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A new approach for approximating 
the p‑value of a class of bivariate 
sign tests
Ibrahim A. A. Shanan 1,2, Ehab F. Abd‑Elfattah 1 & Abd El‑Raheem M. Abd El‑Raheem 1*

Bivariate data are frequently encountered in many applied fields, including econometrics, 
engineering, physiology, biology, and medicine. For bivariate analysis, a wide range of non‑parametric 
and parametric techniques can be applied. There are fewer requirements needed for non‑parametric 
procedures than for parametric ones. In this paper, the saddlepoint approximation method is 
used to approximate the exact p‑values of some non‑parametric bivariate tests. The saddlepoint 
approximation is an approximation method used to approximate the mass or density function and 
the cumulative distribution function of a random variable based on its moment generating function. 
The saddlepoint approximation method is proposed in this article as an alternative to the asymptotic 
normal approximation. A comparison between the proposed method and the normal asymptotic 
approximation method is performed by conducting Monte Carlo simulation study and analyzing three 
numerical examples representing bivariate real data sets. In general, the results of the simulation 
study show the superiority of the proposed method over the asymptotic normal approximation 
method.

Recently, several experiments have been performed based on bivariate data. As a result, bivariate data analysis 
is critical in statistical research and is typical of many studies. One of the important problems associated with 
bivariate data is the problem of testing the symmetry of the two bivariate distributions. Suppose the observed 
bivariate data takes the form Z =

{(
x1, y1

)
, . . . ,

(
xn, yn

)}
 where 

(
x1, y1

)
, . . . ,

(
xn, yn

)
 are assumed to be mutu-

ally independent from a bivariate population follow the F distribution. The problem is to test the symmetrical 
hypothesis.

Sign testing is a common method of testing symmetry. Many statisticians and those interested in statistical 
inference have made many generalizations to the univariate sign test in order to obtain the corresponding test 
in the bivariate case. Work began on this point by both  Hodges1 and  Blumen2. After that, many studies appeared 
with the aim of providing and developing the sign tests for the bivariate case. In this regard, we can point out the 
contributions of  Chatterjee3,  Kohnen4,  Dietz5, Brown and  Hettmansperger6, Oja and  Nyblom7, and Brown and 
 Hettmansperger8. Brown et al.9 discussed the concepts of bivariate sign test and bivariate medians. Larocque 
et al.10 introduced an affine-invariant modification of the Wilcoxon signed-rank test for bivariate location prob-
lems. The advantage of this test over Jan and  Randles11 test is that its asymptotic null distribution holds without 
assuming elliptical symmetry.  Samawi12 introduced a bivariate sign test for the one-sample bivariate location 
problem using a bivariate ranked set sample. Ghute and  Shirke13 developed a nonparametric control chart for 
monitoring the changes in the location of a bivariate process, the proposed chart is based on Bennett’s14 bivari-
ate sign test.

The p-value plays an important role in hypothesis tests because of its important role in determining the 
acceptance or rejection of the null hypothesis. Therefore, approximating the exact p-value with high accuracy 
is a challenge in many statistical tests. In this context, the saddlepoint approximation method is suggested to 
approximate the exact p-value of a class of bivariate tests which takes the general linear form

H0 : F
(
x, y

)
= F

(
y, x

)
for all

(
x, y

)
.
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where U i is the vector of score function based on observation of the sample, βi is the vector of indicators which 
has a sequence of ones and zeroes, and C is a constant vector possibly depending on observation of the sample.

