.93
0.2275





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.25
0.25
0

0.25
0.25











=











0.75
0.5125
2.08
3.92
0.25





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.25
0

0.25
0.25
0.25











=











0.715
0.52
2.165
3.8825
0.285





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0
0.25
0.25
0.25
0.25











=











0.6925
0.5275
2.0925
3.9575
0.3075





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.2
0.2
0.2
0.2
0.2











=











0.748
0.51
2.11
3.936
0.252





















Z1

Z2

Z3

Z4

Z5











=











0.97
0.44
2.18
3.85
0.03

0.88
0.47
1.89
4.15
0.12

0.74
0.50
2.23
4.00
0.26

0.65
0.54
2.30
3.96
0.35

0.5
0.6
1.95
3.72
0.5











∗











0.3
0.3
0.3
0.1
0











=











0.842
0.477
2.12
3.96
0.158
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Test of adequacy of the model
The effectiveness of the developed Scheffe’s model is evaluated using statistical techniques, specifically through 
analysis of variance (ANOVA). These tests are applied to ascertain any disparities between the actual outcomes 
and the model-predicted results for the control  experiment49. The statistical assessment is performed separately 
for both second and third order models, with a 95% confidence level. It focuses on the achieved compressive 
and flexural strengths results. To derive the predicted values (Y-predicted) for the control test points, the model 
equation is employed by substituting the respective values of coded units  X1,  X2,  X3,  X4, and  X5

50,51.
•Null Hypothesis
There is no noteworthy distinction observed between the strength outcomes predicted by the model and 

those obtained from laboratory tests.
•Alternative Hypothesis
A considerable contrast exists between the strength outcomes projected by the model and those derived 

from laboratory testing.

Materials
Palm oil fuel ash
POFA samples shall be collected in a sack from different location within Cross River South and Central Palm 
Mill. Global Positioning System (GPS) coordinates and site photographs shall also be taken. The collected POFA 
samples shall be taken to the laboratory where it is oven dried. Sieving of the POFA samples may be necessary 
to remove all unwanted materials contained in the sample in agreement with BS 8615-1 (2019) and ASTM C618 
 standards51.

Coarse aggregates
The coarse aggregates shall be 15–22 mm grain size, obtained from Saturn quarry at Akamkpa Local Govern-
ment Area of the State.

Fine aggregates
Fine aggregates were obtained from the Calabar river and classified within the sharp sand envelope in accord-
ance with BS EN12620 specifications.

Ordinary Portland cement
Material shall be obtained from United Cement Company of Nigeria (UNICEM), Akamkpa Local Government 
Area with 32.5 grade and normal consistency of 30% in accordance with Nigerian Industrial Standard (NIS) 
444-1  requirement52.

Water
Drinkable or potable water, a crucial element, influences the mechanical and rheological characteristics of con-
crete, meeting the specifications outlined in ASTM C1602-12.

Table 2.  Second order mixture formulation matrix table for control points.

Actual Pseudo

Z1 Z2 Z3 Z4 Z5 Response X1 X2 X3 X4 X5

0.827 0.483 2.085 3.972 0.173 C1 0.3 0.3 0.3 0 0.1

0.8 0.495 2.106 3.96 0.2 C2 0.3 0.3 0 0.3 0.1

0.758 0.504 2.208 3.915 0.242 C3 0.3 0 0.3 0.3 0.1

0.731 0.513 2.121 4.005 0.269 C4 0 0.3 0.3 0.3 0.1

0.664 0.536 2.162 3.889 0.336 C5 0.1 0 0.3 0.3 0.3

0.706 0.527 2.06 3.934 0.294 C12 0.1 0.3 0 0.3 0.3

0.733 0.515 2.039 3.946 0.267 C13 0.1 0.3 0.3 0 0.3

0.778 0.497 2.144 4.018 0.222 C14 0.1 0.3 0.3 0.3 0

0.81 0.4875 2.15 3.99 0.19 C15 0.25 0.25 0.25 0.25 0

0.7725 0.5025 2.0625 3.93 0.2275 C23 0.25 0.25 0.25 0 0.25

0.75 0.5125 2.08 3.92 0.25 C24 0.25 0.25 0 0.25 0.25

0.715 0.52 2.165 3.8825 0.285 C25 0.25 0 0.25 0.25 0.25

0.6925 0.5275 2.0925 3.9575 0.3075 C34 0 0.25 0.25 0.25 0.25

0.748 0.51 2.11 3.936 0.252 C35 0.2 0.2 0.2 0.2 0.2

0.842 0.477 2.12 3.996 0.158 C45 0.3 0.3 0.3 0.1 0
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Laboratory methods
Study area
The area of study under review was tailored around the availability of the concept material in view which is 
central and southern Cross River State shown in Fig. 2. Materials for the study will be obtained from Calabar 
Municipal, Ikom and Biase Local Government Areas. The laboratory work was done in the Concrete Laboratory 
of the Cross River University of Technology (CRUTECH), Calabar.

