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Acoustic compression in Zoom 
audio does not compromise voice 
recognition performance
Valeriia Perepelytsia * & Volker Dellwo 

Human voice recognition over telephone channels typically yields lower accuracy when compared 
to audio recorded in a studio environment with higher quality. Here, we investigated the extent to 
which audio in video conferencing, subject to various lossy compression mechanisms, affects human 
voice recognition performance. Voice recognition performance was tested in an old–new recognition 
task under three audio conditions (telephone, Zoom, studio) across all matched (familiarization 
and test with same audio condition) and mismatched combinations (familiarization and test with 
different audio conditions). Participants were familiarized with female voices presented in either 
studio-quality (N = 22), Zoom-quality (N = 21), or telephone-quality (N = 20) stimuli. Subsequently, 
all listeners performed an identical voice recognition test containing a balanced stimulus set from 
all three conditions. Results revealed that voice recognition performance (dʹ) in Zoom audio was 
not significantly different to studio audio but both in Zoom and studio audio listeners performed 
significantly better compared to telephone audio. This suggests that signal processing of the speech 
codec used by Zoom provides equally relevant information in terms of voice recognition compared to 
studio audio. Interestingly, listeners familiarized with voices via Zoom audio showed a trend towards 
a better recognition performance in the test (p = 0.056) compared to listeners familiarized with studio 
audio. We discuss future directions according to which a possible advantage of Zoom audio for voice 
recognition might be related to some of the speech coding mechanisms used by Zoom.

Voice recognition is essential for human communication since it allows us to structure and understand the lin-
guistic content in speech1–3, facilitates speech recognition in noisy environments4,5, and when impaired, hinders 
successful social interactions6. Until recently, familiarization with voices and thus learning of speaker-specific 
voice features usually occurred via face-to-face communication or voice-to-voice over the telephone, which 
is why both these conditions received significant attention in voice recognition studies7–11. However, much of 
personal, business, and education communication now occurs online in a digital format. Therefore, we often are 
exposed to and learn new voices not directly via face-to-face communication, but from the digital communica-
tion modes, as well as digitized and compressed audio signals. Digital audio plays a significant role in mobile 
communications, internet telephony (i.e., Voice Over Internet Protocol, VoIP), voicemail, videoconferencing, 
as well as gaming and audio streaming over the Internet. All of these applications use compression algorithms 
(i.e., codecs) to efficiently compress and send audio and video data over the Internet. However, it is unclear how 
different audio codecs affect human voice recognition, in particular those used in videoconferencing applica-
tions, among which Zoom (Zoom Video Communications, Inc.) is the leading one. Considering that crucial data 
for voice recognition, such as those used in forensic investigations of voice identity, now frequently come from 
Internet audio compression conditions, it is crucial to understand how the recognition performance of internet 
audio compares to that of studio and telephone audio.

Human voice recognition via telephone audio
Most studies on voice recognition under telephone audio conditions focused on the effects of traditional landline 
telephones; much less work was done on mobile telephony. The dominant limitation of telephone audio (both 
landline and mobile) is its reduced bandwidth compared to studio audio7,12. Landline telephones limit the audio 
bandwidth to approximately 300–3400 Hz (variation between individual systems exist); henceforth narrow-band 
audio. In addition to bandwidth limitations, telephone transmission also distorts the remaining frequencies in 
the reduced bandwidth in various ways: for example, frequencies closer to the lower cutoff are shifted upwards, 
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while frequencies closer to the upper cutoff are shifted downwards7,12–14. Modern mobile and especially Internet 
telephony use broader bandwidth of approximately 50–7000 Hz, henceforth wide-band audio, which might be 
more beneficial for voice recognition compared to narrow-band. However, mobile phone transmission affects 
acoustic features more drastically than landline telephony, since transmission characteristics may dynamically 
change during mobile calls due to changing network conditions13–15. Telephone audio quality may also vary 
depending on the technical characteristics of the devices used during calls16. Furthermore, telephone transmis-
sion is subject to various environmental effects, such as background noise (e.g., traffic)13 and voice production 
effects, such as the so-called ‘telephone voice’, a speaking register characterized by increased loudness and higher 
F0, which speakers adopt when speaking on the phone17.

