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Detection of cracks in concrete 
using near‑IR fluorescence imaging
Andreas Karpf 1, Michael Selig 1, Aktham Alchaar 2 & Magued Iskander 1*

Structural health monitoring of civil infrastructure is a crucial component of assuring the serviceability 
and integrity of the built environment. A primary material used in the construction of civil 
infrastructure is concrete, a material that is susceptible to cracking due to a variety of causes, such as 
shrinkage, creep, overloading, and temperature change. Cracking reduces the durability of concrete 
structures, as it allows deleterious environmental agents to penetrate the surface, causing such 
damage as corrosion of steel reinforcement and delamination of the concrete itself. Conventional 
crack detection techniques are limited in scope due to issues relating to pre‑planning, accessibility, 
and the need for close proximity to the test surface. Contactless optical image monitoring techniques 
offer the opportunity to overcome these limitations and have the potential to detect cracks at 
a distance. Concrete has been reported to have a near‑infrared (Near‑IR) fluorescence line at a 
wavelength of 1140 nm when excited with red light. This work investigates the use of fluorescence 
imaging for the detection of cracks in cementitious surfaces using shallow angle incidence excitation 
red light. Light oriented at a shallow angle does not excite interior surfaces of cracks, which appear 
as darker features in images of fluorescing concrete. Artificial cracks with widths of 0.2–1.5 mm were 
readily imaged using a near‑IR camera at distances of 0.5 and 1.3 m. An additional concrete sample 
with a 0.08 mm wide crack was produced using a flexure apparatus and was also imaged. It is worth 
noting that the 0.08 mm crack was detected despite its width being below the 0.1 mm pixel resolution 
of the camera, with the aid of digital image enhancement algorithms.

Concrete is perhaps the most widely used building material for urban construction, worldwide. However, con-
crete structures are susceptible to cracking due to several causes, including short-term plastic shrinkage, mechani-
cal strain from excessive loading, creep, and/or temperature  changes1, 2. Cracking is a major durability concern 
for concrete as it allows the penetration of moisture, chlorides, deicing salts in urban environments, and sulfates 
in harsh environments. The intrusion of such agents causes the deterioration of concrete as well as corrodes the 
underlying steel  reinforcement3–5. In this context, cracking directly affects the service life of concrete structures, 
therefore regular monitoring of civil infrastructure is a vital component of asset management. Early detection 
of flaws can thus help owners anticipate prospective damage, ensure the serviceability and durability of concrete 
infrastructure, and reduce their  lifecycle6 costs.

The most widely used approach for crack detection is visual inspection. However, visual inspections are time-
consuming and can easily miss small cracks in large structures. In addition, crack growth is highly related to tem-
perature variation within the  structure7, so cracks may be missed during contractive periods. Visual inspections 
are often augmented with acoustic surveys as well as spot material and permeability testing. These techniques 
require special training and typically involve loss of use of the structure while they are being conducted. In a few 
cases, monitoring solutions involve embedding sensors into the concrete while it is being poured. This approach 
requires planning beforehand and post-construction accessibility to the instrumentation. Once cracks have been 
identified, crack meters can be installed on the surface to monitor crack growth. Use of crack meters suffers from 
several problems. First, sensors act on a localized basis only. Second, accessing gauges is often difficult. Third, 
gauges can easily be damaged in unprotected areas. Fourth, this approach is further complicated by the need 
for large numbers of sensors and the associated wiring to monitor large-scale projects, and long-term gauge 
durability  issues8. Recent advances in sensor technology, such as fiber optic strain gauges, can serve to reduce 
the amount of wiring required, but fiber optic sensors are considered low-durability instruments and require 
skill for installation and interpretation of the  results9, 10. In addition, strain gauges do not directly detect cracks, 
instead, they infer cracking from the redistribution of stresses within structures due to cracking. Finally, it is also 
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important to note that many of the conventional techniques, like crack meters and strain gauges, cannot detect 
old cracks as they measure relative change after their installation.

