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Your smartphone could 
act as a pulse‑oximeter 
and as a single‑lead ECG
Ahsan Mehmood , Asma Sarouji , M. Mahboob Ur Rahman * & Tareq Y. Al‑Naffouri 

In the post‑covid19 era, every new wave of the pandemic causes an increased concern/interest among 
the masses to learn more about their state of well‑being. Therefore, it is the need of the hour to come 
up with ubiquitous, low‑cost, non‑invasive tools for rapid and continuous monitoring of body vitals 
that reflect the status of one’s overall health. In this backdrop, this work proposes a deep learning 
approach to turn a smartphone—the popular hand‑held personal gadget—into a diagnostic tool to 
measure/monitor the three most important body vitals, i.e., pulse rate (PR), blood oxygen saturation 
level (aka SpO2), and respiratory rate (RR). Furthermore, we propose another method that could 
extract a single‑lead electrocardiograph (ECG) of the subject. The proposed methods include the 
following core steps: subject records a small video of his/her fingertip by placing his/her finger on 
the rear camera of the smartphone, and the recorded video is pre‑processed to extract the filtered 
and/or detrended video‑photoplethysmography (vPPG) signal, which is then fed to custom‑built 
convolutional neural networks (CNN), which eventually spit‑out the vitals (PR, SpO2, and RR) as 
well as a single‑lead ECG of the subject. To be precise, the contribution of this paper is twofold: (1) 
estimation of the three body vitals (PR, SpO2, RR) from the vPPG data using custom‑built CNNs, 
vision transformer, and most importantly by CLIP model (a popular image‑caption‑generator model); 
(2) a novel discrete cosine transform+feedforward neural network‑based method that translates the 
recorded video‑PPG signal to a single‑lead ECG signal. The significance of this work is twofold: (i) it 
allows rapid self‑testing of body vitals (e.g., self‑monitoring for covid19 symptoms), (ii) it enables 
rapid self‑acquisition of a single‑lead ECG, and thus allows early detection of atrial fibrillation (abormal 
heart beat or arrhythmia), which in turn could enable early intervention in response to a range of 
cardiovascular diseases, and could help save many precious lives. Our work could help reduce the 
burden on healthcare facilities and could lead to reduction in health insurance costs.

One flip-side of the covid19 pandemic is that it has sparked great interest among people to stay informed about 
their overall well-being. Such interest in self-examination of one’s own body vitals hikes whenever a new wave of 
covid19 strikes the world. By now, it is well known that the important body vitals deviate from their nominal val-
ues when one is infected with  covid191,2 For example, the body temperature of a covid19 patient is often elevated 
( 100◦ F or more). Additionally, a blood oxygen saturation level (aka SpO2) of less than 90% and a respiratory rate 
of less than 15 and more than 25 typically also indicate a possible covid19 infection. Last, but not the least, an 
elevated pulse rate may also be witnessed as an occasional side-effect of covid19. Need not to say, but the body 
vitals have huge clinical significance other than covid19 detection as well. For example, the deviation of RR from 
nominal value could indicate the following: cardiac  arrest3, respiratory  dysfunction4,  pneumonia5, lungs  cancer6.

Thus, enabling masses to self-measure their body vitals in a rapid and non-invasive manner using low-cost, 
portable equipment (e.g., smartphones, smart watches, wristbands, etc.) is an objective of key importance, as 
suggested by the World Health Organization (WHO)7. To this end, note that there are currently more than 6 
Billion active smartphone users, and this number will rise to 7 Billion by  20258. Therefore, it is only logical to 
devise mechanisms that exploit the onboard sensors and computational capability of modern-day smartphones 
to help realize the patient-centric healthcare systems of tomorrow.

In fact, there has been a recent surge of interest in smartphone-based estimation of body vitals, by extraction 
of various kinds of physiological signals. To this end, approaches that could extract photoplethysmography (PPG), 
electrocardiography (ECG), and phonocardiography (PCG) signals from the smartphone have been explored the 
most. PPG methods utilize the camera of the smartphone to measure the quantity of visible light reflected off the 
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fingertip. A review of the PPG techniques and their potential applications could be found in Refs.9,10. The ECG 
methods compute the electric potential difference across a pair of external electrodes mounted on the casing of 
the  smartphone11 (when one places his/her thumbs on the two electrodes). Finally, the PCG methods try to utilize 
the microphone of the smartphone to listen to faint sounds generated by the heart during each cardiac cycle.

In this pretext, we propose the utilization of deep learning techniques on PPG data derived from a smartphone 
to create a physiological monitor that can aid in the self-assessment of body vitals. Our study aims to evaluate 
the accuracy, robustness, and generalization capability of several deep learning models, including convolutional 
neural networks (CNNs), vision transformer (ViT), and CLIP model (that generates captions of given images), 
for the estimation of vitals and the reconstruction of electrocardiograms (ECGs). The core steps of our work are 
depicted in Fig. 1 and are elaborated on as follows:

• Video recording one needs to place his/her index finger on the rear camera of the smartphone in order to 
record a small video snippet of a small duration (say, 30 s).

• Video preprocessing On RGB (red, green, blue) channels of video, pixel-averaging on each frame is done to get 
a PPG time series, and Wavelet transform is applied for denoising and removal of motion-induced artifacts.

• Training and testing of custom-built neural networks once the PPG time series is available, it is passed to a 
number of deep neural networks which eventually spit out the vitals (PR, SpO2, and RR) as well as a single-
lead ECG of the subject.

Outline
The rest of this paper is organized as follows. “Related work” section describes selected related work. “Datasets” 
section discusses PPG and video PPG datasets including our two custom datasets. “Vitals estimation using video-
PPG” section describes the essential details of various neural network models for vitals estimation (including a 
vision transformer as well as CLIP caption selector model) that are trained on several datasets. “Single-lead ECG 
synthesis from video-PPG” section discusses the architecture of the proposed P2E-Net, which translates a video-
PPG signal acquired from a smartphone into a single-lead ECG signal. “Discussion” section concludes the paper.

Related work
The objective of this study is to extract a PPG signal from video-PPG data, which is obtained by recording a 
video while placing the index finger on the rear or front camera of a smartphone. To achieve this, we conduct a 
comprehensive review of existing research that estimates three body vitals—pulse rate (PR), oxygen saturation 
(SpO2), and respiratory rate (RR)—using both video-PPG signals and traditional PPG signals acquired via a 
pulse oximeter. Additionally, we provide a brief overview of the latest techniques for acquiring single-lead ECG 
using a smartphone.

Video PPG‑based vitals estimation
Several studies have explored the use of video-PPG data to estimate body vitals, and a summary of these works 
is presented in Table 1. However, the table highlights the limited availability of publicly accessible datasets for 
this purpose. The existing datasets either have a small number of examples or only provide labeled data for a 
subset of the vitals of interest. In contrast, this study aims to estimate not only the three vitals (pulse rate, oxy-
gen saturation, and respiratory rate) but also the single-lead electrocardiogram (ECG), which is not addressed 
in the existing works. (Note that there are works under the name remote PPG or iPPG that measure the body 
vitals using dedicated cameras to record the face video and extract PPG signal from the video (this line of work 
was popular before the advent of smartphones),  see12 and references therein. Moreover, there is a recent flux 
of smart watches/smart wristbands (by Apple, Samsung, Fitbit, etc.) capable of measuring the body vitals. But 
since this work investigates the feasibility of smartphones as a physiological monitor, discussion of these works 
is out of the scope of this work.)

Figure 1.  A quick graphical summary of this work.
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Pulse rate
The estimation of pulse rate has traditionally relied on specialized sensors that record PPG signals. However, later 
studies have explored the potential of smartphones to record vPPG (alternatively called video-PPG) signals and 
estimate vital signs. Early research, such  as19, proposed using smartphones to estimate HR (alternatively called 
PR), and since then, smartphones have become widely studied as devices for measuring vital signs. Researchers 
have utilized various sensors available on smartphones to monitor vitals. For instance, Ref.20 proposed using 
a gyroscope to measure HR,  while13,21,22 used the rear camera of the mobile phone to measure pulse rate using 
fingertip videos. The front camera has also been used to measure HR, as in Ref.23. The vPPG signals have been 
recorded from various body locations, such as the  face24,25,  fingertips13,21,22, and  forehead26 to extract vPPG for 
pulse rate estimation. Moreover, numerous methods have been proposed to measure vitals from vPPG signals, 
such as using Fourier transform and peak detection-based algorithms for pulse rate estimation in Ref.27 and 
principal component analysis (PCA) in Ref.28. Some researchers have also employed deep learning (DL) models 
for pulse rate estimation, such as using a CNN in Ref.29 and long short-term memory (LSTM) based attention 
network in Ref.30. Recently, researchers have explored the use of various transformer-based models for pulse 
rate estimation, such as vision  transformer31,  TransPPG32, and  Radiant33.