Experimental investigation and setup
The concrete mix involves partially substituting cement in the matrix with POFA. Utilizing Scheffe’s statistical 
technique, the mix formulation was determined using the mathematical relationship between real and pseudo-
components. The target strength of 25 N/mm2 was aimed for, with a cement content of 290 kg/m3, coarse 
aggregate content of 1198.65 kg/m3, and fine aggregate content of 766.35 kg/m3 for the  design53. The concrete 
ingredients were mixed thoroughly with water to ensure uniformity before compaction and placement into the 
mold for mechanical strength assessments. Fresh concrete was also tested to evaluate setting time and work-
ability. Following this, the concrete samples were cured in a tank at room temperature for 28 days after which 
they were subjected to structural property investigations. This study aims to explore the structural attributes of 
POFA  concrete54.

Grain size distribution
Sieve analysis is a fundamental technique used to determine the grain size distribution of aggregates in con-
crete. This method involves passing a sample of aggregates through a series of sieves with progressively smaller 
openings in accordance with BS EN 933-1:2012 specification. The amount of material retained on each sieve 
is measured and used to create a particle size distribution curve. This curve provides valuable insights into the 
composition and grading of aggregates, which directly influence the properties of concrete, such as workability, 
strength, and durability. By analyzing the distribution of different particle sizes, engineers and researchers can 
optimize concrete mix designs, ensuring the right balance of coarse and fine aggregates for desired performance 
 characteristics55.

Slump tests
The slump test is a commonly employed method to assess the workability or cohesion of newly mixed concrete. 
This technique offers insights into the concrete’s capacity to flow and adapt without separation or excessive liquid 
release. Furthermore, it offers valuable insights into how effortlessly the concrete can be positioned, condensed, 
and refined during the construction process. Fresh concrete’s workability is assessed through slump tests. These 
tests adhere to the guidelines stipulated in BS EN 12350-2:200956.

Compressive strength
The compressive strength experiment is a fundamental test conducted on concrete specimens to assess their abil-
ity to withstand axial loads without failure. This procedure will be conducted on solidified concrete cubes with 
dimensions of 150mm x 150mm x 150mm, following the guidelines outlined in BS EN 12390-3:2019 for concrete 
compressive strength testing. After casting, the concrete cubes will be allowed to solidify for 24 h, followed by 
a 28-day curing period before testing. Subsequently, each cured sample will be placed between two plates in a 
Universal Test Machine (UTM), which will apply a load uniformly across the two opposing faces. The load will 
aim to flatten the sample, causing compression along the load’s direction and expansion perpendicular to it. The 

Figure 2.  (a) Nigerian map showing Cross River State. (b) Cross River State showing various L.G.A.
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loading will be incrementally increased at a rate of 140 kg/cm2 per minute until failure occurs. The compressive 
strength of each cube will then be calculated as the load at failure divided by the sample’s surface area, expressed 
mathematically as shown in Eq. (17)57,58.

where F is the applied load in (N) and A the cross-sectional area in  (mm2)

Split tensile test
The splitting tensile strength experiment is a test conducted on cylindrical concrete specimens to evaluate their 
resistance to cracking and failure under tensile stresses. The cylindrical specimens are prepared and cured for a 
specific duration, commonly 28 days. After curing, the specimens are placed horizontally in a testing machine, 
and a diametrical load is applied to the cylindrical surface following the specifications defined in BS EN 12390-
6:2019. The blended concrete mixture is filled into cylindrical molds measuring 100mm in diameter and 300mm 
in height. Following a day’s period, the specimens are extracted from the molds and transferred to a water bath 
maintained at a consistent temperature range of 23–25 °C. This step is undertaken to determine the tensile 
strength of the mixture after it has been cured for 28  days, utilizing a crushing apparatus. The splitting tensile 
strength of the specimen is calculated using the formula presented in Eq. (18)59,60

where, T = Splitting tensile strength; P = Maximum applied load; L = Length, D = Diameter.

Flexural strength
The flexural strength experiment involves subjecting concrete beams or prisms to a bending load to evaluate 
their ability to withstand applied forces. This test measures the concrete’s ability to resist bending stresses and is 
crucial for assessing its performance in structural applications. Concrete specimens, typically shaped like beams 
or prisms, are cast and cured according to standard procedures. After the curing period, these specimens are 
placed on a testing apparatus where a gradually increasing load is applied at the center of the specimen. As the 
load increases, the specimen bends until it eventually cracks and fails. The cement-POFA blended concrete were 
filled in a beam mold of 100 mm*100 mm*400 mm dimension, after 24 h the hardened samples are immersed in 
a curing tank and cured for 28 days in accordance with BS EN 12390-5:2019 requirement. The flexural strength 
response expressed in units of force per unit area, such as N/mm2 is determined using the mathematical expres-
sion in Eq. (19)61.