Non-contact monitoring techniques are being investigated due to their potential to overcome the drawbacks 
of conventional instruments. The contact-free nature of such instruments cuts down on labor requirements, is 
less impacted by accessibility issues, and uses considerably fewer sensors than current  technology11. The follow-
ing techniques are being employed:

• Ultra-sonic approaches to crack detection have been the most extensively  employed12. The majority generate 
ultrasonic pulses while in contact with the surface, and employ known transmission properties of concrete, to 
identify defects via changes in the time of flight of the acoustic wave. Tomographic methods have also been 
used to combine readings from many sensors and increase resolution. However, these approaches require 
equipment that is in close proximity to the surface (on the order of mm) and have limited spatial resolution.

• Ground penetrating radar (GPR) uses high-frequency radio waves to assess conditions by capturing the 
attenuation of reflected radar  waves13. The emitted waves have specific velocities depending on the permit-
tivity of the material through which they pass, and changes in velocity can indicate anomalies, including 
concrete delamination and corrosion of steel  reinforcement14. GPR, however, is functional only at a close 
distance to the surface and can be difficult to use on vertical surfaces or ceilings.

• Terrestrial Laser Scanning (a technique similar to LiDAR) generates 3-dimensional images of a scene with 
millimeter-level resolution using reflections of light from the  target15. A complication with this approach is 
the difficulty in identifying fine cracks without having reflectivity  data16. However, resolutions of 0.2 mm 
were achieved, provided that surfaces were cleaned to enhance crack  visibility17.

• Infrared thermography identifies delaminated concrete because of its lower thermal conductivity compared 
to healthy concrete, so damaged surfaces appear hotter than surrounding intact surfaces when the tempera-
ture gradient of concrete surfaces is measured using an infrared  camera18. Optimal test conditions require 
continuous solar loading and low wind speed; the former is impossible to achieve for outdoor structures. 
In addition, the optimal time of day for detecting damage depends on the orientation of the surface, with 
defects in bridge decks optimally seen at noon, while bridge deck soffit defects are better seen at  midnight19.

Machine Learning has been used in conjunction with visible light images taken from unmanned aerial vehi-
cles (UAVs) to identify cracks. Here, the UAVs provide a mobile platform for recording images from a distance. 
Machine learning algorithms such as convolutional neural networks were used to identify cracks from visible 
light  images20, 21. The use of a UAV platform shows promise for scanning larger areas of roadways and other 
surfaces. The machine learning algorithms automate the process of identifying cracks. The use of convolutional 
neural nets, however, requires significant amounts of computational  power21, and thus may not be well suited 
for fieldwork. As the field progresses, it is expected that machine learning algorithms may complement a variety 
of detection techniques.

Fluorescence imaging has the potential for use in non-contact crack detection. Fluorescence occurs when a 
substance is excited by incident radiation, undergoes relaxation (i.e., the nuclear positions shift to achieve equilib-
rium distances corresponding to the new excited state), and then spontaneously de-excites by emitting a photon 
(i.e., the fluorescence) where the emitted photon is of lower energy than the absorbed  one22. It has been shown 
that injecting cracks with an epoxy resin that contains a fluorescent dye can enhance the visibility of cracks. Using 
fluorescence microscopy, one can use a filter to block the excitation light; light emitted by the fluorescing dye from 
within the cracks is the primary source of light in the resulting images and is used to identify crack  patterns23, 24.

As opposed to using a dye, it has also been shown that Portland cement itself fluoresces in the near-IR range 
(near-IR light covers the wavelength range from about 800–2500 nm). Illuminating a cement sample with long 
wavelength visible light (λ = 550–700 nm), results in the cement fluorescing in the near-infrared (λpeak ~ 1140 nm); 
peak fluorescence occurred with an excitation wavelength between 620 and 640  nm25. In the case of concrete, 
the source of the fluorescence is the silicon crystals in the calcium silicate component of  cement25. There was no 
impact on the fluorescence wavelength due to factors such as strain conditions, water/cement ratio, and curing 
period. The advantage of imaging using IR fluorescence is that one can use a filter to record images at the target 
wavelength and know that visible features are due only to the fluorescing material (i.e., concrete).

