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Drought‑responsive genes 
in tomato: meta‑analysis of gene 
expression using machine learning
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Pijush Kanti Jhan 1, Tofazzal Islam 4, Md. Atiqur Rahman Bhuiyan 1, Mehede Hassan Rubel 1* & 
Abul Khayer 2,5*

Plants have diverse molecular mechanisms to protect themselves from biotic and abiotic stressors and 
adapt to changing environments. To uncover the genetic potential of plants, it is crucial to understand 
how they adapt to adverse conditions by analyzing their genomic data. We analyzed RNA-Seq data 
from different tomato genotypes, tissue types, and drought durations. We used a time series scale 
to identify early and late drought-responsive gene modules and applied a machine learning method 
to identify the best responsive genes to drought. We demonstrated six candidate genes of tomato 
viz. Fasciclin-like arabinogalactan protein 2 (FLA2), Amino acid transporter family protein (ASCT), 
Arginine decarboxylase 1 (ADC1), Protein NRT1/PTR family 7.3 (NPF7.3), BAG family molecular 
chaperone regulator 5 (BAG5) and Dicer-like 2b (DCL2b) were responsive to drought. We constructed 
gene association networks to identify their potential interactors and found them drought-responsive. 
The identified candidate genes can help to explore the adaptation of tomato plants to drought. 
Furthermore, these candidate genes can have far-reaching implications for molecular breeding and 
genome editing in tomatoes, providing insights into the molecular mechanisms that underlie drought 
adaptation. This research underscores the importance of the genetic basis of plant adaptation, 
particularly in changing climates and growing populations.

The growing global population and the worsening effects of climate change present a formidable challenge to the 
field of agriculture. To meet the increasing demand for food, agricultural scientists must find ways to increase 
production despite the adverse effects of climate change. One of the major factors that can reduce crop yields 
is water scarcity, which is a common problem in many regions, such as South Asia, where prolonged summers 
lead to low water availability and moisture content in the soil1,2. The prolonged stress can severely diminish plant 
growth and productivity, and cause the accumulation of reactive oxygen species (ROS) in the plant. Lower carbon 
fixation due to stomata closure can lead to reduced NADP + regeneration through the Calvin cycle, which, when 
coupled with changes in chlorophyll production, can result in an increased production of ROS in water-stressed 
plants3–6. The accumulation of ROS can lead to a cascade of harmful effects, including peroxidation of lipids, 
protein oxidation, enzymatic activity inhibition, oxidative damage to nucleic acids, and ultimately, cell death6,7. 
These consequences can have serious implications for agriculture, as they can ultimately lead to decreased crop 
yields and food shortages. Therefore, finding effective ways to mitigate the impact of water scarcity on crops is 
crucial to ensure food security in the face of climate change.

Tomatoes are a widely cultivated crop throughout the world, originating in southern America as a cultivated 
solanaceous plant known as Solanum lycopersicum. Despite its origins, tomatoes are now produced and con-
sumed worldwide, with demand slightly outstripping production7–9. Due to their relatively short life cycle, easy 
cultivation, and simple genetics with lower gene duplication, tomatoes are considered to be a standard model 
of vegetables1,8,10. Molecular studies of tomatoes can also provide valuable insights into other related species8. 
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While tomatoes are economically important, there is still much to learn about their molecular responses to vari-
ous abiotic stresses, such as water stress.

Next-generation sequencing technologies have rapidly become the preferred method for characterizing and 
quantifying entire genomes. One powerful application of these high-throughput sequencing methods is RNA 
sequencing (RNA-Seq), which allows researchers to gain insight into the transcriptome of cells. Compared 
to previous approaches such as Sanger sequencing and microarray-based methods, RNA-Seq provides higher 
resolution and greater sensitivity for characterizing the dynamic nature of the transcriptome. In addition to 
quantifying gene expression, RNA-Seq data can facilitate the discovery of novel transcripts, identification of 
alternative splicing events, and detection of allele-specific expression. Recent advances in the RNA-Seq workflow, 
including improvements in sample preparation, library construction, and data analysis, have enabled researchers 
to uncover even more of the functional complexity of transcription11,12.