Most studies investigating the effects of telephone transmission on voice recognition by human listeners 
showed that listeners perform worse in telephone compared to studio audio or direct presentation8,9,18,19, and that 
voice recognition via telephone audio is challenging even for members of close social networks20. Several experi-
ments, however, did not find differences between recognition performance via telephone and studio audio10,21,22, 
likely because of differences in telephony characteristics (landline vs. mobile telephony), retention intervals 
between familiarization and test, as well as stimuli and task types. One study exploring the effect of telephone 
and direct presentation on voice identification accuracy found that voice recognition performance was slightly 
better via telephone than via direct presentation23. However, the overall recognition rates in this experiment 
were poor across both telephone and directly presented condition. Interestingly, voices sound more similar to 
the listeners in telephone audio potentially since much of speaker-distinguishing spectral information is lost due 
to transmission limitations discussed above11,24. While most studies investigated the effect of telephone audio 
in the test, several studies investigated how familiarization with voices via telephone audio affects subsequent 
recognition compared to familiarization with studio audio. Results are inconsistent, with some studies showing 
no effect of telephone in familiarization10,21, and some showing a detrimental effect of telephone familiarization 
on subsequent recognition8, possibly due to varying experimental designs.

Despite much of research on telephone and studio audio, very little is known about how human voice rec-
ognition is affected in videoconferencing audio, which has different transmission characteristics compared to 
telephone audio in terms of bandwidth and speech codec processing (see the following section). Video con-
ferencing applications such as Zoom, Microsoft Skype, Microsoft Teams, and others gained much popularity 
during COVID-19 pandemic, and they continue to be widely used for different types of communication today. 
One prominent feature of videoconferencing is its multimodality, i.e., the availability of both video and audio 
signals. It has been shown that voice recognition can be affected by visual cues in different ways. After short 
familiarization with voices in the presence of corresponding faces, the so called ‘face overshadowing effect’ may 
occur, a phenomenon by which the presence of the face leads to poorer recognition results in audio only recog-
nition compared to conditions when only the voice is present during familiarization. However, the relationship 
between audio and visual cues on voice recognition is complex25–28, and several studies revealed that with longer 
familiarization durations there are actually strong advantages of face presence in learning voices29. Therefore, to 
ensure the comparability of audio conditions, we focus only on audio cues in this study and investigate human 
voice recognition via videoconferencing audio (namely, Zoom audio) in comparison to studio audio and tel-
ephone audio.

Voice processing information has not yet been part of audio codec assessment
During calls, videoconferencing applications transmit audio (and video) data over the Internet. Before transmis-
sion, analog speech signal must be efficiently encoded (i.e., digitized and compressed) to reduce the amount of 
transmitted information with minimal quality loss. This is achieved by means of audio codecs. After encoding, the 
data is converted into a stream of discrete packets and transmitted to the destination, where it is decompressed 
and converted back into the analog signal. Because network conditions may change dynamically during a call, 
some data packets may arrive late or even get lost, which might result in changes in voice quality, as well as dis-
torted or unintelligible speech. Codec is the thus main factor that directly affects the quality of the transmitted 
signal, since it determines the acoustic bandwidth and the bitrate of the transmitted signal, as well as dynamically 
changes these parameters depending on the network conditions30.

Zoom digitizes the speech signal by means of the open source Opus codec, which incorporates technology 
from Skype’s SILK codec and Xiph.Org’s CELT codec31. Opus was developed for interactive speech and music 
transmission over the Internet, and it is a multifunctional and highly adaptive codec supporting different kinds 
of audio from narrow-band mono speech to full-band (20–20,000 Hz) stereo music at a wide range of bitrates31. 
To achieve good compression, Opus uses both Linear Prediction (LP) layer, which is based on SILK codec, and 
Modified Discrete Cosine Transform (MDCT) layer, which is based on CELT codec31. The main purpose of 
LP-based layer in SILK is to reduce the bitrate by reducing the residual energy, which is achieved by the Burg’s 
method, since it provides higher prediction gain compared to other techniques31. The main principle behind 
the CELT-based MDCT layer is that the MDCT spectrum is split into bands following the Bark scale, i.e., a 
psychoacoustic scale which closely follows the frequency resolution of the human ear31. Opus uses LP layer 
to encode speech, since LP techniques are more efficient for coding lower frequencies than transform domain 
techniques, whereas MDCT technique is used to code higher speech frequencies or music (i.e., for bandwidth 
8 kHz or higher)31. At any given time, either one (SILK-based LP or CELT-based MDCT) or both layers may be 
active to adapt to changing network conditions during transmission31. Opus employs SILK mode for low bitrate 
transmission with narrow-band (i.e., 4 kHz), medium-band (i.e., 6 kHz), and wideband (i.e., 8 kHz) audio band-
width; it employs a hybrid mode (SILK + CELT) for super wideband (12 kHz bandwidth) or full-band (20 kHz 
bandwidth) speech at medium bitrates; lastly, CELT-only mode is employed for low delay speech transmission 
and music transmission31.
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Due to availability of both SILK and CELT layers, Opus can operate at a wider range and offer comparable or 
even better performance than several other state-of-the-art voice codecs32. Crucially, the quality assessment of 
Opus both with human listeners and computer algorithms focused on assessing overall audio and speech quality 
and intelligibility, but not voice recognition performance33,34. Therefore, the effect of Opus processing on human 
voice recognition performance remains unclear.