Meng et al.25 also demonstrated an approach to crack detection where they coated a concrete surface using 
opaque paint before stressing the sample. In this case, the paint cracked along with the concrete. This exposed 
the underlying concrete, resulting in only the fractured parts (cracks) fluorescing under the excitation of a laser 
perpendicular to the specimen. The limitation of this approach, however, is that it requires concrete to be painted 
prior to cracking, and it cannot differentiate between cracks in the concrete and areas where just the paint has 
cracked or flaked off. Additionally, the use of a laser for excitation limits one to analyzing small areas at a time.

The objective of this study is to explore the detection of cracks in concrete using the fluorescence of the silica 
naturally occurring in the cement. The study improves on past work in a number of ways. First, the concrete 
was tested as-is without it being painted. Second, the use of a laser was eliminated in favor of LED lights, which 
permitted illuminating a much wider swath of concrete. Third, the use of a shallow angle of illumination ensured 
that the interior surfaces of cracks received no excitation, thus permitting the detection of cracks by detecting 
dark shadows within swaths of the fluorescing concrete surface.

Methods
In this work, a crack-detection approach using fluorescence imaging is demonstrated using the known 1140 nm 
concrete fluorescence line emitted when excited by light having a wavelength, λ, ranging between 550 and 
700 nm. Unpainted concrete surfaces were illuminated with red LED light. The most efficient emission of 
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1140 nm fluorescence occurred when concrete was excited by light having λ = 620–640  nm25. Red LEDs were 
selected as the excitation source due to (1) their emission at λpeak = 632 nm, which falls within the peak excitation 
wavelength range, and (2) their broad angle of emission which maximizes the sample area that can be illumi-
nated. Samples were illuminated from opposing sides at a shallow incident angle θi ranging between 10° and 40° 
(Fig. 1). The shallow angle was used to ensure that the interior surfaces of cracks received no excitation light. As 
a result, images would show a fluorescing concrete surface with cracks appearing as dark features, due to their 
lack of fluorescence. Illumination from both sides with a broad angular range minimized the amount of shaded 
areas due to surface irregularities. Shadows from surface roughness or irregularities would otherwise appear as 
dark features and complicate crack detection.

A short-wave infrared (SWIR) camera was used to image the fluorescing samples. The camera had a resolution 
of 640 × 512 pixels and used an Indium Gallium Arsenide (InGaAs)-based sensor, which has enhanced sensitiv-
ity in the (900–1700 nm range) as opposed to the Silicon-based sensors used in typical Visible/Near-IR cameras. 
This provided a significantly higher signal-to-noise ratio when imaging the 1140 nm fluorescence. The camera 
was outfitted with a long-pass filter that blocked wavelengths < 1000 nm to permit using it in ambient white LED 
laboratory lighting, having a spectral range of 400–700 nm. A higher resolution camera is indeed desirable, but the 
employed camera was among the highest-resolution SWIR cameras available within the required detection range.

Samples were illuminated by red LED light bars (45 cm in length); four bars were stacked above and below each 
other on either side of the sample and oriented so that their axes were parallel to the sample surface (Fig. 2). The 
LED bars were angled such that their emitted light shined on the samples with an angle of incidence ranging from 
10° to 40°. Each LED bar had a luminous flux of 150 Lumens, which resulted in an irradiance of approximately 0.2 
mW/cm2. This was significantly weaker than the laser light used in the work by Meng et al.25 due to the LED light 
being diffuse and spread over a much larger sample area. Fluorescence was observed by positioning the SWIR 
camera (with the long pass filter attached to its lens) directly above the sample. To compensate for the resulting 
weaker fluorescence, images from the SWIR camera were recorded using a 5-s exposure time.

Three concrete samples were fabricated using a concrete mixture having a cement-to-sand-to-aggregate ratio 
of 1:2:2, by weight. The first sample contained a smooth, unbroken surface; half of the sample was coated with 
paint, to prevent the observation of fluorescence, while the other half was untreated. This sample was employed 
to optimize the imaging parameters used to observe concrete fluorescence. The second sample contained artificial 
cracks of widths 0.2 mm, 0.5 mm, 0.7 mm, 1.2 mm, and 1.5 mm. Artificial cracks were created by inserting plastic 
sheets of varying thicknesses into the fresh mixture. The sheets were removed after the samples were mostly 
cured, and the width of the artificial crack thickness was confirmed after the concrete was fully cured. Thickness 
measurements were carried out using high-resolution images of the cracks and a fiduciary scale. A third concrete 
sample was created to demonstrate the technique on a “real” crack. This was accomplished by conducting a three-
point flexural test on the specimen to introduce real cracks without causing complete fractures. The result was a 
sample with a single long crack along its center, having an approximate width of 0.08 mm.