The analysis of RNA-Seq data is a significant challenge due to its complex and high-dimensional nature. 
However, in recent years, machine learning has emerged as a successful approach in various biological contexts. 
Machine learning algorithms have demonstrated impressive efficiency in handling large datasets that possess 
characteristics such as noise, high dimensionality, and incompleteness. One notable advantage is that these 
algorithms require minimal assumptions about the underlying probability distributions and generation methods 
of the data. In contrast to traditional statistical approaches that focus on inference, machine learning methods 
prioritize prediction, providing greater flexibility to accommodate diverse data characteristics. Machine learning 
plays a crucial role in the analysis of biological data, particularly RNA-Seq data, due to its capability to handle 
nonlinearity. By integrating RNA-Seq data with machine learning techniques, nitrogen-responsive genes in both 
Arabidopsis and maize were successfully identified and functionally validated, conducting experiments in both 
field and greenhouse environments13,14. Linear models often fall short of capturing the intricate relationships 
present in biological datasets. Conversely, machine learning algorithms excel at capturing and utilizing the 
complex patterns inherent in such data. This ability enhances our understanding and interpretation of RNA-Seq 
data, enabling more accurate predictions and deeper insights into biological phenomena15,16.

In this research, we gathered transcriptomics data from various tomato genotypes subjected to different 
drought conditions. The experiment encompassed diverse genotypes and included six time points representing 
varying durations of drought, along with corresponding control groups. Our analysis focused on identifying 
genes that exhibited differential expression, allowing us to capture both early and late responsive genes to drought. 
To achieve this, we employed machine learning models, systematically exploring the dataset to uncover the 
genes most affected by drought in tomato plants. Using the identified genes, we constructed gene association 
networks and determined their interactors as drought-responsive. Additionally, we observed that the chromo-
somal positions of these genes overlapped with previously reported drought-responsive Quantitative Trait Loci 
(QTLs) in tomato.

The study has also investigated differentially expressed genes and enriched Gene Ontology (GO) categories in 
tomatoes subjected to prolonged drought stress and subsequent rehydration. These studies revealed that down-
regulated genes after drought stress were enriched in GO categories related to photosynthesis and cell prolifera-
tion, whereas upregulated genes belonged to GO categories more directly associated with stress responses3,7,10. 
However, a comprehensive examination of genetic responses in tomato plants to drought stress is still lacking. 
Therefore, the primary objective of our study was to employ machine learning techniques to investigate the 
responsive genes of tomato plants under prolonged water deficit conditions. Through our systematic approach, 
we aimed to identify the genes specifically responsive to this particular stress condition in plants (Fig. 1).

Results
Differentially expressed gene patterns
The expression of genes can vary over time in response to different stimuli, and the identification of DEGs can 
provide insights into the underlying biological processes. In this study, the expression of genes in a time series 
scale was analyzed, and the results were visualized in Fig. 2.

The DEGs were compared with their individual controls, and the analysis revealed interesting patterns (Figs. 3 
and 4). In this study, we classified the 3h and 6h time points as the early stage of drought, the 48h and 72h time 
points as the medium stage, and the 96h and 120h time points as the late stage. It was observed that the most 
upregulated genes were found in the later stages of stress, specifically at 120 h (Fig. 3). This finding suggests 
that the cellular stress response becomes more pronounced as the duration of the stress increases. Interestingly, 
some genes were also found to be upregulated in the early stages of stress and overlapped with those found in 
the later stages. This observation implies that the cellular stress response may involve immediate and delayed 
mechanisms. And in the medium stages of water deficit, a few genes were found to be significantly upregulated. 
Although the number of DEGs was lower in this stage, it is important to note that these genes may play important 
roles in the early stages of the stress response. This study provides valuable insights into the temporal dynam-
ics of gene expression in response to stress. The identification of DEGs at different time points highlights the 
importance of considering the duration of stress when studying cellular responses. Additionally, the overlapping 
DEGs observed across different stages suggest that the cellular stress response involves a complex interplay of 
immediate and delayed mechanisms.