Assessing perceptual quality of compressed audio is important for developing modern multimedia systems 
such as audio streaming over the Internet, gaming, mobile telephony, VoIP technology, and others. Standardized 
methods for evaluating the audio codecs performance and the resulting quality of coded audio typically target 
overall audio quality and speech intelligibility (for reviews, see35,36). The International Telecommunication Union 
(ITU) recommends using a five-point rating scale for collecting listener judgements of perceived audio quality 
(for example, see the most widely used ITU-R BS.1284-1, ITU-R BS.1116, ITU-R BS.1534-1, and ITU-T P.800 
recommendations for evaluating perceptual audio quality by human listeners). In the standardized listening 
experiments, listeners rate the audio quality coded by different codecs on the scale from 1 (‘bad’) to 5 (‘excellent’) 
or audio impairment on the scale from 1 (‘very annoying’) to 5 (‘imperceptible’), depending on the experimental 
design. Mean opinion scores (MOS) are derived from these ratings and reflect overall audio quality or the severity 
of introduced audio impairments. Listening tests are time consuming and costly to implement, and as a result, 
assessing quality of compressed audio is mostly done using computer-based algorithms.

Therefore, the impact of different speech and audio codecs on voice recognition in human listeners received 
very little attention. Gallardo et al.37 studied human voice recognition in speech transmitted through several 
narrow-band and wide-band codecs to explore the benefit of extended bandwidth on voice recognition in human 
listeners. They found that wide-band speech signal (from G.722 and adaptive multi-rate wideband codecs) was 
beneficial for human voice recognition compared to narrow-band signal (from G.711, adaptive multi-rate nar-
rowband, and global system for mobile communications enhanced full rate codecs). A subsequent study16 com-
pared the effect of different codecs on human voice recognition in narrow-band, wide-band, and super-wide band 
coded speech. Using both male and female speakers, they found that wide-band signal is better that narrow-band 
signal, but super wide-band offers no improvement for human voice recognition compared to wide-band signal. 
This means that signal information below 7 kHz contains sufficient information for successful voice recognition.

On the other hand, speaker recognition performance was tested for various codecs using automatic speaker 
recognition (ASR) systems30,38–41. Generally, it was found that higher bitrates38,42 and extended bandwidth41,42 
improve performance of automatic systems. However, it is unclear whether further improvements in signal qual-
ity due to even further bandwidth extension and higher bitrates result in the significantly better performance 
of ASR systems as speech information becomes sparser with increasing frequency higher than about 7 kHz. 
For example, it was shown that bandwidth extension from wide-band to super-wide band leads to a significant 
improvement in performance of ASR systems compared to wide-band speech, but only in female speakers41. 
Finally, codec mismatch between training and test typically degraded voice recognition performance compared 
to codec matched condition in ASR systems38–40.

Understanding how well different codecs transmit speaker-specific information and thus how successfully 
human listeners can recognize voices via audio coded by different codecs is relevant both for forensic context and 
for general understanding of human voice recognition. Currently, many forensic cases include speech samples 
not from traditional landline telephony, but rather audio from the mobile and VoIP telephony, voicemail from 
instant messaging apps, as well as audio (and video) from videoconferencing apps, all of which use modern 
codecs for speech compression. Human listeners are constantly familiarized with voices over video conferencing 
apps thus ear-witnesses of crime are liable to give evidence on voices in the courtroom that they heard over the 
internet. Therefore, it is important to investigate how codec processing with varying parameters such as differ-
ent bandwidths and bitrates influences voice recognition in human listeners. This is also relevant for the general 
understanding of the voice recognition performance to gain deeper insights into which acoustic features of the 
signal predominantly carry speaker-specific information. In the construction and interpretation of future voice 
recognition experiments using audio transmitted via the Internet, the present study will offer crucial insights.

The present study
Here, for the first time, we carried out a comprehensive comparison of human voice recognition performance 
across three different audio conditions: high-quality studio audio, telephone audio, and Zoom audio. The study 
followed two aims: to assess the effect of audio condition in (1) familiarization and (2) in test. To address this, 
we conducted an online listening experiment with three groups of listeners, whereby in a between-group design, 
each group was familiarized with voices via either studio-quality, Zoom-quality, or telephone-quality audio. After 
familiarization, all listeners performed a voice recognition test (old–new judgement task), in which stimuli of all 
three audio qualities (studio, Zoom, and telephone) were included. Thus, the experiment included both matched 
(for example, studio audio in both familiarization and test) and mismatched conditions (for example, studio 
audio in familiarization and Zoom or telephone speech in test or vice versa).