Blood oxygen saturation (SpO2)
Since the smartphone cameras are not designed for pulse oximetry, smartphone-based SpO2 estimation faces 
several challenges, e.g., lack of infrared LED, lack of a well-accepted mathematical model, noisy vPPG signal, 
variable placement and pressure of fingertip on camera  lens34. Thus, authors in Ref.34 provide add-on hardware 
to measure SpO2 whose results meet the food and drug authority (FDA) accuracy standard when tested on six 
subjects only. Another smartphone-based pulse oximeter solution based on meta region of convergence (MROI), 
the ratio of ratio (RoR), and linear regression method are presented in Ref.35. This method though that does not 
require any additional hardware has the limitation that it cannot estimate low SpO2 values. One of the earliest 
works utilizing the RoR method for mobile-based SpO2 estimation  is19; however, its accuracy is not up to the 
mark based on the FDA clearance threshold as it is also not able to estimate low SpO2 levels. For the patients of 
respiratory disease, a SpO2 estimation algorithm for low SpO2 level detection is presented in Ref.15. In Ref.36 RoR 
and linear regression method is used to measure SpO2. The RoR method uses green and red channel wavelength, 
the amplitude of the vPPG from different channels are different and it depends on the quantum efficiency of the 
camera for different wavelengths. Thus, Ref.37 incorporated camera quantum efficiency in the measurement of 
SpO2 using a smartphone. Although the performance of this method is improved it suffers from a limitation of 
the unavailability of quantum efficiency of mobile cameras. To mitigate this problem, recently, authors in Ref.13 
proposed a method that neither requires information of quantum efficiency nor dedicated external hardware for 
the measurement of SpO2. Last but not least, the authors in Ref.14 estimated SpO2 using convolutional neural 
networks.

Respiratory rate
Respiratory rate measurement has traditionally been carried out by manually counting chest movements, a time-
consuming and inaccurate  process38. Additionally, medical-grade equipment for RR measurement is costly and 
not widely available for use in wearable mobile  devices39. However, mobile phones have become increasingly 
popular for measuring RR using various sensors. For instance, Ref.40 utilized the built-in microphone of a mobile 
phone to record nasal breath sounds for RR estimation. Similarly, Ref.41 measured RR using video recorded from 
the fingertip using a mobile phone’s rear camera, utilizing three different methods: autoregressive model (AR), 
variable-frequency complex demodulation (VFCDM), and continuous wavelet transform (CWT). Aly et al.42 
utilized the accelerometer and gyroscope of a mobile phone held on a human chest to extract RR, while Ref.43 
used the discrete wavelet transform to measure RR from video recorded from the fingertip, extracting the vPPG. 
Moreover, several studies have investigated deep learning (DL)-based approaches for RR estimation, with Shuzan 
et al.44 recently investigating 19 DL models for estimating RR and HR, with the Gaussian process regression 
model demonstrating the best performance (Fig. 2).

Table 1.  Quick comparison of our work with the most relevant related works (all works utilize video-PPG 
data from the fingertip). PRV (HRV) pulse (heart) rate variability, BP blood pressure, HR heart rate.

Ref. Vitals measured Dataset Methodology
13 PR, SpO2, BP Private Peaks detection
14 SpO2 Private SVD + CNN
15 SpO2 Private −
16 PR BUT PPG −
17 PR, PRV Welltory Wavelet analysis
18 HR, SpO2 MTHS CNN
19 HR, HRV, RR, SpO2 – Peaks detection, VFCDM

This work HR, SpO2, RR, ECG (single-lead) BIDMC, MTHS, PulseDB and custom CNN, DCT+FFNN
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Single‑lead ECG reconstruction
The clinical significance of a single-lead ECG is well-known as it allows atrial fibrillation (i.e., abnormal/irregu-
lar heartbeat) detection. Nevertheless, there exist only a couple of works that have considered the generation 
of a single-lead ECG signal using a smartphone and/or a pulse-oximeter. For example, Ref.11 mounts two dry 
electrodes on the back-casing of the smartphone in order to measure the single-lead ECG by placing one’s both 
thumbs on the two dry electrodes.  Reference45 passes the PPG signal acquired from a pulse oximeter through a 
block that computes the discrete cosine transform, followed by ridge regression, in order to get the single-lead 
ECG signal.  Reference46 also attempts to translate a PPG signal (acquired by a pulse oximeter) to a single-lead 
ECG signal, but by using a conditional generative adversarial network (c-GAN).

Research gap
To the best of the authors’ knowledge, a stand-alone smartphone-based solution that measures the body vitals 
(PR, SpO2, RR), as well as a single-lead ECG (without any external add-on hardware/sensors), has not been 
discussed in the open literature to date. Moreover, existing video-PPG-based frameworks are optimized for some 
specific scenarios on small datasets. Work on the generalization capability and robustness of the DL-based vitals 
estimation model is scarce.

Contributions
Having motivated the research gap, the main contribution of this paper is twofold:

• Estimation of body vitals We pre-process the video-PPG signal acquired from a smartphone and feed it to 
various custom-built DL models (including a vision transformer and a CLIP model) which eventually output 
the three most important body vitals (PR, SpO2, RR). We do hope that our dataset will serve as a benchmark 
dataset to test the generalization capability, accuracy and robustness of future deep learning methods for 
vitals estimation.

• Synthesis of single-lead ECG We pre-process the video-PPG signal acquired from a smartphone and utilize 
a novel discrete cosine transform+feedforward neural network-based method that translates the recorded 
video-PPG signal to a single-lead ECG signal. To the best of our knowledge, this is the first work that recon-
structs a single-lead ECG from a video-PPG signal acquired from a smartphone.

Significance of this work The significance of our work is twofold:

• This work enables rapid self-testing of various important body vitals (i.e., heart rate, respiratory rate, blood 
oxygen saturation level) using one’s own smartphone. This opens the door for the realm of patient-centric 
healthcare whereby the chronic patients, palliative care patients, people in remote areas (mountains, deserts), 
people in marine/sea expeditions, people in harsh climates (e.g., arctic) could monitor and keep track of their 

Figure 2.  Highlights of the pre-processing done during the training and testing phases of: (1) vitals estimation, 
and (2) vPPG-to-ECG translation.
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body vitals. The proposed method could also revolutionalize the symptom monitoring methods for covid19 
suspects and patients.

• This work enables an off-the-shelf smartphone to provide a single-lead ECG. Thus, it enables rapid self-
testing for atrial fibrillation detection using one’s own smartphone. Once atrial fibrillation is detected by 
the smartphone, it will prompt the user to visit a hospital. Since atrial fibrillation is a risk factor for stroke 
and heart failure, a timely detection of atrial fibrillation could in turn lead to early diagnosis of a range of 
cardiovascular diseases at a tertiary healthcare facility. Therefore, the proposed method has the potential to 
reduce the burden at healthcare facilities. Additionally, early diagnosis of a variety of cardiovascular diseases 
will lead to early intervention by the cardiac physicians which will in turn to lead to reduction in health care 
(and health insurance) costs, and will potentially save many precious lives.

Datasets
In this subsection, we outline the details of our K20-vPPG and K1-vP2E datasets. But before that, it is imperative 
to provide the reader with a systematic and brief review of the relevant existing public datasets on PPG and vPPG 
(as well as their limitations). (Note that there are some PPG datasets that are constructed using commercial pulse 
oximeters, e.g., MIMIC-III  dataset47,48, video-PPG datasets based upon traditional  cameras12 (before the advent 
of smartphones), and video-PPG datasets that utilize PPG signals for biometrics/authentication purposes, e.g., 
biosec1  dataset49. But since this work primarily focuses on video-PPG datasets acquired using smartphones for 
vitals estimation, discussion of such datasets (and the corresponding works) are out of the scope of this work.).

Existing video‑PPG datasets
BUT-PPG  dataset16

This dataset contains 48 simultaneous records of video-PPG data and single-lead ECG data of 12 healthy subjects 
(6 males, 6 females), 21 to 61 years old. Each video of the index finger of the subject was recorded for a duration 
of 10 s, using a Xiaomi MI9 smartphone at a frame rate of 30 Hz. The single-lead ECG data were recorded using 
a Bittium Faros 360 device at a sampling rate of 1000 Hz and were manually annotated by an expert. Eventually, 
Ref.16 utilized their dataset to estimate the HR.