Here, P is the applied load at fracture; L is the beam’s length; B is the width and D is the beam’s thickness.

Results discussion and analysis
The results, discussion, and analysis of the Scheffe’s optimization of the mechanical properties of palm oil fuel 
ash (POFA) concrete reveal significant insights into the behavior and performance of the optimized concrete 
mixture. Through the utilization of Scheffe’s statistical approach, the study aimed to enhance the mechanical 
properties of concrete by incorporating POFA as a partial replacement for cement. The investigation began with 
the development of mixture ratios using mathematical models based on Scheffe’s approach. The desired char-
acteristic strength of 25 N/mm2 was chosen, and the corresponding proportions of cement, coarse aggregate, 
POFA and fine aggregate were determined. The concrete mixture was prepared by thoroughly blending these 
ingredients with water to ensure  homogeneity62,63.

Characterization of test materials
Laboratory tests were conducted on the mixture components to assess their overall engineering behaviour as 
civil construction materials. The test aggregates and admixtures underwent sieve analysis and specific gravity 
tests to evaluate their gradation and particle size distribution. Figure 3 displays the sieve analysis test outcome 
represented on a semi-log graph, depicting the variation of soil grain sizes using a cumulative frequency distri-
bution curve. The results indicate that for the coarse aggregate, the percentage passing through the sieve sizes 
10-2 mm ranges from 75.3 to 11.5%. Similarly, for the fine aggregates and POFA, the percentage passing through 
sieve sizes 2 mm–75 μm ranges from 91.4 to 0.15% and 98.67–24.55%, respectively. The coefficients of gradation 
are provided in Table 3, showing well-graded sand and gravel particles that meet the specified requirements by 
BS 882, ensuring improved concrete durability  performance64,65.

Chemical properties of the test cement and POFA
Table 4 presents the results of the chemical properties assessment of the test admixtures achieved using x-ray 
fluorescence (XRF). The findings show that POFA predominantly consists of  SiO2 (62.8%),  Al2O3 (4.6%), and 
 Fe2O3 (3.02%), totaling 70.52% by composition indicating good pozzolanic properties in line with ASTM C618, 
98 specifications. The test Portland cement and POFA under study from the obtained results, exhibit significant 
levels of calcium oxide (CaO) at 10.23% and 7.6% respectively. This abundance of CaO boosts complete hydration 
of cement, improving the mechanical strength and durability characteristics, as depicted in Table 4. The cement 

(17)σ =
F

A

(18)T = 2P/πLD

(19)F · S =
P ∗ L

2 ∗ B ∗ D2
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hydration reaction mechanism involves aluminum and silicon oxides derived from the pozzolanic material 
(POFA) blending with lime to form hydration products such as calcium silicate hydrate (C–S–H), resulting in a 
progressively harder mass over  time66,67.

Test on fresh concrete specimen
Slump test results
Laboratory tests were conducted to assess the workability properties of the freshly mixed POFA-cement blend 
concrete. The aim was to determine the place ability and workability properties of the fresh concrete mixture 
with varying ratios of POFA-cement combinations from Scheffe’s mixture design. The experimental results 
signify that the slump test value decreases with increasing POFA fractions in the concrete mixture, requiring 
more water to enhance workability. This may be due to the presence of alumino-silica content in the admixtures 
and increased surface area. The obtained experimental result is presented in a graphical plot shown in Fig. 4. 
The obtained results show that  Y1 experimental point achieved a maximum slump of 125mm with ratio of 
0.92:0.44:2.18:3.85:0.03 for cement, water, coarse agg., fine agg., and POFA respectively. In contrast,  Y5 experi-
mental point achieved a minimum slump of 41mm with mix ratio of 0.5:0.6:1.95:3.72:0.5 for cement, water, 
coarse agg., fine agg., and POFA respectively. The findings indicate a linear decrease in slump response as the 
admixture percentages in the mix increase. In the context of this study, the slump test results for palm oil fuel 
ash (POFA) concrete offer valuable insights into the concrete’s ability to flow, deform, and retain its homogeneity 
without excessive segregation or  bleeding68
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Figure 3.  Particles size distribution plot.

Table 3.  Gradation coefficients.

Test materials D10 D30 D60 Cu Cc

Coarse Agg 1.9 3.4 6 3.158 1.014

POFA 0.06 0.088 0.14 2.333 0.922

Fine Agg 0.13 0.2 0.55 4.231 0.559

Table 4.  Elemental composition of test samples using X-ray fluorescence (XRF).