The saddlepoint approximation method is basically just a method for approximating the density function. 
 Daniels15 was the first one who initially proposed the general application of the saddlepoint approximation for 
density function. The cumulative distribution function in the univariate case was approximated by Lugannani and 
 Rice16 depending on the proposal of Daniels.  Skovgaard17 provided a double saddlepoint approximation for the 
conditional distributions. A saddlepoint approximation for a bivariate distribution function was introduced by 
 Wang18. Abd-Elfattah19 introduced an accurate and easy approximation for the distribution function of bivariate 
class of random sum distributions using saddlepoint approximation technique. Abd-Elfattah20 approximated 
the exact permutation distribution of a class of two-sample bivariate tests using saddlepoint approximation 
technique. Abd-Elfattah21 used the saddlepoint approximation to approximate the distribution function of the 
bivariate symmetry test statistic under competing risk data. Abd El-raheem and Abd-Elfattah22,23 approximated 
the exact permutation distribution of a class of two-sample tests for cluster data under two different randomi-
zation designs. For more recent articles in the saddlepoint approximation method; see Kamal et al.24,25. In the 
end, we can mention a number of important and basic references on the subject of saddlepoint approximations, 
which highlight the importance and applications of saddlepoint approximations in many branches and fields of 
statistics, namely: Booth and  Butler26,  Strawderman27,  Butler28, Abd-Elfattah and  Butler29, Kwok and  Zheng30.

As mentioned earlier, our goal is to approximate the mid-p value of a class of bivariate sign tests. The focus 
here is on the mid p-value rather than ordinary p-value since the ordinary p-value is too conservative in compari-
son to the mid p-value, see Abd-Elfattah20. Such a class of bivariate sign tests is presented in detail in “Bivariate 
sign tests” section. The bivariate saddlepoint approximation is applied to approximate the mid-p value of a class 
of bivariate sign tests in “Bivariate saddlepoint approximations” section. “Illustrative examples and simulation 
studies” section compares the performance of the saddlepoint approximation and the asymptotic normal method 
using numerical examples and simulation studies.

Bivariate sign tests
This section presents two of the most frequently used bivariate sign tests in one sample problem. After that, 
we formulate the two statistics of such two tests in a general linear form to facilitate obtaining highly accurate 
approximation of exact p-value of such bivariate sign tests using bivariate saddlepint approximation method.

Bivariate sign test of  Blumen2

The bivariate sign test was provided by  Blumen2 to test the hypothesis that the medians of two variables have a 
specific value. This test was created to be independent of correlation between the two variables. Let 

(
xi , yi

)
 rep-

resent the bivariate sample points. In order to perform Blumen’s bivariate sign test, consider the n axes created 
by drawing a line across each 

(
xi , yi

)
 and the origin, and number the axes corresponding to the angle counter-

clockwise from the positive end of the horizontal axis. Let γi = +1 or − 1 if the data point associated with the 
ith axis is higher (lower) than the horizontal axis. The center of gravity is calculated by computing the values at 
the intersection of the standardized vectors and the unit circle. Blumen’s test statistic is given by

If the null hypothesis is true, then l1 and l2 are approximately independent normal variables with mean zero 
and variance n/2.

Let αi = γi+1
2  , then l1 and l2 in Eq. (2) become

and

where αi = {0, 1} . Now, the statistics l1 and l2 can be rewritten in the bivariate sign statistic form as

o r  i n  t h e  f o r m  ( 1 )  w i t h  βi = αi   ,  U i = 2
(
cos

(
π(i−1)

n

)
, sin

(
π(i−1)

n

))T
 a n d 

C = −
∑n

i=1

(
cos

(
π(i−1)

n

)
, sin

(
π(i−1)

n

))T
.

(1)B =

n∑

i=1

βiU i + C,

(2)l1 =

n−1∑

i=0

γicos

(
π i

n

)
and l2 =

n−1∑

i=0

γisin

(
π i

n

)
.
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(
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)
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cos
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Bivariate sign test of Brown et al.9

Brown et al.9 introduced another idea for bivariate symmetry test. Let z1, . . . , zn be a sample drawn at random 
from a bivariate distribution. Brown et al.9 meant by symmetry here that zi − µ and  µ− zi are identically dis-
tributed, where µ  is the symmetry center. Thus, the null hypothesis of bivariate symmetry is defined by

The observed data can be represented in the following form

where γi = 1 or −1 if z i is above or below the horizontal axis, respectively, ri is the ith radius, and 
0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕn ≤ π are the ordered angles.