Welltory  dataset17

This dataset contains 21 records of video-PPG data of 13 healthy subjects, 25 to 35 years old. Each video of the 
index finger of the subject was recorded for a duration between 1 and 2 min, using the Welltory android app. The 
R-peak to R-peak (RR) intervals were recorded using a Polar H10 ECG chest strap and were manually examined 
by an expert. Eventually, Ref.17 utilized their dataset to estimate the HR and HRV.

MTHS  dataset18

This dataset contains 65 recordings of video-PPG data along with corresponding HR and SpO2 labels, of 62 
patients (35 males, 27 females). Each video of the index finger of the subject was recorded using an iPhone 5s 
smartphone at a frame rate of 30 Hz. The ground truth/labels were obtained using a pulse oximeter (M70) at a 
sampling rate of 1 Hz. Eventually, Ref.18 utilized their dataset to estimate the HR and SpO2.

Limitations of existing vPPG datasets
We identified some limitations/shortcomings of the aforementioned vPPG datasets, some of them are as follows. 
The BUT-PPG dataset provides labels for HR only, while the Welltory dataset provides labels for HR and HRV 
only. Moreover, the small size of BUT-PPG and Welltory datasets renders them infeasible for state-of-the-art but 
data-hungry deep learning methods. The MTHS dataset though contains sufficient examples (enough to train a 
neural network) but provides labels for HR and SpO2 only. More importantly, the need for a new and large dataset 
on video-PPG stems from the fact that the generalization capability, accuracy, and robustness of any deep learn-
ing algorithm for vitals estimation could only be tested if a handful of video-PPG datasets are publicly available.

Benchmark PPG datasets
The BIDMC dataset
As we mentioned earlier in this section, one could learn more about the generalization capability, accuracy, and 
robustness of his/her proposed deep learning algorithm by testing it on other datasets (with unseen data with 
potentially different distributions). Therefore, this work utilizes the well-known BIDMC  dataset50 (in addition 
to the K20-vPPG dataset) for the training and performance evaluation of the proposed method for vitals estima-
tion. Some most pertinent details of the BIDMC dataset are as follows. The BIDMC dataset contains 53 sessions 
(each of duration eight minutes) of simultaneously recorded PPG and ECG signals, along with the ground truth 
values (i.e., the vitals). The PPG and ECG signals are recorded at a sampling frequency of 125 Hz, whereas the 
ground truth values of HR, SpO2, and RR are recorded at a sampling rate of 1 Hz. Note that the PPG signals in 
this dataset were acquired from the fingertip of patients using the clinical pulse oximeter. Finally, the single-lead 
ECG signal collected in this dataset is the Lead-II acquired using the standard 12-lead ECG.

The PulseDB  dataset51

This dataset contains a large number of filtered PPG and ECG signals. It also contains the ground truth labels 
for HR and BP. We randomly download the data of 550 subjects both male and female with more than 16,000 
PPG, and ECG signals along with their corresponding vitals ground truth labels. Each PPG and ECG signal is 
10 s long and sampled at 125 Hz. The corresponding ground truth labels are recorded at 1 Hz.
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Our video‑PPG datasets
K20-vPPG dataset
The limitations of the existing vPPG datasets (e.g., a small number of training examples, lack of raw data and 
labels for RR, and single-lead ECG, as needed by our study) prompted us to run an extensive campaign for vPPG 
data collection of our own. Thus, we subsequently compiled a new dataset named K20-vPPG dataset. The data 
collection campaign was approved by the ethical institutional review board (EIRB) of our institution, and all 
the subjects voluntarily participated in this data collection activity. Next, we discuss all the relevant details of 
the K20-vPPG dataset.

Participants. A total of 20 healthy subjects with no history of cardiac or respiratory disease participated in this 
data collection campaign, of which 5 were females and 15 were males. The volunteers/participants were either 
employees or students at our institute, aged 16–36 years.

Data characteristics. For each subject, we recorded the 2 to 10 min long vPPG data (the raw data) from the 
index fingers of the right hands of twenty different subjects. For ground truth/labels for supervised learning later, 
we simultaneously recorded the three body vitals (PR, SpO2, RR). (Our dataset also contains the ground truth 
labels of perfusion index (Pi) and Pleth Variability Index (PVi). However, their discussion is out of the scope of 
this paper.)

K1-vP2E dataset
For training the P2E-Net, the lead author simultaneously recorded 24, 5–10 min long vPPG and 1-lead ECG 
signals of himself over a time period of seven days after different activities (e.g. eating, running, sleeping, and 
walking). Then, the raw PPG and ECG signals were filtered and detrended in a similar way, as shown in Fig. 3.

Vitals estimation using video‑PPG
The main objective of this section is to conduct a comprehensive evaluation of DL-based models for vitals esti-
mation, focusing on their generalization capability, accuracy, and robustness. Previous studies have highlighted 
that existing video-PPG and DL-based approaches are extensively parameterized and optimized on small public 
datasets. While these models may exhibit strong performance on these datasets, they often lack the ability to 
generalize and demonstrate robustness in diverse scenarios. Thus, our contribution lies in enhancing the gener-
alization capability and robustness of various DL-based architectures. The section begins by discussing crucial 
pre-processing steps, followed by a detailed description of our proposed DL-based model, Vitals-Net. Finally, 
we conclude this section with a thorough performance evaluation of our DL models.

Pre‑processing stage
The pre-processing of the PPG signal extracted from the video-PPG data is performed prior to training the 
vitals-Net model. Careful pre-processing not only enhances the training accuracy of a neural network but also 
facilitates the model’s training process. Our pre-processing stage has been specifically designed to mitigate vari-
ous distortions, e.g., baseline drift, high-frequency noise, artifacts caused by ambient light and motion, and the 
de-trending of the PPG signal. The following are the detailed pre-processing steps (also summarized in Fig. 2).

PPG signal extraction from video-PPG
The pixel averaging technique is employed to extract a PPG time series from the central region of each frame in 
the video-PPG. This yields a vPPG signal, which is combined with simultaneously recorded ground truth vital 
signs obtained from an oximeter for training and validation purposes.

Figure 3.  Detrending and denoising: two key steps in the preprocessing of a PPG signal.
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Sliding window mechanism for segmentation
We then do segmentation of the PPG data. Since the ground truth labels for vitals are recorded at a frequency 
of 1 Hz, a sliding window mechanism is utilized. This mechanism uses a stride of 1 s, and allows us to creation 
a large labelled PPG dataset with 4330 examples or segments.

Wavelet filtering
Next, the vPPG signal undergoes wavelet filtering to eliminate low-frequency baseline drift, high-frequency 
noise, artifacts induced by ambient light, and motion artifacts. A five-level decomposition based on fast wavelet 
transform is applied to the PPG signal to obtain approximate and detailed coefficients. Subsequently, the signal is 
reconstructed by selectively choosing appropriate wavelet coefficients, as described in Ref.52. The low-frequency 
baseline induced by respiration and changes in ambient light intensity is represented by the signal corresponding 
to the approximate coefficients. The high-frequency noise and motion artifacts are represented by the signals 
corresponding to the level 1 and 2 detailed coefficients, respectively. Therefore, the reconstructed signal consists 
of wavelet coefficients other than the approximate and detailed coefficients from the first two levels of decomposi-
tion. Figure 3a illustrates the input raw PPG signal, while Fig. 3b shows the corresponding filtered signal. Finally, 
Fig. 3c showcases the de-trended and de-noised PPG signal, which is particularly useful for ECG reconstruction.

Vitals‑Net models and training
Vitals-Net models
We train four different models namely CNN-Net, MT-Net, ViT-Net, and ResNet, to estimate the vitals. Addition-
ally, we train the Vitals-CLIP model for querying-based vitals estimation.

CNN-Net model. This model is a variant of a CNN model proposed in Ref.53 which is originally proposed for 
heart rate estimation; however, we fine-tuned this model to estimate all vitals. Specifically, we add a lambda layer, 
that computes a short-time Fourier transform of the input PPG signal, at the top of this model. Moreover, we 
add batch normalization followed by a dropout layer after the flattening layer and each dense layer to avoid over-
fitting and ease the training process. We trained four different models: CNN-Net, MT-Net, ViT-Net, and ResNet, 
for vital sign estimation. Additionally, we trained a Vitals-CLIP model for querying mode vitals estimation.