Elemental Oxide POFA (%) Cement (%)

CaO 7.6 10.23

MgO 3.9 0.085

Fe2O3 3.02 6.11

Na2O 0.15 2.03

Al2O3 4.6 20.6

SiO2 62.8 51.9

SO3 0.24 0.13

LOI 9.42 3.62

TiO2 Trace 0.55

K2O Trace 2.47
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Test on the hardened concrete samples
Compressive strength Results
Concrete compressive strength results are a vital indicator of the material’s ability to withstand compressive loads 
without failure. It is a fundamental property used to assess the structural integrity and performance of concrete 
in various engineering applications. To optimize the compressive strength of POFA blended concrete, laboratory 
responses for compressive strength were collected for fifteen different mixture designs, each with three replicates 
after 28 days of curing. These values were used to develop the Scheffe’s model. Among the results,  Y4 had the 
highest compressive strength at 31.16 N/mm2, while  Y5 had the lowest at 19.82 N/mm2 (Table 5). Control points 
were also tested for model validation, with  C35 showing the highest compressive strength at 28.18 N/mm2, and 
 C45 having the lowest at 21.82 N/mm2 (Table 6). Overall, the incorporation of POFA admixtures in the concrete 
matrix led to improved mechanical strength, making it suitable for sustainable structural  applications69,70.

Flexural strength response
Concrete flexural strength results provide valuable insights into the material’s ability to resist bending or deflec-
tion when subjected to external loads. It is a critical mechanical property that reflects the concrete’s performance 
in applications where it needs to span over supports or resist bending stresses, such as in beams, slabs, and other 
structural elements. Flexural strength testing involves applying a load perpendicular to the surface of a concrete 
beam or sample until it reaches  failure61. The flexural strength laboratory responses were obtained for concrete 
beam samples of dimension 100*100*400 mm cured for 28 days, involving fifteen different mixture design 
points, each with three replicates. These values were used to develop Scheffe’s second-order regression model 
for optimizing concrete with POFA blended concrete’s flexural strength properties. Table 7 shows  Y4 had the 
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Figure 4.  Slump result.

Table 5.  Compressive strength results.

Actual Pseudo

Z1 Z2 Z3 Z4 Z5 Response X1 X2 X3 X4 X5

0.97 0.44 2.18 3.85 0.03 23.35 1 0 0 0 0

0.88 0.47 1.89 4.15 0.12 25.69 0 1 0 0 0

0.74 0.5 2.23 4 0.26 28.32 0 0 1 0 0

0.65 0.54 2.3 3.96 0.35 31.16 0 0 0 1 0

0.5 0.6 1.95 3.72 0.5 19.82 0 0 0 0 1

0.925 0.455 2.035 4 0.075 21.98 0.5 0.5 0 0 0

0.855 0.47 2.205 3.925 0.145 20.77 0.5 0 0.5 0 0

0.81 0.49 2.24 3.905 0.19 23.56 0.5 0 0 0.5 0

0.735 0.52 2.065 3.785 0.265 26.12 0.5 0 0 0 0.5

0.81 0.485 2.06 4.075 0.19 24.64 0 0.5 0.5 0 0

0.765 0.505 2.095 4.055 0.235 25.25 0 0.5 0 0.5 0

0.69 0.535 1.92 3.935 0.31 27.07 0 0.5 0 0 0.5

0.695 0.52 2.265 3.98 0.305 26.31 0 0 0.5 0.5 0

0.62 0.55 2.09 3.86 0.38 29.28 0 0 0.5 0 0.5

0.575 0.57 2.125 3.84 0.425 28.35 0 0 0 0.5 0.5
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maximum strength value at 8.84 N/mm2, while  Y5 and  Y45 had the minimum at 4.25 and 4.89 N/mm2 respectively. 
Table 8 presents control point responses for validating the regression model, where  C5 had the highest flexural 
strength at 7.91 N/mm2, and  C45 had the lowest at 4.96 N/mm2. These results demonstrate the improved strength 
performance of the concrete as POFA percentage replacement of cement in the matrix increases to about 35%71.

Spitting tensile strength response
Concrete splitting tensile strength results provide important information about the material’s ability to resist ten-
sile stresses perpendicular to the applied load. It is a critical mechanical property used to assess the performance 
and durability of concrete in applications where tensile forces are present, such as in pavements and slabs. The 
splitting tensile strength results were obtained for cylindrical concrete samples measuring 150 mm in diameter 
and 300 mm in height. The samples were cured for 28 days, and the testing involved fifteen Scheffe’s experimen-
tal design points, each with three replicates. The experimental response is shown in Table 9 which presents the 
highest strength value of 5.23 N/mm2 for  Y35, while  Y1 had the lowest at 2.08 N/mm2. Moreover, Table 10 shows 
the control point responses for validating the regression model, with  C5 having the highest strength result of 
5.06 N/mm2 and  C1 with the lowest at 3.85 N/mm2. These findings indicate that the concrete’s strength improves 
as the percentage of POFA replacement of cement in the matrix  increases45,72.