Under the null hypothesis, P(γi = 1) = P(γi = −1) = 1
2.

Let zT = (z1, z2) , and żT = (−z2, z1) , then the gradient vector at the origin (divided by n) is given by

The statistic q becomes simpler after some simplification as following:

where wT = (w1,w2) and using  xn+i = −xi  such that:

The statistic q is asymptotic normal with mean µ = E
(
q|H0

)
= 0 and covariance matrix σ = 1

4

∑n
i=1 wiw

T
i .

Let αi = γi+1
2   then αi = {0, 1} and the statistic q becomes

It is clear that the statistic q takes the same form of the linear statistic in Eq. (1) with βi = αi , U i = wi and 
C = − 1

2

∑n
i=1wi.

Bivariate saddlepoint approximations
The permutation distribution of the general from of the bivariate sign statistic in Eq. (1) is 2n . This distribution 
can be derived from the set {β1, ...,βn} of independent and identically Bernoulli (1/2) random variables. The 
bivariate sign statistic in (1) can be written as two sign statistics as

with U i = (U1i ,U2i)
T andC = (c1, c2)

T .
Let B0 = (τ , υ) be observed value of B , it is possible to calculate the mid-p value of the statistic B at B0 as

The mid − p(B0) can be approximated using saddlepoint approximation of the bivariate CDF which was 
developed by  Wang18. The approximate formula presented by  Wang18 is an approximation of the bivariate cumula-
tive distribution function as a generalization of the approximation presented by Lugannani and  Rice16 which is the 
approximation of the univariate cumulative distribution function. Both approximations are an approximation of 
the intractable integrals resulting from calculating different forms of probabilities. These approximations totally 
depend on the cumulant generating function (CGF).

The joint CGF of b1 and  b2 is given by

Since B0 = (τ , υ) is the observed value of the statistic B , assume for fixed (τ , υ) that there exists a unique 
solution (t0, u0) of the following equation

H0 : µ = 0.

z i = γixi = γiri

(
cos(ϕi)
sin(ϕi)

)
,

q =
1

2n

n−1∑

i=1

n∑

j=i+1

sign

(∣∣∣∣
zi1 zj1
zi2 zj2

∣∣∣∣

)
(ż j − ż i) =

1

2

n−1∑

i=1

n∑

l=i+1

γiγl(γl ẋl − γiẋi).

(4)q =
1

2
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γiwi ,

wi =
1

n

n−1∑

l=1

ẋi+l .

(5)q =
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αiwi −
1

2

n∑
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wi .

b1 =

n∑

i=1

βiU1i + c1 and b2 =

n∑

i=1

βiU2i + c2,

(6)mid − p(B0) = Pr(b1 > τ , b2 > υ)+
1

2
Pr(b1 = τ , b2 = υ).

K(t, u) =

n∑

i=1

log

{
1

2
+

1

2
exp(tU1i + uU2i)

}
+ (tc1 + uc2).
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and  t = t̂0 solves the equation

where K1(t) is the CGF of b1 , and similarly it can be assumed that K2(u) is the CGF of b2.
According to the saddlepoint approximation of the bivariate CDF, the  mid − p(B0) in (6) can be approxi-

mated as

w h e r e  I11 ∼ �(τ1, υ1, ρ1)  ,  I12 ∼ �(wu0)φ(υ0)

{
υ−1
0 − (u0G)

−1
}

 ,  I21 = �(υ0)φ(τ1)

{
w
−1
u0

− t
−1

0

[Ktt(t0, u0)]
−1/2

}
,

where

(1) τ1 = sgn(̂t0)
{
−2(K1

(̂
t0
)
− t̂0τ)

}1/2
;