MT-Net model. This model is another fine-tuned model originally proposed for HR and SpO2 estimation 
using  vPPG54. To get the best performance we add a lambda layer, that computes the DCT of input, on top of 
the model followed by an ADD layer, which adds the input in the output of the DCT lambda layer. Moreover, we 
remove the last conv1D and replace it with an FC layer with “relu” activation.

ViT-Net model. This model is a fine-tuned vision transformer. For compatibility, we added a lambda layer 
capable of performing a short-time Fourier transform of the input PPG signal. It is worth noting that the ViT 
model inherently expects a 2D vector/matrix as input, and the short-time Fourier transform converts the PPG 
signal into a suitable 2D vector/matrix format, making the lambda layer appropriate for integration with the ViT 
model (Fig. 4).

Vitals-CLIP model architecture. Vitals-CLIP is an enhanced version of the audioCLIP  model55, which extends 
its capabilities by incorporating PPG signals along with the text. To achieve this enhancement, we integrate 
specialized encoder models for PPG and text encoding, which consists of a text embedding layer followed by 
a projection layer (see Fig. 5a) and PPG embedding layer followed by a projection layer (see Fig. 5b), into the 
existing CLIP framework (see Fig. 4), leveraging the vPPG and PulseDB dataset. This integration allows our 

Figure 4.  The CLIP neural network model for one-shot estimation of Vitals.
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proposed model to perform both bimodal and unimodal querying tasks while maintaining CLIP’s impressive 
generalization capability to novel datasets.

The model comprises three encoder models: Vitals Encoder, PPG Encoder, and ECG Encoder. The Vitals 
Encoder consists of a text encoder, that generates embeddings of the text input, followed by an embedding projec-
tion model. We utilize a pre-trained BERT model available at TensorFlow Hub, that could be downloaded from 
the following URL: https:// tfhub. dev/ tenso rflow/ small_ bert/ bert_ en_ uncas ed_L- 4_H- 512_A- 8/1. The embed-
ding projection layer in the Vitals Encoder includes a Dense layer, followed by two linear projection layers. Each 
linear projection layer consists of a ‘gelu’ activation layer, a dense, a dropout layer with a dropout rate of 0.2, an 
ADD layer that adds the output of the dropout layer and the first dense layer outside the linear projection layer, 
and a ’layernormalization’ layer at the end.

The PPG encoder consists of a 1D CNN-based model, that outputs low dimensional embeddings of both 
PPG and ECG signal, followed by the same embedding projection layer described above. More specifically the 
architecture of the PPG encoder is summarized in Table 2.

Training
We train our models in three different configurations Vital Specific Training Configuration—From the literature 
survey, it is clear that training and testing of DL models are performed independently for each vital. Therefore, 
we train our models first in a vital specific configuration. In this configuration, we train our models for each 
individual vitals. In this configuration, we train our model using a video PPG dataset and then by BIDMC dataset. 
The video PPG dataset contains 21–30, 5–10 min long vPPG signals that were obtained by averaging each frame 
of fingertip video. Similarly, the BIDMC contains 8 min long each from 53 subjects. To train these models we 
segment each signal in BIDMC and K20-vPPG datasets in a vital specific window size. For example, we segment 
each PPG using ws = 10 s for vitals HR and RR and ws = 30 s for RR. For each segment, we use an average of 
10 labels for HR/SpO2 and an average of 30 RR labels for RR estimation. By the segmentation, we get a dataset 
D ∈ R

Nv ,N×ws∗Fs×ch where N, Nv and ch denotes the number of PPG and label pairs, number of vitals and the 
number of channels, e.g. ch = 2 means red and green video PPG signals, respectively. The dimensions of BIDMC 
and vPPG datasets are Db = R

{Nv ,22,550×30×ws×1} and Dv = R
{Nv ,8890×30×ws×2} respectively. Other training 

parameters are added in Table 5. It is well known that PPG datasets are prone to outliers due to the estimation 
error of oximeters, therefore these models must be trained in such a way that they train robustly on datasets that 
contains some outliers. Fortunately, mean absolute errors (MAE) are known to be robust to outliers. Therefore, 
we train our models using the MAE loss function defined below,

Figure 5.  The model architecture details of encoders in Vitals-CLIP. The inner architecture of the PPG 
encoder’s embedding layer and linear projection layer is given in Table 2.

Table 2.  Model architecture of PPG Encoders in CLIP. Here, Nf  , Ks , and s denote the number of filters, kernel 
size, and stride respectively.

Layer

PPG embedding Linear projection

Type Output (Nf  , Ks,s) Layer Output

1 Input (1250, 1) – GELU (256)

2 Conv1D (1241, 8) (64, 10, 1) Dense (256)

3 MaxPooling1D (620, 8) – Dropout (256)

4 Conv1D (616, 8) (32, 5, 1) ADD (256)

5 MaxPooling1D (308, 8) –

6 Conv1D (306, 16) (16, 3, 1)

7 Conv1D (304, 32) (8, 3, 1)

8 Flatten (9728) –

https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1
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where B is the batch size, y is the label, ŷ is the prediction. With the above loss function, we train the model for 
a maximum of 1000 epochs, however, we apply an early stopping to avoid overfitting of models.

Joint training configuration. In many scenarios where these vitals estimation is performed using low resources 
devices e.g., wristbands, smart watches, or even mobile, estimation of each vital with different DL models is not 
resource efficient. Therefore, in contrast to the first configuration where we trained models for only one vital, 
in this configuration we stack all vitals in a vector and use that as a label while training the model. Similar to 
the previous configuration, in this configuration DL models are trained on both BIDMC and vPPG datasets 
independently. In contrast to the previous configuration, the ws is the same for all vitals. In this configuration, 
we use ws = 20 s. The number of PPG and labels paired in the BIDMC and vPPG datasets are the same as the 
previous configuration.

CLIP configuration. In contrast to the previous two configurations, this configuration is specifically related to 
the Vitals-CLIP model and differs from the previous configurations in a number of ways. Firstly, this configura-
tion involves a so-called pretraining which is totally different from the training first two configurations. Secondly, 
this configuration uses text captions (see Figs. 4a, 7) as labels rather than numeric labels. Thirdly, the pretraining 
is not dataset specific rather three datasets namely vPPG, BIDMC, and PulseDB, are used simultaneously in the 
pretraining. This is possible due to the fact that text captions can be of different sizes. We train Vitals-CLIP in 
this configuration on a very large dataset. To make the dataset larger we made use of the subset of the PulseDB 
dataset in addition to BIDMC and video PPG. We used a large number of 10 seconds long PPG signals from 550 
subjects taken randomly from the PulseDB dataset and concatenate it with the BIDMC dataset containing the 
PPG of 53 subjects and also concatenated the video PPG dataset with them. Using the ground truth values of 
vitals, we made captions corresponding to each PPG segment. Finally, we get a dataset DC ∈ R

{N×Nc ,N×ws∗Fs×1} 
where N = 38, 600 , Nc is caption length, Fs = 125 Hz and ws = 20 s.

We use this dataset for the training of Vitals-CLIP. After the pretraining of Vitals-CLIP, we use it in querying 
mode (see Fig. 4b) due to its inherent ability to operate in querying mode. After pretraining we generate text 
embedding for all labels in the validation dataset and search for a caption using a vPPG signal as a query. The 
caption searching is performed by generating an embedding using a pre-trained PPG encoder and then taking 
the dot product with all caption/text embeddings. Then, the corresponding caption of the top k dot products 
are selected as captions (see Fig. 7). Then from all k captions, the values of vitals are extracted using a Python 
function, an average value is computed across the k captions, and predicted average value is compared against 
the ground truth labels. Finally, an important note here. After pre-training of Vitals-CLIP model, we generate a 
text embedding using a pre-trained text-encoder. These text embeddings are generated for the whole validation 
dataset that contain labels corresponding to three different datasets: (i) PulseDB, (ii) BIDMC, and (iii) k20-vPPG. 
Since PulseDB dataset contains labels for blood pressure as well, occasionally one or more of the top 3 captions 
generated by the Vitals-CLIP model might contain predicted labels of systolic blood pressure (SBP) and dias-
tolic blood pressure (DBP), in response to the vPPG query signals from our K20-vPPG dataset. These labels are 
simply ignored, since K20-vPPG dataset does not contain ground truth labels for the SBP and DBP. Then, from 
the rest of the captions, predicted values of HR, SpO2 and RR are extracted, averaged across the three captions, 
and compared with the ground truth labels.