Gene ontology enrichment analysis
Gene ontology enrichment analysis is a powerful tool used to interpret the biological function of differentially 
expressed genes (DEGs) in a high-throughput manner. In this study, the functions of DEGs were predicted from 
GO and the results were visualized in Fig. 5. The analysis revealed that a large proportion of DEGs (approxi-
mately 600 genes) were involved in organic substance biosynthetic processes and organonitrogen compounds. 
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This finding suggests that the cellular stress response involves the production and modification of organic com-
pounds, which play important roles in cellular metabolism and signaling pathways. Moreover, approximately 
500 genes were found to be related to stress, indicating that the cellular stress response involves the activation 
of various stress response pathways. This finding is in agreement with previous studies that have shown that 
stress response genes are upregulated in response to various environmental stimuli. Additionally, more than 
400 genes were found to respond to chemicals. These genes may be involved in the synthesis, transport, and 
degradation of chemical signals, or they may play roles in downstream signaling pathways that are activated by 
chemical stimuli. Furthermore, approximately 200 genes were found to be related to translation and responded 
to osmotic stress. This finding suggests that osmotic stress may affect translation processes, which play important 
roles in the synthesis of proteins that are involved in cellular responses to stress. In summary, the gene ontology 
enrichment analysis conducted in this study provides valuable insights into the biological function of DEGs 
in response to stress. The identification of genes involved in various metabolic, signaling, and stress response 
pathways highlights the complexity of the cellular stress response and emphasizes the importance of considering 
multiple biological processes when studying stress responses.

Machine learning performance
In this study, we utilized gene expression values as features to train classification models using the XGBoost in 
R. XGBoost is a popular implementation of the gradient boosting algorithm, which combines multiple weak 
learners, such as shallow trees, into a strong one. To evaluate the performance of our models, we split our data-
set into training and test sets. The accuracy of the models was measured using the area under the curve (“auc”) 
value, which is a commonly used metric for evaluating classification models. The results of our analysis, shown 
in Fig. 6, demonstrate that the accuracy of the training and test sets are quite close to each other, indicating that 
our models are well-fitted. Furthermore, we observed that the accuracy of the models increased over iterations, 
suggesting that the models learned from the data and were able to improve their performance as they were 
trained with more data. The use of the XGBoost in our study is particularly beneficial due to its ability to handle 

Figure 1.   Flow chart showing the transcriptomics data collection. The samples mean the number of records are 
retrieved from the databases.
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Figure 2.   Heatmap showing differentially expressed genes under drought stress in different time series data. 
logFC was calculated by comparing respective controls. The red color in the heatmap denotes upregulation and 
the blue color denotes downregulation. The Y-axis denotes the differentially expressed genes.

Figure 3.   Upset plot showing differentially expressed upregulated gene numbers under drought stress in 
different time series data. Vertical bars show the unique upregulated genes per time point. Horizontal bars 
display the total number of upregulated genes per time point. Dots connecting time points denote the unique 
upregulated genes to respective time points.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19374  | https://doi.org/10.1038/s41598-023-45942-2

www.nature.com/scientificreports/

high-dimensional datasets, such as those generated from gene expression studies. By incorporating multiple weak 
learners, the algorithm can effectively capture the complex relationships between gene expression values and 
biological outcomes, such as disease states or cellular responses to stress. In summary, our results demonstrate the 
effectiveness of XGBoost in classifying biological samples based on gene expression values. The close agreement 
between the accuracies of the training and test sets suggests that our models are robust and generalizable. The 
use of XGBoost has enabled us to extract meaningful insights from high-dimensional gene expression datasets, 
and its flexibility makes it a valuable tool for future studies in this area.