(2) wu0 = sgn(t0)[−2{K(t0, u0)− K2(u0)− t0τ }]
1/2;

(3) υ0 = sgn(u0)
[
−2

{
K(t0, u0)− K1

(̂
t0
)
−

(
t0 − t̂0

)
τ − u0υ

}]1/2
;

(4) b = (wu0 − τ1)/υ0;

(5) G =
[
Kuu(t, u)− (Ktu(t, u))

2/Ktt(t, u)
]1/2∣∣∣

(t0,u0)
;

(6) ρ1 = −b/(1+ b2)
1/2

;

(7) υ1 = (υ0 − bτ1)/(1+ b2)
1/2

.

Here �(., ., ρ) is the standard bivariate normal distribution, ρ is the correlation between the two components, 
and �(.) and φ(.) are the standard normal distribution and density functions.

To get, the value of the approximation in (9), some functions are required which are as follows

and

Illustrative examples and simulation studies
Three published real data sets are considered in this part to demonstrate the efficiency of the saddlepoint and 
normal approximations. Inclusive Monte Carlo simulation studies are also carried out to evaluate the accuracy 
of the saddlepoint approach compared to that of the traditional asymptotic method.

Examples
The precision of different approaches to approximate the exact p-value of bivariate sign tests may be illustrated 
using some numerical examples. As a result, three published real data sets are provided in order to compare 
the saddlepoint approximation and normal approximation methods. For Data Set 1, ten adult sons and their 
fathers participated in a study to assess eye refractions. Positive refractions indicated long-sightedness, while 
negative refractions showed near-sightedness. The sons were part of a large group collected in northern Finland 
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for infants born in 1966. Data set 1 is presented in Table 1. More details can be found about this data set in 
 Rantakallio31. We can indicate that several authors used the data presented in Table 1 to clarify some procedures 
for bivariate sign tests, for example, see Brown et al.9. Data set 2 is a simple study of twelve cotton textile workers 
who were researched by Merchant et al.32 to determine the effects of cotton dust exposure. Before and after each 
participant’s 6-h exposure to cotton dust, several factors were measured for each worker, including the change 
in closing volume and white blood cell count.  Dietz5 used data set 2 to clarify the procedures of his bivariate 
sign test. This data set was included in Table 1 of  Dietz5. Data set 3 is from Samawi et al.33. These data represent 
the bilirubin levels in jaundiced infants staying in the neonatal intensive care unit. Physicians are interested in 
jaundice because it may have a significant influence on hearing and neurological development and is a risk factor 
for death. It would be extremely beneficial to physicians if they could test the hypothesis that boys and females 
have the same median bilirubin level when weight groups are matched. The data was collected from five hospitals 
in Jordan and was limited to births in the first six months of 1997. Samawi et al.33 took fifteen pairs of male and 
female patients from the hospital records.

Table 2 shows the mid p-values for the three data sets for the  Blumen2 and Brown et al.9 bivariate sign tests. 
Furthermore, the asymptotic normal p-values and saddlepoint p-values are also displayed in Table 2. In the 
remainder of this article, we refer to the  Blumen2 and Brown et al.9 tests by test 1 and test 2, respectively. The 
simulated mid p-value (Sim) is derived based on 106 permutations of the indicators { βi } by computing the ratio 
of cases in which B exceeds B0 plus half the ratio of cases in which B equals to B0.

In all three data sets, the saddle point approximation outperformed the normal approximation in terms of 
the simulated mid p-value precision.