Performance evaluation
To investigate the generalization capability of our DL models, we train them with K20-vPPG and BIDMC datasets 
and then test them on the LESSO data of both datasets. It is well-known that the performance evaluation using 
LESSO data of video-PPG is a superior measure of the generalization capability of a DL  model53. Therefore, we 
left some subjects out (LESSO) to later use them for the testing of our trained DL models. Specifically, we left 
data of 5 subjects (randomly selected from each dataset) that then serves as LESSO data.

We begin with the K20-vPPG dataset and do exhaustive search to figure out the best vPPG signal length 
denoted by ws (window size) that minimizes the MAE for all vitals. Figure 9 shows that the MAE for parameters 
HR and SpO2 increase slightly with the increase in widow size because the ground truth labels are the average 
of all labels in that window size. Overall, the window size of 4 s proves to be the best window size for HR and 
SpO2 Estimation. The standard deviation in absolute error (SAE) fluctuates slightly but remains under 1.5. In 
contrast, we use a higher window size due to the fact that RR induces slow variations in the video-PPG signal. 
Both the MAE and SAE increase slightly and then decrease reaching their lowest values at a window size of 32 s.

After finding the best window size, we train our DL models separately for each vital (but the curves that 
capture the decreasing trend of their training and validation losses against the number of epochs are omitted, 
due to space constraints). Next, we train the four models jointly using all vitals. Figure 6 shows their training 
and validation losses when trained using the two datasets, i.e., K20-vPPG and BIDMC. More specifically, Fig. 6 
shows that the training and validation losses of CNN-Net and MT-Net saturate after 200 epochs. However, the 
training and validation losses saturate earlier (in about 20 epochs), for ViT-Net and ResNet50 models.

Table 3 does the detailed performance comparison of all of our DL models when they are tested in a subject-
wise manner on LESSO data, for the following scenarios: (i) when the models are trained jointly, (ii) when the 
models are trained in a vital specific configuration. Overall, the performance of models trained specifically 
for one vital is superior to the models trained using all vitals simultaneously. Further, we note that MT-Net 

(1)L =
1

|B |

∑

y∈B

|y − ŷ|,
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Figure 6.  Training and validation loss of fine-tunned (a) CNN-Net, (b) MT-Net, (c) ViT-Net, (d) ResNet50 
models using K20-vPPG and BIDMC datasets.

Table 3.  MAE performance of our DL models for vitals estimation, on the LESSO data of two datasets (K20-
vPPG and BIDMC). The DL models are tested subject-wise on the PPG data of each subject in LESSO data, 
and MAE is recorded for each subject. Then, µ and σ represent the mean and standard deviation of MAEs, 
calculated across the subjects in LESSO data.

Vital specific training configuration

K20-vPPG BIDMC

HR SpO2 RR HR SpO2 RR

µ σ µ σ µ σ µ σ µ σ µ σ

DL models

 CNN-Net 2.22 4.04 0.64 0.61 3.95 2.78 4.10 2.91 5.91 5.21 2.85 2.24

 MT-Net 2.07 4.00 1.99 1.53 3.58 2.45 4.19 2.48 6.12 7.33 2.67 2.67

 ViT-Net 4.11 3.74 2.22 2.01 4.31 3.36 4.36 4.3 3.01 6.59 2.44 2.24

 ResNet50 3.32 3.83 2.26 1.91 2.62 3.57 4.20 6.02 6.66 6.14 4.99 3.82

Joint training configuration

 CNN-Net 5.99 6.28 1.05 1.16 3.46 2.92 4.78 16.63 93.75 17.57 3.10 2.80

 MT-Net 5.62 6.22 0.64 0.61 3.16 2.72 4.64 16.97 5.44 16.85 2.54 1.98

 ViT-Net 5.88 5.00 2.35 2.01 3.20 2.7 5.88 5.00 2.35 2.01 3.20 2.70

 ResNet50 6.17 7.92 1.61 0.54 2.62 3.57 4.20 16.56 6.38 6.76 4.99 3.82

CLIP configuration

 Vitals-CLIP 5.91 4.22 2.01 4.03 3.11 3.57 4.43 4.01 2.31 2.02 3.63 4.01

Figure 7.  Ground truth caption and top three matching captions predicted by Vitals-CLIP for the PPG signals 
from (a) PulseDB dataset, (b) BIDMC dataset, (c) K20-vPPG dataset. Here GT stands for ground truth, while 
C1, C2, C3 are top three matching captions for which the dot product of text and PPG embedding are highest, 
second highest and third highest respectively. HR is measured in beats/min, RR is measured in breaths/min, 
SpO2 is measured in percentage, SBP and DBP are measured in mmHg.
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outperforms all the other competitor DL models. Table 3 also provides detailed results due to use of Vitals-CLIP 
in the querying mode to estimate the vitals. We see that Vitals-CLIP outperforms CNN-Net and ResNet50 in 
the estimation of HR when trained in joint training configuration. Also, Vitals-CLIP outperforms all models in 
SpO2 estimation for the BIDMC dataset. Also, here it is worth noting that almost all models fail to estimate SpO2 
using a single PPG signal of the BIDMC dataset. Note that SpO2 estimation requires two PPG signals recorded 
using two lights of different wavelengths. The reason behind the failure of most of the models to predict SpO2 is 
that BIDMC dataset only has one PPG signal available in contrast to the video PPG where three PPG signals are 
available e.g. from RGB channels. Here it is worth noting that Vitals-CLIP outperforms other methods in SpO2 
estimation due to the fact that Vitals-CLIP works in querying mode.

At this point, it is worth reminding the reader that we have used LESSO data to evaluate the performance 
of our DL models in Table 3 because this testing method is a superior indicator of the generalization capabili-
ties of a DL  model53. Nevertheless, we note that a large portion of the literature utilizes MAE of test dataset as 
performance metric. Therefore, we do a performance comparison of our work with the related work based upon 
MAE of test dataset in Table 6. We learn from Table 6 that the MAE performance of our DL models on test data 
is quite competitive. That is, for HR/SpO2/RR estimation, the MT-Net model/CNN-Net model/ViT-Net model 
achieves the best accuracy of 1.74 bpm/1.66%/0.89 brpm among all the DL models that we have implemented, 
while the state-of-the-art achieves 1.4 bpm/1.1%/0.67 brpm accuracy, respectively.

Figure 7 shows three different query-PPG signals from three different datasets and their corresponding top 
three matching captions and the ground truth caption. After getting the matching caption the value of labels 
extracted from caption strings and then taken average. From the figure it is worth noting that the matching cap-
tion can sometimes also gives the values of systolic blood pressure (SBP) and diastolic blood pressure (DBP). 
This is due to the fact that the PulseDB dataset contains three two vitals HR and blood pressure (BP) and some 
time query PPG signal matches with a caption of the PulseDB dataset. Here it is worth mentioning that due to 
the unavailability of BP labels for the vPPG and BIDMC datasets, we could not add SBP and DBP vitals estima-
tion performance in the table. However, it can be deducted from the nature of captions that the performance of 
SBP and DBP estimation would be similar to the other vitals.

Computational complexity of our DL models
Table 4 provides a concise analysis of memory and computational cost of each of our DL models. We observe 
from Table 4 that the memory requirement and the computational complexity of MT-Net and CNN-Net mod-
els are much lower than the rest of the models, making their implementation on resource-constrained devices 
such as Arduino feasible. On the other hand, the remaining DL models require relatively bigger memory and 
computational resources, therefore, they are more suitable for devices such as smartphones. One more important 
observation is as follows. Since we eventually prune (i.e., shred neurons and hidden layers of) our DL models in 
order to reduce their size, memory requirements and computational complexity, in order to port them onto a 
smartphone Android app, the computational complexity of the converted models reduces even further.

Lessons learned from android app development
After the customization of the DL models of Vitals-Net, we convert them into smartphone-compatible models 
using the TensorFlow lite package (note that Vitals-Net collectively refers to CNN-Net, MT-Net, ViT-Net, and 
ResNet50, in this work). We, then, make a customized app for vitals estimation using these Vitals-Net converted 
to TensorFlow lite model. To our surprise, we learned from this experience that it was not our DL models which 
was the performance bottleneck, rather it was the following:

• The first bottleneck is the respiratory rate (RR) process itself. RR, by definition, is a very slow process, i.e., the 
typical breathing rate of a healthy person is between 15 and 20 breaths/min. This means there is approximately 
one breath every 3 s or so. This phenomenon forces us to record a relatively longer video of the fingertip, say, 
of duration 30 s, so that we can capture at least 10 breathing cycles in our video-PPG data, in order to make 
the learning process of our DL models efficient. This constraint of recording a relatively longer video then 
leads to the second bottleneck below.