We expect the general effect of familiarization audio, such that listeners familiarized with voices via studio 
audio will perform overall better in the subsequent voice recognition test in all audio conditions (Zoom, studio, 
telephone) compared to Zoom and telephone familiarized listeners, because studio audio contains more speaker-
specific voice information compared to Zoom and telephone audio due to extended bandwidth and absence of 
speech codec processing. As for the effect of test audio, we expect the best performance in studio audio in test, 
since it provides listeners with the most of speaker-specific voice information. As for the Zoom audio in test, it is 
plausible that bandwidth reduction does not impair human voice recognition16,43. However, codec processing may 
result in various non-linear distortions during a call such as packet loss, packet delay, or jitter, which may affect 
voice recognition performance41. Also, Opus codec used by Zoom was not yet tested for human voice recognition, 
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it is possible that recognition performance via Zoom audio in test will be worse than via studio audio but better 
than via telephone audio. Given a generally subjectively perceived higher quality of Zoom audio compared to 
landline telephone, this assumption is plausible. While Opus settings may change during a call depending on 
network condition, number of users, and other factors, we ensured that Zoom audio quality was homogeneous 
during the recording (see “Methods” section). As for the telephone audio in test, we expect the lowest recogni-
tion performance compared to studio and Zoom audio, since previous studies showed that landline telephone 
audio results in lower recognition performance compared to studio audio8,9,19.

Results
Sensitivity (dʹ)
We first tested the two-way interaction between audio quality in familiarization and audio quality in test on dʹ to 
ensure that voice recognition performance in the test factor is not modulated by different levels of the familiari-
zation factor. The interaction was not significant (F (4, 120) = 0.52, p = 0.718, η2 = 0.02) suggesting that listeners’ 
performance in different audio conditions in voice recognition test was not modulated by audio quality during 
familiarization. Consequently, for the subsequent analysis, we analyzed main effects of familiarization and test 
individually. The main effect of familiarization audio on dʹ was significant F(2, 60) = 7.46, p = 0.0013, η2 = 0.2) 
suggesting that listener groups differed in overall voice recognition performance, irrespective of audio quality 
in the test. We used pairwise t-tests for post hoc comparisons of the main effect of familiarization audio on dʹ 
with Bonferroni correction for multiple comparisons. The results indicate that listeners familiarized with the 
voices via Zoom audio performed significantly better compared to listeners familiarized with the voices over 
the telephone audio (p < 0.0009, d = 1.24) (Fig. 1). Furthermore, there was a trend of Zoom-familiarized listeners 
to perform better even compared to the studio-familiarized listeners (p = 0.056, d = 0.73). Lastly, there was no 
significant difference between the studio-familiarized listeners and telephone-familiarized listeners (p = 0.43, 
d = 0.44) on their performance in the test (Fig. 1).

The main effect of audio quality on dʹ in voice recognition test was also significant (F(2, 124) = 5.62, p = 0.0046, 
η2 = 0.08) suggesting that listeners’ performance differed significantly depending on the audio quality in the voice 
recognition test irrespective of their familiarization audio. Pairwise t-tests with Bonferroni correction for multiple 
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Figure 1.   Boxplots showing median, range, and inter-quartile range of dʹ by familiarization groups. Significance 
levels are indicated for each pairwise comparison.
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comparisons were used to perform post hoc comparisons of listeners’ performance across different channels in 
voice recognition test. The results indicate that listeners performed significantly better via Zoom audio in the test 
compared to the telephone audio (p = 0.02, d = 0.43) (Fig. 2). Listeners’ performance via studio audio during test 
was also significantly higher compared to telephone audio (p = 0.0034, d = 0.44). Lastly, no significant difference 
was found between listeners’ performance via Zoom audio and studio audio in the test (p = 1, d = 0.003) (Fig. 2).

Response bias (c)
We first tested the two-way interaction between audio quality in familiarization and audio quality in test on c 
to ensure that response bias in the test factor is not modulated by different levels of the familiarization factor. 
The interaction between familiarization audio and test audio on c was significant (F (4, 120) = 14.85, p < 0.001, 
η2 = 0.33) suggesting that listeners’ response bias across different audio qualities in the test varied depending 
on the audio quality during familiarization (Fig. 3). Post hoc pairwise comparisons were performed for the test 
audio within each familiarization group using pairwise t-tests with Bonferroni correction on c. No pairwise 
comparisons were significant within the Zoom- and (all p-values > 0.05, all d values < 0.2) studio-familiarized 
groups (all p-values > 0.05, d values range between 0.21 and 0.35) suggesting that listeners’ response bias in these 
familiarization groups did not differ depending on the audio quality they heard during voice recognition test 
(Fig. 3). However, listeners familiarized with voices via telephone audio were significantly more biased towards 
responding ‘new’ when they heard either Zoom (p < 0.0001, d = 1.33) or studio audio (p < 0.0001, d = 1.39) com-
pared to when they heard telephone-quality stimuli. Bias for Zoom audio in the test did not differ from bias for 
studio audio in this group of listeners (p = 1, d = 0.41) (Fig. 3).