Feature importance
In this study, we employed a robust approach to determine the most influential genes that contribute to the 
classification of samples based on their gene expression values. Following the training and validation of our 
classification model using the XGBoost algorithm, we extracted the features with their corresponding impor-
tance scores. The importance score of a feature reflects its contribution to the classification of samples and thus 
provides valuable insights into the underlying biological mechanisms. Among the top six genes identified as 
candidate genes, we found that FLA2 gene had the highest importance score (Fig. 7). This observation suggests 
that the expression of FLA2 gene is a critical factor in determining the classification of samples in our study. In 
this context, classification entails the distinction between two classes: watered samples labeled as 0 and non-
watered samples labeled as 1. These classes were defined as binary categories (0 and 1) within the model, and they 
were treated as the response variables. FLA2 gene encodes for fasciclin-like arabinogalactan protein 2, which is a 
cell surface protein involved in various cellular processes such as cell adhesion, growth, and differentiation. The 
high importance score of FLA2 gene in our analysis may indicate its involvement in the cellular stress response 
and thus may have potential implications in the development of stress-tolerant crops. It is worth noting that the 
other candidate genes identified in our analysis also play important roles in various cellular processes. Further 
investigation of these genes could provide valuable insights into the underlying biological mechanisms involved 
in stress responses. In conclusion, the identification of FLA2 gene as the most important gene in our study high-
lights its potential significance in stress responses. The use of the XGBoost algorithm has enabled us to extract 
meaningful insights from high-dimensional gene expression datasets, and its flexibility makes it a valuable tool 
for future studies in this area.

Gene association networks
To gain a better understanding of the biological functions and interactions of the candidate genes identified in 
our study, we constructed gene association networks for each gene using publicly available databases. The result-
ing network for each candidate gene is shown in Fig. 8, with nodes representing genes and edges representing 
interactions between genes. In these networks, the high importance of candidate genes identified in our study 

Figure 4.   Upset plot showing differentially expressed downregulated genes under drought stress in different 
time series data. Vertical bars show the unique downregulated genes per time point. Horizontal bars display 
the total number of downregulated genes per time point. Dots connecting time points denote the unique 
downregulated genes to respective time points.
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within the network is highlighted by the colour red. We also observed that the interactors of these candidate 
genes showed drought stress-related functions, suggesting their involvement in the abiotic stress response. The 
gene association networks provide valuable insights into the potential pathways and mechanisms involved in the 
cellular stress response. By identifying the interactions between genes, we can better understand the complex 
interactions and functions of genes in the network. This information could be further used to develop targeted 
interventions for improving drought stress tolerance in crops.

Overall, the gene association networks of the candidate genes identified in our study highlight their potential 
significance in drought stress responses and provide a foundation for further investigation into their roles in 
drought-stress tolerance (Supplementary 2).

Figure 5.   Functions of differentially expressed genes predicted from GO term of Tomato genome. X-axis shows 
the number of differentially expressed genes involved in the functions displayed in y-axis. The size of the points 
in the plot denotes the p-value.

Figure 6.   Plot showing the “auc” value for training data and test data sets over iterations.
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Candidate genes overlapped with drought QTLs of Tomato
In this study, we aimed to explore the potential role of three candidate genes, FLA2, ASCT, and NPF7.3, in the 
response of tomato plants to drought stress. To investigate this, we compared the location of these genes with 
the previously identified QTLs associated with drought-related traits in tomato17.

Our analysis revealed that all three candidate genes overlapped with QTLs that were previously associated 
with drought stress, suggesting their potential involvement in the plant’s response to water deficit conditions 
(Table 1). Specifically, the QTLs RIP, SSC, NFr, and FW were identified under drought stress for the traits of time 
to ripe, soluble solid content, number of fruits, and fruit weight, respectively.

The importance of our findings lies in the potential for identifying specific genes that contribute to the drought 
stress response of tomato plants. A better understanding of the genetic mechanisms involved in this response is 
crucial for developing crop varieties that can withstand environmental stressors such as water scarcity.