• The second bottleneck is the very first pre-processing step that converts the video-PPG data to the PPG sig-
nal through pixel-averaging of each frame. Let’s illustrate this by means of an example. Assuming a camera 

Table 4.  Computational complexity and memory-requirements of the proposed DL models. FLOPs stands for 
floating-point operations (i.e., additions and multiplications).

Models

Memory and computational cost

Memory Parameters FLOPs

CNN-Net 14.37 KB 3.673 K 25.434 K

MT-Net 35.04 KB 8.969 K 17.671 K

ViT-Net 82.62 MB 21.66 M 41.63 M

ResNet50 89.99 MB 23.58 M 47.16 M

Vitals-CLIP 28.48 MB 7.46 M 6.194 M

P2E-Net 326.95 KB 83.7 K 43.12 K
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frame rate of 30 frames/s, with each frame having 1024× 1024 ≈ 1 million pixels, and a video-PPG data of 
duration 30 s, the smartphone needs to do pixel-averaging for 30× 30 = 900 frames in total (i.e., 0.9 billion 
additions in total, in lieu of pixel-averaging).

We alleviated the second bottleneck in our android app by processing a subset of each frame, the so-called region-
of-interest (ROI), basically a rectangular patch of pixels in the center of each frame. This sheds roughly half of the 
computational complexity of video-PPG to PPG translation process. After extensive testing, trouble-shooting, 
fine-tuning, we conclude our android app development campaign with the affirmitive claim that the standard 
smartphones are indeed capable of sustaining the computational requirements of our proposed method. For 
example, on a Vivo smartphone, model V2024, having android 10, 2 GHz Snapdragon 665 octa-core processor, 
4 GB of RAM, and 128 GB of storage, our custom android app predicts the HR and SpO2 of a subject in about 1 
minute, while it predicts the RR in about 3 min. Figure 8 shows a screenshot of the results panel of our custom-
designed Android app that lets a user record a video of his/her fingertip, preprocesses the raw video data, feeds 
it to our proposed DL models, and eventually displays the results.

Single‑lead ECG synthesis from video‑PPG
This section aims to reconstruct/synthesize a single-lead ECG signal from a PPG signal which itself has been 
extracted from the video-PPG data that is acquired by placing the fingertip on the rear camera of a smartphone. 
More precisely, we aim to reconstruct the ECG Lead-I, as per nomenclature for a standard 12-lead ECG system. 
Mathematically, the problem at hand is to find a mapping from a function x(t) to another function y(t), and 
vice versa. This (translation or regression) problem is indeed feasible due to the fact that the two signals (PPG 
and ECG) are highly correlated as they both capture the same cardiac activity at a sub-cardiac cycle resolution. 
Further, the morphology of the two signals is tightly binded to each other, from one cardiac cycle to another 
(e.g., the R-peak of the ECG corresponds to the diastolic peak of the PPG signal and more). Next, as we did in 
the previous section, we first describe the crucial pre-processing steps, followed by the details of our proposed 
deep learning-based model (P2E-Net), followed by the performance evaluation of the proposed method.

Pre‑processing stage
Pre-processing of both the reference single-lead ECG signal and the PPG signal (extracted from the video-PPG 
data) plays an important role in the efficient training of the P2E-Net. That is, it not only eases the training process 
but also improves the quality of the reconstructed single-lead ECG waveform. Thus, we segment the raw ECG 
and PPG signals, and pass them through a wavelet-filtering block that removes baseline drift, high-frequency 
noise, and artifacts induced by ambient light from both ECG and PPG signals (see Fig. 2) (We note that though 
the basic filters like moving average (MA) filter excel at eliminating high-frequency noise, but they fall short in 
removing prominent (low-frequency) baseline drifts and artifacts from the raw PPG and ECG signals. In con-
trast, the wavelet-based approach efficiently eliminates baseline, artifacts and noise from the raw PPG and ECG 
signals, which improves the performance of the (PPG and ECG) peak detection algorithm during the training 
and testing phase of our P2E-Net model. Thus, we feed Wavelet-denoised signals to our P2E-Net model, which 
results in enhanced performance for 1-lead ECG synthesis.).

Figure 8.  Screenshot of results panel of our custom Android app developed using the proposed Vitals-Net 
framework.
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Next, some additional preprocessing steps for P2E-Net model, that were not required by the Vitals-Net 
models, are discussed below (Fig. 9).

Peaks and valleys detection
During this step, the peaks and valleys of the ECG and PPG signal are detected which later help in signal de-
trending and synchronization. Specifically, during the training phase of P2E-Net model, both the R-peaks of 
ECG and diastolic peaks of PPG are detected, using the TERMA  algorithm56 (see Fig. 16). On the other hand, 
during the testing phase of P2E-Net model, only the diastolic peaks of PPG need to be detected. In other words, 
during the testing phase of P2E-Net model, detection of R-peaks of ECG and synchronization between PPG 
and ECG is not required.

Signal synchronization and de-trending
For detrending the PPG and ECG signals, we first construct the upper and lower envelopes of the two signals 
by interpolating between the peaks and valleys points respectively (see Fig. 3b). More specifically, we use the 
‘spline(.)’ function of Matlab to construct upper and lower envelopes, using detected peaks and valleys points 
of the two signals. Then, to detrend the two signals, we first subtract the lower envelope from the PPG/ECG 
signal that de-trends the PPG/ECG signal from the lower side. Then, we divide the PPG/ECG signal by a new 
upper envelope that we obtain by subtracting the lower envelope from the upper envelope. We then use this 
new upper envelope to de-trend the PPG/ECG signal from the upper side. This way, we get a de-tended signal 
having magnitude between 0 and 1. We further give the detrended signal an offset of 0.5, in order to center it at 
zero (see Fig. 3c). Once the PPG/ECG signals are de-trended, they are synchronized/aligned by using diastolic 
peaks of PPG and R-peaks of ECG signal as reference points.

The proposed P2E‑Net framework
The proposed approach aims to map one cardiac cycle of vPPG to one cardiac cycle of ECG, as illustrated in 
Fig. 10. To achieve this, two configurations of P2E-Net are trained and tested, namely, fully connected neural 
networks and ridge regression models-based configurations. These configurations differ based on the type of 
input/output layers or the network architecture. In the Ridge regression configuration, P2E-Net consists of an 
input layer, a discrete cosine transform (DCT) layer, a regression layer, an inverse DCT (IDCT) layer, and an 
output layer. On the other hand, in the feedforward neural network (FFNN) configuration, P2E-Net includes the 
same input, DCT, IDCT, and output layer, but two hidden layers replace the linear regression layer of the Ridge 
regression configuration. The hidden layers consist of a fully connected layer with ’selu’ activation function fol-
lowed by a batch normalization layer. Both hidden layers and FFNN configuration also apply L1 regularization 
to avoid overfitting.

The input layer of P2E-Net is, actually, the output of pre-processing layer, as described earlier. In the train-
ing phase, the pre-processing layer output cycle-wise time-domain vPPG as well as reference/ground truth 
ECG denoted by CP ∈ R

L×1 and CE ∈ R
L×1 respectively. Then, the cycle-wise time-domain vPPG is fed to 

the DCT layer of P2E-Net. The DCT layer, then, computes the DCT coefficient cP ∈ R
LP×1 that corresponds 

to the cardiac cycle of vPPG. At this stage, the DCT coefficients of the reference ECG cycle cE ∈ R
LE×1 are also 

computed offline. The DCT coefficients cP are fed to the regression/hidden layers, based on the configuration 
of P2E-Net, that maps them to the DCT coefficients of reconstructed ECG denoted by ĉE ∈ R

LE×1 . The DCT 
coefficients cE and ĉE are used in the loss computation and optimization of the model. Figure 11 provides the 
complete architecture of the P2E-Net model.

During the training phase, the iDCT layer remains inactive but once the network is trained and ready to be 
tested, it activates and serves to construct the time domain ECG signal from predicted ĉE.The regression model 
similar to Ref.45, when trained, learns a linear mapping from the cP to the cE . In contrast to regression, P2E-Net 

Figure 9.  Impact of window size on vitals estimation (x-axis represents window size, the y-axis represents MAE 
and SAE).
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in FFNN configuration learns a non-linear mapping from vPPG DCT to the DCT of ECG. In the IDCT layer, 
the ECG signal is reconstructed.