Discussion
This study investigated voice recognition performance via studio, Zoom, and telephone audio. We studied the 
effect of audio quality in familiarization on subsequent voice recognition performance, as well as the effect 
of audio quality in test on human listeners’ voice recognition performance, quantified with dʹ and c. Interest-
ingly and unexpectedly, our results revealed no difference in recognition performance between studio- and 
Zoom-familiarized listeners. In addition, we found a tendency for performance to be better when listeners were 
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familiarized with the voices under Zoom compared to studio audio, however, given the diversity of listeners and 
equipment between the listener groups, this tendency might be a result of random variability between groups. 
It will be interesting to test possible advantages of familiarization over Zoom audio in more controlled experi-
mental designs in the future. Lastly, we observed no differences between studio- and telephone-familiarization, 
which is mostly in line with previous work10. This suggests that neither too much (i.e., studio audio), nor too 
little speaker-specific detail about voices (i.e., telephone audio) during familiarization is beneficial for human 
voice recognition if familiarization period is brief. When familiarization is brief (like in our experiment), too 
much speaker-specific voice detail might be distracting and not helpful for forming stable voice representations. 
With increasing familiarization time, however, more speaker-specific detail might be beneficial for forming voice 
representations for subsequent recognition. This view is supported by findings from voice and face recognition 
about the effect of stimuli variability during familiarization on subsequent recognition showing that variability 
in stimulus material does not always pose challenges and—on the contrary—might be beneficial for learning 
new identities44–47.

In the test, recognition via both Zoom and studio audio was significantly better compared to telephone audio. 
Our results therefore align with previous research showing that signal bandwidth plays a critical role in voice 
recognition, since speaker-specific voice properties are distributed across frequency domain48. They also suggest 
that extending the bandwidth from wide-band (50–7000 Hz) to super wide-band (50–14,000 Hz) or unprocessed 
full-band speech offers no voice recognition advantage for human listeners, in line with previous research16,43. It 
is evidently the case that Opus encoding algorithms contributed to the improved recognition performance over 
Zoom audio compared to telephone audio, since Opus uses both LP-based layer based on source-filter model 
to efficiently encode lower speech frequencies (i.e., up to 8 kHz bandwidth) and MDCT-based layer to encode 
higher speech frequencies (i.e., higher than 8 kHz bandwidth)31.

Overall, our findings indicate that despite acoustic compression introduced to Zoom audio by bandwidth 
limitations and codec processing, voice recognition over Zoom audio is no better or worse than over studio 
audio, especially when exposure to voices is brief as in the present experiment. Zoom audio undergoes a wide 
spectrum of signal processing mechanisms (see “Introduction” section) by which the speech signal is compressed, 
and information is irreversibly removed. Crucially, however, our results suggest that this compression of the 
signal does not compromise voice recognition performance. On the contrary, the group that was familiarized 
with Zoom audio even showed the tendency for a better recognition performance. As stated above, it is thus 
possible—and this remains to be tested in future research—that the speech processing mechanisms involved in 
Zoom are potentially beneficial for learning voices. What may be the reasons for that? Some of the most dominant 
dimensions responsible for successful voice recognition are characteristics about the source (the signal produced 
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in the larynx) and the filter (the source signal changes as an effect of resonances in the vocal tract). Acoustically, 
source signal details manifest in fundamental frequency characteristics, and filter detail—in spectral envelope. 
Algorithms like Linear Predictive Coding involved in the Zoom audio codec (see “Introduction” section), split 
the audio signal into source and filter information for more efficient signal transmission purposes. Both source 
and filter are thus coded as abstract representations of the original natural features they were derived from. It is 
possible that precisely this mechanism of turning the information of source and filter—which is crucial for voice 
identity—into abstract representations also leads to audio representations of these signals that better contain 
the abstract speaker characteristics of these dimensions. For this reason, compression mechanisms involving 
source-filter separation and individual coding of this information may reduce irrelevant acoustic variability, 
leading to a more precise prototype representation of speakers’ voices that supports the acquisition of these 
voices. That would also explain why this information plays more of a role in voice learning because learning 
from more prototypical information, in particular when the familiarization period is brief, helps in recognition, 
however, when this information has not been previously acquired it does not necessarily enhance recognition.