Table 6.  Compressive strength results for control points.

Actual Pseudo

Z1 Z2 Z3 Z4 Z5 Response X1 X2 X3 X4 X5

0.827 0.483 2.085 3.972 0.173 22.99 0.3 0.3 0.3 0 0.1

0.8 0.495 2.106 3.96 0.2 26.21 0.3 0.3 0 0.3 0.1

0.758 0.504 2.208 3.915 0.242 24.80 0.3 0 0.3 0.3 0.1

0.731 0.513 2.121 4.005 0.269 25.46 0 0.3 0.3 0.3 0.1

0.664 0.536 2.162 3.889 0.336 27.17 0.1 0 0.3 0.3 0.3

0.706 0.527 2.06 3.934 0.294 25.32 0.1 0.3 0 0.3 0.3

0.733 0.515 2.039 3.946 0.267 24.63 0.1 0.3 0.3 0 0.3

0.778 0.497 2.144 4.018 0.222 23.88 0.1 0.3 0.3 0.3 0

0.81 0.4875 2.15 3.99 0.19 24.55 0.25 0.25 0.25 0.25 0

0.7725 0.5025 2.0625 3.93 0.2275 25.09 0.25 0.25 0.25 0 0.25

0.75 0.5125 2.08 3.92 0.25 26.24 0.25 0.25 0 0.25 0.25

0.715 0.52 2.165 3.8825 0.285 27.36 0.25 0 0.25 0.25 0.25

0.6925 0.5275 2.0925 3.9575 0.3075 23.61 0 0.25 0.25 0.25 0.25

0.748 0.51 2.11 3.936 0.252 28.18 0.2 0.2 0.2 0.2 0.2

0.842 0.477 2.12 3.996 0.158 21.82 0.3 0.3 0.3 0.1 0

Table 7.  Flexural strength experimental response.

Actual Pseudo

Z1 Z2 Z3 Z4 Z5 Response X1 X2 X3 X4 X5

0.97 0.44 2.18 3.85 0.03 5.01 1 0 0 0 0

0.88 0.47 1.89 4.15 0.12 5.83 0 1 0 0 0

0.74 0.5 2.23 4 0.26 6.72 0 0 1 0 0

0.65 0.54 2.3 3.96 0.35 8.84 0 0 0 1 0

0.5 0.6 1.95 3.72 0.5 4.25 0 0 0 0 1

0.925 0.455 2.035 4 0.075 5.26 0.5 0.5 0 0 0

0.855 0.47 2.205 3.925 0.145 5.90 0.5 0 0.5 0 0

0.81 0.49 2.24 3.905 0.19 6.11 0.5 0 0 0.5 0

0.735 0.52 2.065 3.785 0.265 7.07 0.5 0 0 0 0.5

0.81 0.485 2.06 4.075 0.19 6.22 0 0.5 0.5 0 0

0.765 0.505 2.095 4.055 0.235 6.39 0 0.5 0 0.5 0

0.69 0.535 1.92 3.935 0.31 8.14 0 0.5 0 0 0.5

0.695 0.52 2.265 3.98 0.305 7.38 0 0 0.5 0.5 0

0.62 0.55 2.09 3.86 0.38 5.34 0 0 0.5 0 0.5

0.575 0.57 2.125 3.84 0.425 4.89 0 0 0 0.5 0.5



16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18583  | https://doi.org/10.1038/s41598-023-45987-3

www.nature.com/scientificreports/

Scheffe’s regression equation
Compressive strength
The model equation is derived by inputting the derived experimental response values into Eq. 14, which rep-
resents the relationship between the obtained response and the model coefficients, resulting in the Scheffe’s 
coefficients. These coefficient values are then substituted into Eq. (15), leading to the model equation presented 
in Eq. (20) and Table 11.

Flexural strength model equation
The regression model equation is obtained by substituting the laboratory responses for the concrete’s flexural 
strength into Eq. (15), resulting in Eq. (21) and the coefficients is shown in Table 12

(20)

Ŷcomp = 23.35X1 + 25.69X2 + 28.32X3 + 31.16X4

+ 19.82X5−10.16X1X2−20.26X1X3−14.78X1X4

+ 18.14X1X5 − 9.46X2X3 − 12.70X2X4 + 17.26X2X5

−13.72X3X4 + 20.84X3X5 + 11.44X4X5

Table 8.  Flexural strength experimental response for control points.