Training of P2E-Net
The P2E-Net is trained for a maximum of 1000 epochs. All the trainable network parameters are initialized 
with Xavier initializer. The MAE loss function is used to optimize P2E-Net and for the optimization, Adam 
optimizer is used. In the FFNN configuration, a learning rate scheduler, named staircase exponential learning 
rate decay, with a decay rate of exp(0.1) is applied to accelerate the convergence and achieve better performance. 
Moreover, with the aim of avoiding the over-fitting of the model, we apply L1 regularization of hidden layers. An 
early stopping with verbose 5 is also applied. The best model with the least validation loss is saved after every 5 
epochs during training, to see the performance of the best-trained model on test data. Other common training 
hyperparameters used in these models are shown in Table 5.

Performance evaluation
In order to evaluate the performance of P2E-Net, we performed experiments using two different datasets, i.e., we 
first used the BIDMC dataset and then the vIDEO-P2E dataset. In order to investigate the generalization capabil-
ity of P2E-Net, we randomly selected five subjects that were excluded from the training and validation dataset. 
From the remaining subjects, we split each session into 80% and 20% for training and validation respectively. 
Then we evaluated the performance of the proposed method with left-over data. For the rigorous evaluation of 
P2E-Net, we used three performance metrics, namely Pearson correlation and Dirichlet distance, and MAE. The 
Pearson correlation coefficient and Dirichlet distance are defined as:

Figure 10.  DCT coefficients of the PPG signal and the single-lead ECG signal (one cardiac cycle only). The 
proposed P2E-Net framework learns the regression between the two sets of DCT coefficients.

Figure 11.  P2E-Net model architecture in which each fully connected (FC) layer uses ’tanh’ activation and 
CP = 150 and CE = 150.
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Table 5.  Values of other hyper-parameters for P2E-Vital-Net. Here N = 28, 938 for pulseDB, N = 8890 for 
K20-vPPG, N = 22, 550 for BIDMC, and d = 6380.

Hyper-parameters P2E-Net Vitals-Net

Dataset size d N

Validation data set size d 0.15 ∗ N

Test data set size 0.1*d 0.10 ∗ N

LESSO data set 0.1*d 5 subjects

Training batch size 100 128

Maximum number of epochs 1000 1000

Initial learning rate 10
−3

10
−3

learning rate scheduler Exponential decay –

Scheduler type Staircase –

Learning rate decaying factor exp(0.1) 0.1

Optimizer Adam Adam

Figure 12.  Training and validation loss of P2E-Net.

Table 6.  MAE performance comparison of our work on vitals estimation with the most relevant related works 
on the test data (all works utilize video-PPG data from the fingertip). bpm, and brpm stand for beats per 
minute and breaths per minute, respectively.

Ref. Vitals measured HR (MAE) SpO2 (MAE) RR (MAE)
13 PR, SpO2, BP 1.4 bpm 1.1% –
14 SpO2 – 2.02% –
15 SpO2 – 3.5% –
18 HR, SpO2 6.59 bpm 1.24% –
43 RR – – 0.67 brpm
44 RR – – 0.89 brpm

Our models Vitals Measured HR (MAE) SpO2 (MAE) RR (MAE)

MT-Net HR, SpO2, RR 1.74 bpm 1.73 % 1.41 brpm

CNN-Net HR, SpO2, RR 1.89 bpm 1.66 % 1.79 brpm

ViT-Net HR, SpO2, RR 3.41 bpm 2.64 % 0.89 brpm

ResNet50 HR, SpO2, RR 2.01 bpm 2.01 % 3.14 brpm

Viltals-CLIP HR, SpO2, RR 4.31 bpm 1.96 % 3.01 brpm
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In Eq. (2), x represents the reference ECG signal and µx represents its mean. Similarly, y and µy represent 
the reconstructed ECG signal and its mean, respectively. In Eq. (3), the notation d(*) represents the Euclidean 
distance between two points. xi and yi are the ith elements of x and y respectively and Q is set of integers [1, N] 
where N is the length of x.

The P2E-Net model was trained for a maximum of 1000 epochs, but due to early stopping, the training 
stopped after just over 400 epochs when the MAE loss plateaued at 0.4 for training and 0.46 for validation, as 
shown in Fig. 12.

We then examined the impact of the number of vPPG DCT coefficients, and Fig. 15 shows that using a larger 
number of DCT coefficients improves ECG reconstruction performance in terms of all performance matrices, 
but not significantly. Overall, the proposed P2E-Net models can generate ECG signals with a mean absolute error 
below 0.1, a correlation with the reference ECG above 0.8, and a Dirichlet distance around 0.2 on average. It is 
worth noting that all these results are obtained using left-over datasets, which proves the efficacy of P2E-Net in 
terms of generalization capability (Table 6).

As ECG signals are mainly characterized by the P, QRS, and T peaks, we performed a cardiac cycle-level 
investigation. We selected the ECG signals of five subjects from the left-over data and detected all peaks as 
shown qualitatively in Fig 16. The peak-level quantitative performance of P2E-Net is presented in Table 7, which 
shows that neural network-based models outperform the ridge regression model, and both methods efficiently 
reconstruct the ECG. Finally, Figs. 13 and 14 show the qualitative performance of the ridge regression method 
and FFNN-based method whereby the reconstructed ECG waveforms show a high morphological similarity 
with the reference ECG waveform (for a few chosen subjects) (Figs. 15, 16).

(2)Pcorr =
(x − µx)

T
(y − µy)

||x − µx||2||y − µy||2
,

(3)ldir =min(max
i∈Q

(d(xi , yi))),Q = [1,N].

Table 7.  Performance of P2E-Net. Mean and std. dev. of Peaks and Valleys of reconstructed ECG waveforms 
for five subjects. Significant values are in bold.

Method

P-Peaks Q-Valleys R-Peaks S-Valleys T-Peaks

MMAE MSAE MMAE MSAE MMAE MSAE MMAE MSAE MMAE MSAE

DCT+Ridge regression 0.0487 0.01996 0.05722 0.0243 0.0883 0.0419 0.0850 0.0291 0.1125 0.0319

DCT+FFNN 0.0418 0.0177 0.0612 0.0177 0.059 0.0381 0.09516 0.0303 0.1044 0.0275

Figure 13.  Some ECG reconstruction examples using the ridge regression method.
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In summary, the P2E-Net efficiently reconstructs ECG signals with a shallow FFNN model, making it highly 
suitable for deployment on smartphones.

Some important remarks regarding proposed P2E‑Net model
Before we conclude the discussion on our P2E-Net model, it is worth emphasizing the following aspects regard-
ing preprocessing of the P2E-Net model:

• The training phase of P2E-Net model, the test phase of P2E-Net model, (and the training phase of Vitals-Net 
models) each have distinct requirements for the preprocessing steps (see Fig. 2). More precisely speaking, 
the training of P2E-Net model requires a preprocessed dataset that requires the following two additional 
steps (when compared to the preprocessing steps needed to prepare the training data for the Vitals-Net): (i) 
R-peaks detection of ECG, (ii) Peaks synchronization of ECG and PPG signals. These two steps require some 
manual effort, especially for those ECG signals in which R-peaks are not prominent, to make the preprocessed 
dataset as efficient as possible. However, recall that the testing phase of P2E-Net aims to translate an input 
PPG signal into a synthetic ECG signal. Therefore, we reach to the pleasing conclusion that the test phase of 
our P2E-Net model neither requires ECG peaks detection, nor the PPG and ECG signal synchronization. In 
other words, the bulk of the preprocessing is done offline during the training phase when the two datasets 

Figure 14.  Some ECG reconstruction examples using the proposed P2E-Net model.

Figure 15.  Impact of the number of DCT coefficients on the performance of proposed P2E-Net.
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(i.e., K20-vPPG and K1-vP2E) are meticulously prepared to train the Vitals-Net and P2E-Net models. There-
fore, it is safe to assert that the performance of our P2E-Net model does not depend on the aforementioned 
additional preprocessing steps during the testing in the real-time.

• One also needs to consider the impact of potential changes in the morphology of the ECG signals (due to 
different cardiac diseases and different body sites for ECG measurement electrodes), on the performance of 
R-peaks detection algorithm. However, it is again imperative/helpful if we look at the test phase and training 
phase of our P2E-Net model separately. Recall that the testing phase of our P2E-Net model needs to do the 
peak detection of the input PPG signal only (and not the ECG signal, as ECG needs to be rather synthesized 
by our model). Then, it is a known fact that though the morphology of a PPG signal changes due to a number 
of factors, its peaks still remain prominent, resulting in high PPG peak detection performance. The training 
phase of P2E-Net indeed requires efficient peak detection of ECG. Thus, for some morphologies of ECGs 
where R-peaks are not prominent, or when ECG signals have notable artifacts or baseline that cannot be 
removed completely, the classical peak detection approach may fail. In such cases, one could manually adjust 
the threshold to efficiently detect the R-peaks where possible. We believe this is a satisfactory workaround 
since the training is performed offline.