In terms of listeners’ response bias, we found no differences across test audio conditions in Zoom- and 
studio-familiarized listeners, meaning that familiarization with Zoom or studio audio did not moderate listeners’ 
response bias in different audio conditions in test. Interestingly, we observed differences in response bias across 
test audio conditions only in telephone-familiarized listeners. When this group heard telephone-quality stimuli 
in the test, they were significantly biased towards responding the voice is ‘old’ (i.e., familiar). This supports pre-
vious findings that voices sound more similar to the listeners via telephone audio compared to studio audio11, 
potentially because much of speaker-distinguishing information (such as higher formant frequencies above 
F3 or F4 and much of fricative energy) is lost due to bandwidth limitations and telephone codec processing11. 
Furthermore, when telephone-familiarized listeners heard either studio or Zoom stimuli in the test, they were 
significantly more biased towards responding that the voice is unfamiliar to them. This is also in line with previ-
ous results showing that voices sound more different to listeners when they hear stimuli pairs of mixed audio 
qualities (i.e., telephone and full bandwidth) compared to pairs of same audio qualities (i.e., only telephone or 
only full-bandwidth)11. Voice differences and audio quality differences are likely conflated for listeners, which 
is why they cannot solve the voice recognition task, because they are unable to separate differences in voice 
characteristics from differences in transmission characteristics11. Lastly, we found no difference between bias 
towards studio and towards Zoom audio in test for telephone-familiarized listeners suggesting that differences 
in audio quality between telephone and studio on one hand and telephone and Zoom on the other hand were 
perceived as equally differing from telephone audio quality.

To conclude, we found that learning voices via Zoom audio leads to better voice recognition than learning 
them via telephone audio and even potentially via studio audio. We also found that in test, listeners recognize 
voices equally well via Zoom and studio audio. This indicates that acoustic compression of Zoom audio such as 
bandwidth limitation and codec processing do not degrade listeners’ performance in test compared to studio 
audio. Future work will show whether the signal processing mechanisms involved in Zoom can enhance voice 
individuality information to enhance the voice acquisition and recognition process. For methodological reasons 
we have only tested female voices in this research. It would further be interesting to test in the future whether 
speaker sex impacts the voice recognition performance in particular under the type of coding used in Zoom 
transmission because codecs can have variable influences on male and female voices49, 50.

Methods
Speakers
We recorded nine female native speakers of Zurich German, i.e., the Alemannic dialect spoken in the city and 
in most parts of the Canton of Zurich. All speakers were between 22 and 27 years old (mean age = 24.6 years), 
born and raised in the Canton of Zurich and spoke Zurich German daily at home. None of them reported speech, 
language, or hearing impairments. All speakers gave written informed consent prior to the recording and received 
monetary compensation for their participation.

Listeners
In total, 63 native speakers of Swiss German (18 male) participated in the study: 22 listeners in studio familiariza-
tion group, 21 listeners in Zoom familiarization group, and 20 listeners in telephone familiarization group. All 
were between 18 and 35 years old, born and raised in Switzerland, and none of them reported speech, language, 
or hearing impairments. The listeners were recruited from the student population of the University of Zurich 
via the University of Zurich student portal and e-mailing lists. All listeners gave an informed consent before 
participating and received monetary compensation for their participation. The study was approved by Ethics 
Committee of the Faculty of Arts and Social Sciences at the University of Zurich. The research was performed 
in accordance with the Declaration of Helsinki.

Materials
Studio-quality stimuli were produced as follows. Nine female speakers described above were recorded reading 
75 sentences51, which comprised in total 9 speakers × 75 sentences = 675 sentences. There were 25 sentences 
with subject–verb–object structure, 25—with subject relative clauses, and 25—with object relative clauses. The 
sentences were semantically unpredictable, with the average duration of 2.9 s (standard deviation 0.33 s). The 
speakers read the sentences in Swiss Standard German52. The recordings were done in a noise treated recording 
booth and saved directly onto a Macintosh computer connected with USB Pre 2 Portable Studio-Resolution 
Audio Interface and NT2-A Rode condenser microphone. The recordings were done in .wav format in Praat 
version 6.1.1653 (mono channel, sampling rate 44.1 kHz, 16 kbit/s bitrate).
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The Zoom-quality stimuli were produced as follows. To avoid between-session variability, which would result 
from recording our speakers again over Zoom and then telephone, we connected two laptops via a Zoom call. 
We then played the studio-quality stimuli (675 sentences described above) directly from the sound card of one 
laptop and recorded them locally on the receiving laptop. 675 stimuli recorded this way comprised the Zoom-
quality stimuli. The resulting audio stimuli had bandwidth of 12 kHz (super wide-band speech) meaning that the 
Opus codec was functioning in a hybrid mode. That is, both LP-based SILK and MDCT-based CELT encoders 
were used to encode speech, since SILK encoder is only used to code speech signals up to 8 kHz bandwidth, 
while CELT encoder encodes speech higher than 8 kHz bandwidth. Therefore, the output bitstream of the Opus 
encoding includes bits from both SILK and CELT encoders. However, these are not separable due to the use of 
a range coder31. Zoom-quality stimuli were produced in Zoom version 5.6.1.