Our study suggests that FLA2, ASCT, and NPF7.3 could be promising candidate genes for further investi-
gation in the context of drought stress in tomato plants. Future studies could focus on elucidating the specific 
molecular pathways through which these genes affect the plant’s response to water deficit conditions. This could 
lead to the development of more targeted breeding programs that utilize these genes to develop drought-tolerant 
tomato varieties.

Discussion
The abstract of our study highlights the crucial importance of gaining a thorough understanding of the genetic 
composition of tomato plants to improve their ability to withstand drought stress, especially given the significant 
global demand for this staple crop. To achieve this objective, we employed state-of-the-art machine learning 
techniques to identify the most responsive genes associated with prolonged water scarcity in tomato plants from 
publicly available drought stress transcriptomics data in Tomato. Our investigation uncovered six promising 
candidate genes, with FLA2 emerging as the top gene, indicating its potential as a critical target for enhanc-
ing drought resistance in tomatoes. Moreover, the gene ontology enrichment analysis conducted in our study 
demonstrated that the functions of the identified candidate genes were closely linked to drought stress. These 
findings are consistent with previous research10 reinforcing the notion that these candidate genes play a pivotal 
role in imparting drought tolerance in tomato plants. Our study significantly advances our knowledge of the 
molecular mechanisms underlying the response of tomato plants to drought stress. The identification of FLA2 
and other candidate genes, coupled with the functional analysis of their gene ontology, lays a robust foundation 
for future research focused on developing drought-resistant tomato varieties. Such research can help mitigate 
the negative impact of water scarcity on global food production, making our study highly pertinent and timely.

The findings of this study demonstrate that specific genes were upregulated in later stages of stress, whereas 
others overlapped with early stages, aligning with previous research on plant response to drought stress18,19. 
These results underscore the complexity of the molecular mechanisms involved in plant responses to stress and 
emphasize the need for a comprehensive understanding of these mechanisms that encompass multiple genetic 
pathways. By shedding light on the intricate mechanisms that govern plant response to drought stress, this study 
contributes to advancing our knowledge in the field and lays a foundation for future research aimed at develop-
ing drought-tolerant plant varieties.

This article emphasizes the critical importance of identifying candidate genes involved in the response to 
abiotic stress, particularly drought stress, and understanding their interactions using interaction networks. Our 
study focused on six genes (FLA2, ASCT, DCL2b, ADC1, NPF7.3, and BAG5), and the constructed interaction 
networks offer valuable insights into the potential pathways and mechanisms involved in drought responses. 
This research provides a foundation for developing targeted interventions to enhance stress tolerance in crops. 

Figure 7.   Candidate genes and their importance scores for drought response. The importance scores were 
obtained from machine learning models.
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The study highlights the significant role of the identified candidate genes in the response to abiotic stress, espe-
cially drought stress, with these genes exhibiting functions related to the drought stress response could lead to 
cross-talk of other abiotic stresses. Our findings are consistent with previous research20, in which various genes 
were identified, including SlMAPK3, a gene involved in multiple stress responses in tomato. The over-expression 
of SlMAPK3 improved the tolerance of tomato plants to drought stress by regulating the expression of genes 
involved in drought stress responses. Therefore, our study makes a valuable contribution to ongoing research on 

Figure 8.   Interaction network for candidate genes. The red color nodes in the network correspond to the 
protein of the respective candidate genes. Purple edges signify experimentally determined interactions, 
turquoise edges indicate information extracted from curated databases. Green edges represent neighborhood 
genes, red edges denote gene fusion, dark blue edges signify gene co-occurrence, light green edges are indicative 
of text mining, black edges indicate co-expression between nodes, and light blue edges signify protein homology.

Table 1.   Drought stress QTLs and overlapped candidate genes.