Actual Pseudo

Z1 Z2 Z3 Z4 Z5 Response X1 X2 X3 X4 X5

0.827 0.483 2.085 3.972 0.173 5.48 0.3 0.3 0.3 0 0.1

0.8 0.495 2.106 3.96 0.2 6.16 0.3 0.3 0 0.3 0.1

0.758 0.504 2.208 3.915 0.242 6.34 0.3 0 0.3 0.3 0.1

0.731 0.513 2.121 4.005 0.269 6.63 0 0.3 0.3 0.3 0.1

0.664 0.536 2.162 3.889 0.336 7.91 0.1 0 0.3 0.3 0.3

0.706 0.527 2.06 3.934 0.294 6.89 0.1 0.3 0 0.3 0.3

0.733 0.515 2.039 3.946 0.267 6.72 0.1 0.3 0.3 0 0.3

0.778 0.497 2.144 4.018 0.222 6.05 0.1 0.3 0.3 0.3 0

0.81 0.4875 2.15 3.99 0.19 5.78 0.25 0.25 0.25 0.25 0

0.7725 0.5025 2.0625 3.93 0.2275 6.26 0.25 0.25 0.25 0 0.25

0.75 0.5125 2.08 3.92 0.25 6.57 0.25 0.25 0 0.25 0.25

0.715 0.52 2.165 3.8825 0.285 7.23 0.25 0 0.25 0.25 0.25

0.6925 0.5275 2.0925 3.9575 0.3075 7.34 0 0.25 0.25 0.25 0.25

0.748 0.51 2.11 3.936 0.252 6.51 0.2 0.2 0.2 0.2 0.2

0.842 0.477 2.12 3.996 0.158 4.96 0.3 0.3 0.3 0.1 0

Table 9.  Splitting tensile strength experimental response.

Actual Pseudo

Z1 Z2 Z3 Z4 Z5 Response X1 X2 X3 X4 X5

0.97 0.44 2.18 3.85 0.03 2.08 1 0 0 0 0

0.88 0.47 1.89 4.15 0.12 3.65 0 1 0 0 0

0.74 0.5 2.23 4 0.26 4.49 0 0 1 0 0

0.65 0.54 2.3 3.96 0.35 5.17 0 0 0 1 0

0.5 0.6 1.95 3.72 0.5 3.24 0 0 0 0 1

0.925 0.455 2.035 4 0.075 2.56 0.5 0.5 0 0 0

0.855 0.47 2.205 3.925 0.145 3.70 0.5 0 0.5 0 0

0.81 0.49 2.24 3.905 0.19 3.89 0.5 0 0 0.5 0

0.735 0.52 2.065 3.785 0.265 4.58 0.5 0 0 0 0.5

0.81 0.485 2.06 4.075 0.19 4.01 0 0.5 0.5 0 0

0.765 0.505 2.095 4.055 0.235 4.35 0 0.5 0 0.5 0

0.69 0.535 1.92 3.935 0.31 4.92 0 0.5 0 0 0.5

0.695 0.52 2.265 3.98 0.305 4.74 0 0 0.5 0.5 0

0.62 0.55 2.09 3.86 0.38 5.23 0 0 0.5 0 0.5

0.575 0.57 2.125 3.84 0.425 4.17 0 0 0 0.5 0.5
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Splitting tensile strength model equation
The Scheffe’s quadratic model equation is derived by incorporating the experimental results for the concrete’s 
splitting tensile strength into Eq. (15), which leads to the formation of Eq. (22). The regression coefficients 
obtained from this process are presented in Table 13.

Test of adequacy and validation of developed models
Regression model validation is a crucial step in the analysis of data and the development of predictive models. 
In the context of a regression model, validation refers to the process of assessing the model’s accuracy and reli-
ability in predicting outcomes for new or unseen data. This helps in gauging the model’s generalization capability, 

(21)

Ŷflex = 5.01X1 + 5.83X2 + 6.72X3 + 8.84X4 + 4.25X5

− 0.64X1X2 + 0.14X1X3−3.26X1X4 + 9.76X1X5

− 0.22X2X3−3.78X2X4 + 12.40X2X5−1.60X3X4

− 0.58X3X5−6.62X4X5

(22)
Ŷsplit = 2.08X1 + 3.65X2 + 4.49X3 + 5.17X4 + 3.24X5

−1.22X1X2 + 1.66X1X3 + 1.06X1X4 + 7.68X1X5− 0.24X2X3

− 0.24X2X4 + 5.90X2X5− 0.36X3X4 + 5.468X3X5− 0.14X4X5

Table 10.  Splitting tensile strength experimental response for control points.