The telephone-quality stimuli were obtained by playing the 675 studio-quality stimuli on one mobile phone 
and recording them on the receiving mobile phone during a phone call. Because VoIP technology is currently 
dominating in mobile telephony calls in Switzerland, the telephone stimuli recorded this way have broader 
bandwidth (8 kHz), unlike narrow-band speech recorded via landline telephony (300–3400 Hz). Therefore, we 
additionally band-pass filtered telephone-quality stimuli to 290–3510 Hz with the slope of 20 Hz. 675 sentences 
obtained this way comprised the telephone-quality stimuli. All stimuli (i.e., 3 audio conditions (i.e., studio, 
Zoom, and telephone) × 675 sentences = 2025 in total) were normalized to 70 dB SPL. The overview of the audio 
conditions is presented in Table 1.

Procedure
Our experiment followed the design of the first two phases of the Glasgow voice memory test54 and consisted 
of two parts: familiarization and voice recognition test (old–new judgement). Table 2 presents an overview of 
experimental design.

When entering the experiment, listeners were randomly assigned into one of the three familiarization groups 
depending on the audio quality for familiarization. Group 1 was familiarized with voices via studio audio, Group 
2—via Zoom audio, and Group 3—via telephone audio. First, participants did a demo section, in which they were 
familiarized with the procedure and task of the experiment. Female speaker heard during this demo section was 
excluded from the pool of speakers for subsequent familiarization and test. After this, the real experiment began. 
In the familiarization part, listeners were familiarized with four female voices and heard five sentence recordings 
per voice, which comprised 20 sentences for familiarization in total (4 speakers × 5 sentences). They pressed 
a button on the screen to play each stimulus, which could be heard only once. Right after the familiarization 
part, the voice recognition test began. In each trial, listeners heard a sentence and were instructed to indicate by 
pressing a button whether the voice they heard is ‘old’ (i.e., known from familiarization) or ‘new’ (i.e., not known 
from familiarization). For all listeners irrespectively of their familiarization audio, the test consisted of 96 trials 
and included stimuli from eight speakers (four known from the familiarization and four new, not known from 
familiarization) in all three audio conditions (i.e., studio, Zoom, and telephone). For each listener, speakers were 
randomly assigned into familiar, unfamiliar, and demo, such that no fixed set of speakers served only as familiar 
or unfamiliar for all listeners. Furthermore, each listener received a random subset of 96 stimuli drawn from a 
common pool of 2025 stimuli (see “Materials” section). Equal proportion of trials included studio, Zoom, and 
telephone audio, and the order of presentation was randomized. To avoid memory effects, stimuli with which 
listeners were familiarized with voices were excluded from the test. The experiment took on average 12 minutes 
to complete and was conducted online on Gorilla Experiment Builder platform55. Listeners received a link to 
access the experiment by email and performed the experiment at home.

Table 1.   Main characteristics of audio conditions used in the current study.

Audio condition Codec processing Bandwidth

Studio No 22.05 kHz

Zoom Yes 12 kHz

Telephone Yes 290–3510 Hz

Table 2.   Design of listening experiment. During familiarization, listeners were familiarized with four female 
voices in either studio-, or Zoom-, or telephone-quality audio. In subsequent voice recognition test, they heard 
audio stimuli in all three qualities (i.e., studio, Zoom, and telephone) irrespective of the familiarization group.

Familiarization audio
4 voices × 5 sentences = 20 stimuli

Test audio
8 voices × 3 channels × 4 sentences = 96 stimuli

Group 1: Studio

All groups: Studio + Zoom + TelephoneGroup 2: Zoom

Group 3: Telephone
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Statistical analyses
We analyzed the data using signal detection theory (SDT), which provides a general framework to systematically 
characterize decision-making in the presence of uncertainty56–59. According to SDT, participants’ performance 
in many perceptual tasks may be fully described by two measures: sensitivity to the signal (quantified with 
dʹ) and response bias (quantified with several different indices), which can independently affect participants’ 
performance59. We used dʹ and response bias measure c (i.e., criterion location) to analyze the listeners’ perfor-
mance in our experiment.