QTLs Physical Map (Mbp) Gene Transcripts

RIP3.1, SSC4.1, RIP1.1, NFr1.1 58.6651 FLA2 Solyc07g045440.1.1

FW2.2, NFr2.2, SSC11.1, RIP3.1 51.555 ASCT Solyc03g078150.3.1

SSC1.1, NFr1.1 80.0395 NPF7.3 Solyc01g080870.3.1
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drought stress tolerance in tomato. The identification of candidate genes involved in drought stress response and 
the construction of interaction networks lay a foundation for further investigation into the molecular mecha-
nisms involved in stress tolerance. These findings could be leveraged to develop new strategies for improving 
crop productivity and sustainability in the face of drought stress and other environmental stressors, ultimately 
benefiting global food security11,15,17,21.

The integration of bioinformatics and computational methods, particularly machine learning, has greatly 
advanced the field of plant stress response research. The study presented in this paper is a remarkable example 
of how such approaches can provide novel insights into the genetic mechanisms underlying plant responses to 
drought stress22. By identifying candidate genes and regulatory elements involved in stress response, machine 
learning can help develop crop breeding programs that enhance drought stress tolerance, ultimately contributing 
to addressing food security challenges13,21. The use of machine learning allows for the analysis of large amounts 
of genomic data and the identification of complex gene networks involved in stress response. This approach has 
enabled researchers to identify critical genetic targets and pathways that can be manipulated to enhance stress 
tolerance in crops. Such insights can be leveraged to develop crop varieties that can withstand harsh environ-
mental conditions, including drought stress, which is one of the most significant challenges facing global food 
production13,19. Furthermore, machine learning can also help identify and prioritize the most promising candi-
date genes and regulatory elements for further experimental validation. This approach can significantly accelerate 
the breeding process by reducing the time and resources required to develop new crop varieties. Therefore, the 
integration of bioinformatics and computational methods, particularly machine learning, represents a powerful 
approach to identifying the genetic mechanisms underlying plant responses to environmental stress.

Such approaches have the potential to make significant contributions to addressing food security challenges, 
particularly in areas where drought stress is a significant constraint on crop production. The use of such methods 
can ultimately lead to the development of drought-resistant crop varieties, which is critical for ensuring global 
food security in the face of climate change and other environmental challenges. Therefore, the integration of 
bioinformatics and computational methods is a promising tool for future research aimed at developing crops 
that can withstand environmental stressors and ultimately improve global food production.

Conclusion
In this study, we demonstrated that some genes of tomato were significantly upregulated in later stages of water 
stress, whereas some other genes were also found in the early stages and overlapped with later stages. Our results 
suggest that some genes play distinct roles in the plant’s response to drought stress. Therefore, a comprehensive 
understanding of these genes is crucial for developing strategies to improve crop resistance to stress. Furthermore, 
our machine learning approach resulted in identification of six candidate genes, with FLA2 having the highest 
importance score, provides a starting point for further research into the specific functions and mechanisms of 
the genes in the context of drought stress. The gene ontology enrichment analysis predicted that the functions of 
candidate genes are related to drought stress, indicating that they may play crucial roles in the plant’s ability to 
cope with environmental stress. Our study suggests that FLA2, ASCT, and NPF7.3 could be promising candidate 
genes for further investigation in the context of drought stress in tomato plants. Overall, this study highlights 
the importance of understanding the genetic makeup of tomato plants to develop strategies to increase stress 
resistance and fruit quality. The findings of this study shed light on the genetic makeup of tomato plants and their 
response to prolonged water deficit, and environmental stress that can significantly impact crop yield and quality.

Methods and materials
RNA seq data
For drought stress, RNA Seq data of tomatoes were extracted from Gene Expression Omnibus (GEO) 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The data was collected using the following keywords in GEO: "Sola-
num lycopersicum"[Organism] OR Tomato [All Fields]) AND ("drought response"[MeSH Terms] OR Drought 
stress[All Fields]) (Fig. 1). RNA Seq data were downloaded by SRAToolkit. Each treatment has its corresponding 
controls. Data were sorted according to time series points of 3, 6, 48, 72, 96, and 120 h of treatment respectively. 
There was also data for recovery samples (Supplementary 1).