Monte Carlo simulation study
Monte Carlo simulation studies are used to show the accuracy of the saddlepoint approximation over a wide 
range of simulated data from different bivariate distributions and different sample sizes. 1000 bivariate data 
sets of sizes n = 20, 30, 40, and 60 are generated from the bivariate exponential distribution, bivariate logistic 
distribution, bivariate normal distribution and bivariate Poisson distribution. For generating bivariate data from 
normal and Poisson distributions, three cases are taken into account for the correlation coefficient between the 
two variables: weak, moderate, and strong. While the data are generated from the bivariate exponential and 
logistic distributions assuming independence between the two variables. For the four distributions the following 
results “Sad.P.”, “E.Sad.”, and “E.Nor.” are presented in Tables 3, 4, 5 and 6, where “Sad.P.” is the proportion of the 
1000 data sets for which the saddlepoint p-value is closer to the simulated exact mid p-value than the normal, 

Table 1.  Refraction values for ten sons with their father.

Son Father Deviation

Right eye Left eye Right eye Left eye x1 x2

 + 0.50  + 0.50  − 0.62  − 1.25  + 1.12  + 1.75

 − 2.75  − 3.37  − 1.00  − 1.00  − 1.75  − 2.37

 + 0.25 0.00  + 2.75  + 2.75  − 2.50  − 2.75

 − 0.50  − 0.25  − 2.00  − 1.50  + 1.50  + 1.25

 + 0.75  + 0.50  + 0.50  + 0.63  + 0.25  − 0.13

 − 2.50  − 2.75  + 0.50  + 0.50  − 3.00  − 3.25

 + 0.50  + 0.25  + 2.00  + 2.50  − 1.50  − 2.25

 − 1.00  − 3.12  − 2.50  − 2.62  + 1.50  − 0.50

 − 3.37  − 2.37  − 1.75  − 1.75  − 1.62  − 0.62

 + 0.50  + 0.50  + 1.50  + 2.25  − 1.00  − 1.75

Table 2.  Simulated, saddlepoint and normal p-values for the three data sets.

Data set Approximation method p-value of test 1 p-value of test 2

Set 1

Simulation 0.028526 0.140301

Saddlepoint 0.025114 0.163803

Normal 0.024715 0.191185

Set 2

Simulation 0.0335290 0.000122

Saddlepoint 0.0336029 0.000092

Normal 0.0348106 0.000262

Set 3

Simulation 0.004873 0.291819

Saddlepoint 0.004813 0.291004

Normal 0.005380 0.285886
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“E.Sad.” is the average relative absolute error of the saddlepoint approximation, and “E.Nor.” is the average rela-
tive absolute error of the normal approximation. The estimated type I error and power of the considered tests at 
the 0.05 significance level are displayed in Tables 7 and 8, respectively.

We notice from Tables 3, 4, 5 and 6 that the mean absolute error of the proposed approximation method is 
less than that of the normal approximation method in all the assumed cases. Moreover, we can note that the 
convergence percentage of suggested approximation to the simulated exact p-values was not in any case less 

Table 3.  The results of the comparison between the saddlepoint method and the normal approximation 
method based on simulated data from bivariate normal distribution with correlation coefficient ρ.

Test

n 20 30 40 60

ρ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

Test 1

Sad.P 90.3 90.6 95.7 86.9 89.1 92.1 85.9 86.1 87.9 78.9 77.6 83.1

E.sad. 0.003 0.017 0.186 0.003 0.016 0.044 0.002 0.033 0.053 0.001 0.016 0.047

E.Nor. 0.027 0.197 0.721 0.0125 0.114 0.498 0.010 0.144 0.258 0.003 0.055 0.137

Test 2

Sad.P 94.6 94.3 93.9 94.5 96.2 98.6 92.8 95.5 91.0 89.6 93.5 96.6

E.sad. 0.009 0.012 0.599 0.009 0.023 0.008 0.013 0.019 0.812 0.019 0.017 0.003

E.Nor. 0.230 0.578 0.603 0.172 0.835 0.188 0.156 0.512 0.848 0.135 0.399 0.115

Table 4.  The results of the comparison between the saddlepoint method and the normal approximation 
method based on simulated data from bivariate logistic distribution.