In an old–new judgement task used in our experiment, there were four possible combinations of trial type 
and response (Table 3).

The experiment consisted of signal trials, which contained a signal (i.e., a familiar voice known from famil-
iarization, henceforth referred to as ‘old’), and noise trials which presented a noisy stimulus (i.e., a novel voice not 
known from familiarization, henceforth referred to as ‘new’). On signal trials, responding with ‘old’ was correct 
and was termed hit, while responding with ‘new’ on this type of trial was incorrect and termed miss. On noise 
trials, responding with ‘old’ was incorrect and was termed false alarm (FA), whilst responding with ‘new’ was 
correct and labeled correct rejection (CR). The hit rate H is the proportion of signal trials to which participant 
responded ‘old’: H = P(response ‘old’|signal trials), while the FA rate F is the proportion of noise trials to which 
participant responded ‘old’: F = P(response ‘old’|noise trials).

Participants’ sensitivity to the signal, in this case—being able to correctly identify a familiar voice—was quan-
tified with dʹ and calculated as the difference between the z-transform of hit rate and that of the FA rate (Eq. 1):

A dʹ value of 0 indicates an inability of the participant to distinguish signals from noise, whereas larger values 
indicate greater ability to separate signals from noise, with maximum possible value being + ∞, which indicates 
a perfect performance. The minimum possible value of dʹ is − ∞.

In the current task, participants’ response bias was conceptualized as the tendency to favor one response 
over the other, i.e., either ‘old’ or ‘new’. Response bias was quantified with the criterion location c, since c is unaf-
fected by changes in dʹ, whereas other indices of response bias such as β are not60,61. Criterion location reflects 
the distance between the selection criterion (i.e., the participant’s threshold for giving a certain response) and 
the neutral point, where neither response is favored59. Since c is based directly on the selection criterion, and not 
on the likelihood ratio like β, some researchers recommend it instead of other indices of bias61. c is calculated as 
the negative value of half the sum of z(H) and z(F) (Eq. 2):

If the criterion location is at the neutral point, c = 0, which indicates a lack of bias. Negative values of c indi-
cate a bias towards responding that the signal is present (i.e., favoring response ‘old’ in the current task), while 
positive values of c signify a bias towards responding that the signal is absent (i.e., favoring response ‘new’ in 
the current task)59.

dʹ and c values were calculated for each audio condition in test for each participant, therefore, each participant 
had 3 dʹ and 3 c values corresponding to three audio conditions during test. Before calculating dʹ, we corrected 
the values of hit and FA rates of 0 and 1 to avoid z scores of + ∞ and − ∞: hit and FA rates of 0 were replaced with 
1/2N , and hit rates and FA rates of 1 were replaced with 1− (1/2N) , where N is the maximum possible number 
of FAs59. We did not exclude any participants based on their performance, that is, even if participants’ dʹ score 
was at 0 or below, they were included in the final sample. We adopted this strategy since it was not clear how 
telephone-familiarised listeners will perform in the test given that few previous studies explored the influence 
of low-quality familiarization on voice recognition. Thus, the final data set for analyses contained 189 dʹ values 
(63 listeners × 3 dʹ values) and 189 c values (63 listeners × 3 c values). To assess the effects of familiarization and 
test audio on voice recognition performance, we fitted a two-way mixed ANOVA with one between-subject 
factor (i.e., familiarization audio with three levels: studio, Zoom, and telephone) and one within-subject factor 
(i.e., test audio with three levels: studio, Zoom, and telephone) on dʹ. We repeated the same procedure for c. All 
statistical analyses were conducted in R version 4.0.362.

Data availability
Due to the data protection guidelines of the University of Zurich, the raw audio recordings produced during this 
study are not publicly available. However, mel-frequency cepstral coefficients (MFCCs) of the audio recordings 
are available for scientific purposes from the first author upon request. Behavioral data and analyses code are 
publicly available in the study’s Open Science Framework repository: https://​osf.​io/​xrs9z/?​view_​only=​3a4ba​
ffb23​214dd​e94fa​39ee2​51e95​0e.

(1)d
′

= z(H)− z(F).

(2)c = −0.5(z(H)+ z(F)).

Table 3.   Table of scores in old–new voice recognition task used in the current study.

Trial

Response

Old New

Old Hit Miss

New False alarm (FA) Correct rejection (CR)

https://osf.io/xrs9z/?view_only=3a4baffb23214dde94fa39ee251e950e
https://osf.io/xrs9z/?view_only=3a4baffb23214dde94fa39ee251e950e
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