Discussion
Previous two sections described our DL-based approach for vitals estimation and single-lead ECG synthesis 
using a smartphone alone, as well as the selected results in great detail. This section discusses both the promise 
of our work as well as its limitations (i.e., directions for future work). We first summarize the promise of this 
work as follows:

• Pioneer work on single-lead ECG synthesis using a smartphone To the best of our knowledge, this is the first 
work that reconstructs a single-lead ECG from a video-PPG signal acquired from a smartphone, without 
any alterations, i.e., without any additional sensors or electrodes externally attached to the smartphone.

• A step towards patient-centric healthcare systems This work enables rapid self-testing of various important 
body vitals (i.e., heart rate, respiratory rate, blood oxygen saturation level), using one’s own smartphone. 
This opens the door for the realm of patient-centric healthcare whereby the chronic patients, palliative care 
patients, people in remote areas (mountains, deserts), people in marine/sea expeditions, people in harsh 
climates (e.g., arctic), people in religious congregations (e.g., Hajj, Umrah, Khumb, etc.) could monitor and 
keep track of their body vitals. The proposed method could also revolutionize the symptom monitoring and 
screening methods for covid19 suspects and patients (as it allows self-screening for covid19 symptoms at 
public places, e.g., shopping malls, airports, concerts, etc.).

• Early diagnosis of cardiac diseases This work enables an off-the-shelf smartphone to provide a single-lead 
ECG. Thus, it enables rapid self-testing for atrial fibrillation detection using one’s own smartphone. Once 
atrial fibrillation is detected by the smartphone, it will prompt the user to visit a hospital (or send an SOS mes-
sage to the nearby rescue health facility). Since atrial fibrillation is a risk factor for stroke and heart failure, a 
timely detection of atrial fibrillation could in turn lead to early diagnosis of a range of cardiovascular diseases 
at a tertiary healthcare facility. Therefore, the proposed method has the potential to reduce the burden at 
tertiary healthcare facilities. Additionally, early diagnosis of a variety of cardiovascular diseases will lead to 
early intervention by the cardiac physicians which will in turn lead to reduction in health care (and health 
insurance) costs, and will potentially save many precious lives.

• A step towards generative AI for medical data We do hope that our two custom datasets (K20-vPPG and 
K1-vP2E) will provide aid to the emerging generative AI methods that aim at generating synthetic (but 
sophisticated) medical data. Further, the two datasets will serve as benchmark datasets to test the generaliza-
tion capability, accuracy and robustness of future deep learning methods for vitals estimation and single-lead 

Figure 16.  Peaks and valleys of reference and reconstructed ECGs.
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ECG synthesis. Similarly, we hope that our DL models will serve as baseline models, in order to design future 
AI-based solutions that aim to monitor an increased number of human physiological parameters using a 
smartphone.

• Smartphone as a DIY health diagnostic tool inline with the UN SDGs This work is one-step forward to turn a 
smartphone into a do-it-yourself (DIY) health diagnostic tool. Thus, this work is anticipated to help achieve 
the sustainable development goals (SDG) 3 & 10 set by the United Nations (UN) that aim at health and well-
being and reducing the inequality within and among countries, respectively.

Having described the strengths of our work, we now turn to its limitations (i.e., the directions for the future 
work):

• Data distribution-dependent performance of DL models Like all other DL models reported in literature, our 
DL models are also dependent upon the distribution of the dataset. Thus, our DL models could undergo a 
performance degradation when exposed to a new dataset (that is similar but not the same as the original 
dataset our DL models are trained on). For example, the SpO2 labels in our dataset (K20-vPPG) fall in a 
narrow range of (90–100)%, due to the fact that this dataset was collected from the healthy young subjects 
only. Therefore, our proposed DL models do not promise to generate accurate SpO2 predictions for the 
patients with severe respiratory disease (e.g., pneumonia, covid19, etc.) whose SpO2 could be as low as 70%. 
The solution to this problem is twofold. (1) More data needs to be collected, but this time from real patients 
with cardiac and respiratory diseases. (2) With the new dataset constructed, one could do transfer learning 
(by keeping the weights and biases of neurons in all the layers in our neural network models frozen, except 
last 1–2 layers) in order to learn the new distribution of the data.

• Difficulty in acquiring medical data Continuing with above argument, another important challenge is the 
difficulty in acquiring medical data (e.g., due to considerable waiting time for approvals from ethical boards, 
due to lack of willingness of patients to volunteer for data collection, due to more emphasis by clinicians and 
hospitals on clinical aspect and less emphasis on research aspect, etc.).

• High time for generative AI for medical data Continuing with above argument, practical difficulties in acquir-
ing medical data call for construction of synthetic (but realistic) datasets. This dream has become feasible 
very recently due to the rise of generative AI methods. Indeed, efforts have begun already to use generative 
AI tools (e.g., auto-encoders, generative adversarial networks) to generate synthetic but reliable medical data.

• The pursuit for clinical trials: Our DL models and the resulting Android app need to undergo extensive clinical 
trials in one or more hospitals in order for us to validate the performance of our DL models on real patients. 
This is indeed one of the long-term objectives of this work.

• Edge computing or cloud computing? Not all the DL models proposed in this work (and previous works) could 
be implemented on the resource-constrained devices. For example, ResNet50 model and Vitals-CLIP model 
proposed in this work have higher memory requirements and higher computational complexity compared to 
the other models (see Table 4). This makes their deployment on resource-constrained devices (e.g., Arduino, 
raspberry pi, low-end smartphones etc.) difficult. However, if latency is not an issue, then cloud computing 
could be one viable solution for the resource-constrained devices. Similarly, high-quality synthesis of a single-
lead ECG in this work requires efficient preprocessing (which involves wavelet filtering, peaks detection and 
signal detrending), which increases the computational complexity of our approach, yet the situation remains 
under control when we port our method to an Android app. For the sake of records, we have been able to 
successfully implement the lighter version of our CNN-Net model onto a regular smartphone by means of 
Tensorflow lite framework. That is, in a real-time setting, our custom android app computes the HR and 
SpO2 of a subject about a minute, while it takes about three minutes to compute the RR of the subject. This 
demonstrates that some of our proposed DL models are quite suitable for edge AI computing on resource-
constrained devices.

Finally, following points are also worth mentioning. (1) The proposed solution is probably best claimed as a 
self-help or self-testing tool, i.e., it is not a replacement for the gold-standard medical devices (e.g., traditional 
contact-based 12-lead ECG machines) in the hospital. (2) Once the clinical trials of our proposed solution are 
over and successful, the next immediate and logical step is to seek approval from the food and drug authority 
(FDA). Such approval will facilitate our proposed solution to reach its true potential (to help millions of people 
around the globe).

Conclusion
This work demonstrated the feasibility of using a smartphone as an initial diagnostic tool to measure one’s body 
vitals, i.e., pulse rate, SpO2, and respiratory rate, and a single-lead ECG. A number of custom-built CNNs and 
FFNNs (including a vision transformer and a CLIP model) were implemented to extract the body vitals as well 
as the single-lead ECG from the video-PPG signal recorded from the rear camera of the smartphone. Rapid self-
testing of body vitals allows ubiquitous monitoring of one’s well-being (e.g., self-monitoring for covid19 symp-
toms). Similarly, rapid self-acquisition of a single-lead ECG allows early detection of atrial fibrillation (abnormal 
heartbeat), which in turn could enable early intervention in response to a range of cardiovascular diseases, and 
could help save many precious lives. Overall, our work has the potential to revolutionize the healthcare systems 
as it could reduce the burden on healthcare facilities and could lead to a reduction in health insurance costs. This 
work invites smartphone manufacturers and Android app developers to deliberate and standardize algorithms 
to measure body vitals and single-lead ECG, as well as governments to devise policies and guidelines for the 
following use case scenarios: remote healthcare (i.e., people living in remote and far-away areas), patient-centric 
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healthcare (i.e., chronic and palliative care at-home patients), mobile health (i.e., monitoring of well-being of 
various long-journey expeditions, e.g., sea/marine expeditions), fitness, and sports, etc.

Data availability
The two custom datasets (K20-vPPG and K1-vP2E) used and/or analysed during this research study are available 
from the corresponding author on reasonable request.
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