Test n 20 30 40 60

Test 1

Sad.P 93.7 92.4 89.4 90.7

E.sad. 0.001 0.009 0.001 0.059

E.Nor. 0.13 0.077 0.008 0.330

Test 2

Sad.P 93.7 96.3 99.2 92.5

E.sad. 0.058 0.043 0.016 0.211

E.Nor. 0.835 0.775 0.265 1.877

Table 5.  The results of the comparison between the saddlepoint method and the normal approximation 
method based on simulated data from bivariate exponential distribution.

test n 20 30 40 60

Test 1

Sad.P 92.7 92.4 89.9 81.1

E.sad. 0.032 0.052 0.044 0.049

E.Nor. 0.329 0.589 0.354 0.178

Test 2

Sad.P 90 95.2 98.5 91.2

E.sad. 0.072 0.004 0.19 0.057

E.Nor. 0.404 0.195 0.455 0.329

Table 6.  The results of the comparison between the saddlepoint method and the normal approximation 
method based on simulated data from bivariate Poisson distribution with correlation coefficient ρ.

Test

n 20 30 40 60

ρ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

Test 1

Sad.P 92.3 92.1 92.0 87.6 88.8 91.1 86.8 85.4 86.9 80.5 79.4 81.4

E.sad. 0.002 0.002 0.022 0.002 0.002 0.004 0.002 0.002 0.004 0.001 0.002 0.009

E.Nor. 0.0131 0.013 0.022 0.009 0.014 0.025 0.007 0.009 0.018 0.003 0.007 0.036

Test 2

Sad.P 84.5 92.0 95.0 88.4 95.4 96.6 91.0 95.5 95.7 92.8 96.1 96.0

E.sad. 0.031 0.096 0.705 0.028 0.066 0.118 0.029 0.106 0.247 0.016 0.107 0.251

E.Nor. 0.299 1.340 7.460 0.293 1.550 7.910 0.308 2.550 13.500 0.241 2.090 10.800
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than 77.6%, but in some cases, it reached approximately 99.2%. It is observed that with increasing sample sizes 
there is an improvement in the normal approximation, but the saddlepoint approximation is more accurate and 
is closer to the simulated exact p-value, especially when the sample sizes are small.

To facilitate a better understanding of the simulation results, the relative absolute errors of both the saddle-
point approximation and normal approximation for two cases of the simulation study are displayed in Figs. 1 
and 2.

Table 7.  Empirical type I error rates at 0.05 significance level.

Test n 20 30 40 60

Test 1

Saddlepoint method 0.057 0.054 0.047 0.051

Normal method 0.054 0.053 0.047 0.051

Simulation method 0.057 0.053 0.047 0.051

Test 2

Saddlepoint method 0.068 0.054 0.046 0.061

Normal method 0.068 0.055 0.042 0.064

Simulation method 0.071 0.055 0.047 0.060

Table 8.  Empirical power at 0.05 significance level.

Test n 20 30 40 60

Test 1

Saddlepoint method 0.280 0.998 0.970 0.445

Normal method 0.287 0.998 0.971 0.440

Simulation method 0.284 0.998 0.972 0.450

Test 2

Saddlepoint method 0.639 0.776 0.954 0.662

Normal method 0.649 0.785 0.954 0.667

Simulation method 0.639 0.776 0.954 0.664
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Figure 1.  Relative absolute errors of saddlepoint approximation and normal approximation for Test 2 with 
sample size n = 60 generated from bivariate normal distribution.
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Concluding
Bivariate data analysis is becoming more and more important in many areas. Especially in the medical field, 
more than one variable such as tumor incidence and tumor size, blood pressure and pulse, weight and fat level, 
weight change and depression level are often studied. Leveraging Wang’s bivariate saddlepoint approximation 
technique, the exact p-values of a class of bivariate sign tests are approximated with high precision compared to 
normal approximation method. This high accuracy has been verified by analyzing three examples of real data 
and performing simulation study.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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