Mapping
Reads were mapped against the coding sequence (CDS) of the Heinz 1706 genome. The latest annotation 
(ITAG4.1, https://​solge​nomics.​net/) of the Heinz 1706 genome was used. Kallisto was used for mapping. 34688 
genes were found after mapping. The abundance file contained transcript id, length, effective length, estimated 
counts, and TPM (Transcript per million). Transcript id estimated counts and TPM values of all samples were 
gathered in one tab-separated value file for further analysis. The estimated counts of all samples per time point 
were averaged and labeled as a single time point. This way we harmonized respective samples per time points.

Gene expression analysis
Differentially expressed genes (DEGs) were analyzed using the Bioconductor edgeR package in R. Estimated 
counts value of all samples were taken to analyze differentially expressed genes. Data were normalized with 
library size. Dispersions of samples were calculated with glm approaches of the edgeR package by comparing 
the treatments with their respective controls. Exact tests were carried out to verify the significance of change 
gene expression and their log fold change values. Multiple testing corrections were done with the topTags func-
tion. It ranks genes by p-value. The threshold of considering differentially expressed genes was False discovery 
rate (FDR) < 0.01. For upregulated genes, the logFC threshold was > 1, and for downregulated genes, it was < −1. 
Visualizing of gene expression was done with heatmap using the Complexheatmap Bioconductor package of 

https://www.ncbi.nlm.nih.gov/geo/
https://solgenomics.net/
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R. Gene expression was shown with genotype-specific, tissue-specific, stress-specific, heat level-specific, and 
sample-specific using row Annotation, bottom Annotation, and top Annotation functions of Complex heatmap 
package in R. Intersection and total set of genes of samples was visualized with an upset plot using R for both 
upregulated genes and downregulated genes. Some selected transcription factors from diversified families were 
collected in literature which are said to be drought-responsive genes. The expressions of that transcription factor 
were also analyzed across time series scales by comparing them with their respective controls.

Gene ontology analysis
Gene ontology enrichment analysis of significant genes of samples was carried out with the topGO package in 
R. The genome annotation format (GAF, ITAG4.1) file of tomato was collected from (https://​doi.​org/​10.​25739/​
zh2v-​4p15) and a map file was created with the bash script. The map file contained two columns with tabs 
separated where the first column was GO terms and the second column was genes to respective GO terms with 
space-separated. The functions were considered only those who were involved in biological processes. Fisher’s 
classic test was done to find significant levels of GO terms and their functions. The top 15 functions were selected 
as thresholds.

Candidate selection
We used a tree model with gradient boosting, XGBoost in R to train and test the models. The estimated counts 
values of samples were normalized by their library sizes. The variance stabilized matrix was calculated after 
differentially expressed genes were identified. The genes were filtered out when their variance were below 95%. 
After the filtering and normalization, 1735 genes were considered for machine learning model as features for 
159 samples. We split the data randomly into training (80%) and testing (20%) sets. We used five-fold internal 
cross-validation to select the optimized hyperparameters. The data aimed for binary classification, where the 
watered samples were labeled as 0, and the non-watered samples were labeled as 1. We tuned “nrounds” (number 
of trees), “colsample_bytree” (the proportion of features for constructing each tree), “subsamples” (the portion 
of training data samples for training each additional tree), and “eta” (shrinkage of feature weights to make the 
boosting process more conservative and prevent overfitting) in an XGBoost: classification model. We used the 
XGBoost-generated feature importance score that indicates how useful each feature was in the construction of 
the model.

Interaction network
To find out the likely interactions of candidate genes the STRING ((https://​string-​db.​org) tool was used23. For the 
search interface, parameters were set to full network type, confidence score > 0.4, and more than 10 interactors. 
In the organism interface, it was restricted to Solanum lycopersicum. In the networks graph, the colored nodes 
display the proteins and the edges represent the interactions.

Data availability
The source of all data analysed during this study are included in the supplementary files. The codes for the cur-
rent study available from the corresponding authors on reasonable request.
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