Actual Pseudo

Z1 Z2 Z3 Z4 Z5 Response X1 X2 X3 X4 X5

0.827 0.483 2.085 3.972 0.173 3.85 0.3 0.3 0.3 0 0.1

0.8 0.495 2.106 3.96 0.2 3.93 0.3 0.3 0 0.3 0.1

0.758 0.504 2.208 3.915 0.242 4.31 0.3 0 0.3 0.3 0.1

0.731 0.513 2.121 4.005 0.269 4.38 0 0.3 0.3 0.3 0.1

0.664 0.536 2.162 3.889 0.336 5.06 0.1 0 0.3 0.3 0.3

0.706 0.527 2.06 3.934 0.294 4.75 0.1 0.3 0 0.3 0.3

0.733 0.515 2.039 3.946 0.267 4.52 0.1 0.3 0.3 0 0.3

0.778 0.497 2.144 4.018 0.222 4.24 0.1 0.3 0.3 0.3 0

0.81 0.4875 2.15 3.99 0.19 3.88 0.25 0.25 0.25 0.25 0

0.7725 0.5025 2.0625 3.93 0.2275 4.29 0.25 0.25 0.25 0 0.25

0.75 0.5125 2.08 3.92 0.25 4.47 0.25 0.25 0 0.25 0.25

0.715 0.52 2.165 3.8825 0.285 4.71 0.25 0 0.25 0.25 0.25

0.6925 0.5275 2.0925 3.9575 0.3075 5.03 0 0.25 0.25 0.25 0.25

0.748 0.51 2.11 3.936 0.252 4.46 0.2 0.2 0.2 0.2 0.2

0.842 0.477 2.12 3.996 0.158 3.90 0.3 0.3 0.3 0.1 0

Table 11.  Regression model coefficient for compressive strength.

β1 β2 β3 β4 β5 β12 β13 β14 β15 β23 β24 β25 β34 β35 β45

23.35 25.69 28.32 31.16 19.82 − 10.16 − 20.26 − 14.78 18.14 − 9.46 − 12.70 17.26 − 13.72 20.84 11.44

Table 12.  Regression model coefficient for flexural strength.

β1 β2 β3 β4 β5 β12 β13 β14 β15 β23 β24 β25 β34 β35 β45

5.01 5.83 6.72 8.84 4.25 − 0.64 0.14 − 3.26 9.76 − 0.22 − 3.78 12.40 − 1.60 − 0.58 − 6.62

Table 13.  Regression model coefficient for flexural strength.

β1 β2 β3 β4 β5 β12 β13 β14 β15 β23 β24 β25 β34 β35 β45

2.08 3.65 4.49 5.17 3.24 − 1.22 1.66 1.06 7.68 − 0.24 − 0.24 5.90 − 0.36 5.46 − 0.14
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which is essential for its practical  applicability73. The control points of the experiment were employed to assess 
the accuracy of the developed Scheffe’s model using statistical assessment method such as analysis of variance 
(ANOVA). Graphical representations in Fig. 5 display a comparison between the actual experimental results 
and the values obtained from the generated regression second-order model for the compressive, flexural and 
splitting tensile strength  properties74.

Statistical evaluation of model performance using ANOVA
Statistical evaluation of model performance using ANOVA is a powerful technique commonly used to assess 
the accuracy and significance of regression models. ANOVA helps to determine whether the variation in the 
response variable can be adequately explained by the model’s predictors. It essentially compares the variability 
of the observed data to the variability of the data predicted by the regression model. The main objective is to 
evaluate whether the model’s predictors (independent variables) have a significant impact on the response vari-
able (dependent variable)75.

A significant ANOVA result indicates that the regression model is valid and provides valuable insights into the 
relationship between the predictors and the response variable. However, a non-significant ANOVA result suggests 
that the model might not be appropriate, and further investigation or model refinement may be necessary. In 
summary, ANOVA is a fundamental tool for statistical evaluation in regression analysis, helping researchers and 
analysts determine the adequacy and significance of their models, ultimately leading to better decision-making 
and insights from the  data76.

Analysis of variance (ANOVA) was carried out using Microsoft Excel statistical software which was deployed 
to evaluate the prediction performance of the developed second-order regression models for the compressive, 
flexural and splitting tensile strength optimization. This evaluation is based on the comparison of laboratory 
and model-predicted values at a 95% confidence interval, as presented in Tables 14, 15 and 16. The condition for 
assessment is as follows: if F > F crit, we reject the null hypothesis. After performing the statistical computation, 
for the compressive strength we find that F = 0.165 and F crit = 4.196. As F crit > F, we accept the null hypothesis 
with a p-value of 0.688, which is greater than the alpha value of 0.0577,78.

Similarly, for the flexural strength we obtained F = 0.538, F crit = 4.196 and p-value of 0.47. Also, we observe 
the criteria that F crit > F. finally, for the splitting tensile strength results, F = 0.000188, F crit = 4.196 and p-value 
of 0.989 was calculated which indicated that F crit > F. The statistical examination outcome showed that the 
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Figure 5.  Comparison of the developed model and experimental results.

Table 14.  ANOVA results for compressive strength.

Groups Count Sum Average Variance

lab-comp 15 377.31 25.154 2.934097

model-comp 15 373.4055 24.8937 3.226286

Source of variation SS df MS F P-value F crit

Between groups 0.508171 1 0.508171 0.16498 0.6877 4.195972

Within groups 86.24536 28 3.080191

Total 86.75353 29
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difference between the actual laboratory-derived results and the model results was not significant which signified 
that the models developed possessed good prediction  accuracy79,80.

Conclusion
The study focused on exploring the mechanical behaviour of green concrete containing palm oil fuel ash (POFA) 
through an optimization process using Scheffe’s theory. The conclusions drawn from the research findings and 
results are as follows:

1. The study employs Scheffe’s quadratic polynomial to predict mechanical properties in POFA-cement concrete. 
The model estimates strength values based on mix ratios or determines ratios for desired strengths.

2. The evaluation of the rheological properties of the freshly mixed POFA-cement blended concrete shows 
that the incorporation of admixtures led to a reduction in the slump response of the fresh blended concrete 
specimens.

3. The maximum compressive and flexural strength at 28 days were 31.16 N/mm2 and 8.84 N/mm2, achieved 
with a mix of 0.65:0.54:2.3:3.96:0.35 for cement, water, coarse aggregate, Fine aggregate and POFA respec-
tively. Additionally, splitting tensile strength reached 8.84 N/mm2 with a mix of 0.62:0.55:2.09:3.86:0.38.

4. The lowest compressive and flexural strength, at 19.82 N/mm2 and 4.25 N/mm2, was achieved with a mix 
of 0.5:0.6:0.95:3.72:0.5 for cement, water, coarse aggregate, Fine aggregate and POFA respectively. Similarly, 
splitting tensile strength was minimal at 2.08 N/mm2 with a mix of 0.97:0.44:2.18:3.85:0.03.

5. The model’s accuracy was assessed through ANOVA, revealing a strong correlation between the model’s 
predictions and the laboratory-derived control results. The strengths predicted by the model closely align 
with the corresponding experimentally observed outcomes, indicating good agreement between them.

6. Furthermore, using desired percentages of agricultural waste and their derivatives such as POFA in concrete 
production leads to cost savings, promoting sustainability, and playing a significant role in waste manage-
ment.

Research limitations

1. Limited Scope of Variables: One limitation of this research is the focus on specific variables for optimization, 
such as mix proportions and curing conditions.

2. Short-Term Evaluation: The mechanical properties of concrete were evaluated after 28 days of curing. Longer-
term studies tracking the performance over several years or decades would provide a more comprehensive 
understanding of how POFA concrete behaves over time.

3. Laboratory Setting: The research was conducted in a controlled laboratory environment. Real-world con-
struction sites may have variations in conditions that could affect the performance of POFA concrete differ-
ently. Field studies and on-site assessments could complement these findings.

4. Material Variability: The properties of POFA can vary based on its source and processing methods. Future 
research should explore how these variations impact the effectiveness of Scheffe’s optimization in different 
contexts.

Table 15.  ANOVA results for flexural strength.

Groups Count Sum Average Variance

lab-flex 15 96.83 6.455333 0.553627

model-flex 15 94.5516 6.30344 0.089781

Source of variation SS df MS F P-value F crit

Between groups 0.173037 1 0.173037 0.537876 0.469411 4.195972

Within groups 9.007713 28 0.321704

Total 9.18075 29

Table 16.  ANOVA results for splitting tensile strength.

Groups Count Sum Average Variance

lab-split 15 65.78 4.385333 0.154341

model-split 15 65.8091 4.387273 0.146169

Source of variation SS df MS F P-value F crit

Between groups 2.82E−05 1 2.82E−05 0.000188 0.989162 4.195972

Within groups 4.207138 28 0.150255

Total 4.207166 29
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Recommendations for future studies
Although the current research on Scheffe’s optimization of POFA concrete offers valuable insights, there are 
opportunities for future work to address limitations and further advance the understanding and practical imple-
mentation of this sustainable construction material. Future research on the optimization of POFA concrete using 
Scheffe’s method should encompass a broader range of variables, emphasize long-term performance, consider 
environmental and economic aspects, comprehensive life cycle assessments and focus on practical implementa-
tion in real-world construction projects. These recommendations can contribute to the sustainable advancement 
of the construction industry.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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