Results and analysis
The observation of concrete fluorescence using the reported approach was first confirmed by inspecting images 
of the half-painted smooth concrete sample captured using the SWIR camera (Fig. 3). The sample was illumi-
nated with the red LED light; the paint shielded the underlying concrete from the red excitation light, resulting 
in only the unpainted half exhibiting 1140 nm fluorescence. Figure 3a depicts the sample as seen through the 
SWIR camera with a combination of ambient white LED room lighting and the red excitation LED turned on. 
The right side of the sample was unpainted and is seen to be fluorescing at 1140 nm. Figure 3b shows the same 
sample with the red excitation LED light turned off. On close inspection, one can see evidence of barely detectable 
fluorescence due to the room’s ambient light containing a small red  component26. The faint component of red 

Figure 1.  Crack detection using shallow angle excitation of concrete fluorescence. Light from LED bars 
(λpeak = 632 nm) is incident on concrete surfaces from opposing directions at a shallow angle of incidence 
(θi = 10°–40°). Illumination from both sides with a broad angular range minimized the amount of shaded areas 
due to irregularities in the surface, and ensured that the only areas not receiving excitation light represented the 
interior surfaces of cracks.
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light contained within the room’s white ambient lighting induced low-level fluorescence in the concrete sample. 
Again, the painted side shows no fluorescence.

To test the capability of the approach for detecting cracks of various sizes, a sample containing artificial cracks 
of widths 0.2 mm, 0.5 mm, 0.7 mm, 1.2 mm, and 1.5 mm was used. These sizes were selected to balance two 
concerns. First, sizes were selected to represent a variety of crack widths encountered in practice that are difficult 
to detect visually. Second, thicknesses were also based on the feasibility of creating artificial cracks of known 
thickness within the specimen. The apparatus was tested first with the SWIR camera at a distance of 1.3 m from 
the sample (Fig. 4), corresponding to an image resolution of 0.3 mm per pixel. The test was repeated with the 
SWIR camera positioned at a closer range of 0.5 m (Fig. 5), corresponding to an image resolution of 0.1 mm/
pixel. In both cases, images were recorded with an exposure time of 5 s to maximize the signal-to-noise ratio.

Once captured, the images were processed to enhance the identification of cracks using a routine written 
in Python. First, ten images were averaged (to minimize the effects of random noise). Next, a thresholding 
algorithm (THRESH_TRUNC) from the OpenCV  library27 was used to remove the effect of dead pixels (i.e., a 
small percentage of pixels in images were completely black—these represented non-responsive or ‘dead’ pixels 
on the imaging chip). The thresholding function compared each pixel against a set threshold. If the pixel’s value 
was greater than the threshold, its value was reassigned to the threshold value; if the pixel’s value was less than 
or equal to the threshold, it retained its original value. A Gaussian filter (using the GAUSSIANBLUR function 

Figure 2.  Experimental Apparatus for observing 1140 nm concrete fluorescence. (a) Red excitation light 
(λpeak = 632 nm) was provided by four sets of LED bars positioned on either side of the sample. (b) Fluorescence 
was observed using an SWIR camera with long-pass filter positioned directly above the sample.

Figure 3.  Images of half-painted smooth concrete sample seen through the SWIR camera. (a) Sample 
illuminated using both red excitation LED and ambient room lighting. The right side of the sample was 
unpainted and is seen to be fluorescing at 1140 nm. (b) Sample illuminated using ambient white LED light only.
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from OpenCV) was then applied to smooth the averaged image. Lastly, the Canny edge detection  algorithm28 
was used to identify edges (i.e., cracks) in the image. In this routine, gradients for the image are calculated, and 
an upper and lower threshold are specified to identify edges. Specifically, edges whose gradient is above the upper 
threshold are automatically treated as edges; those whose gradient is below the lower threshold are deemed 
non-edges and ignored. Gradients between the upper and lower thresholds are determined to be edges based 
on their continuity with other potential edge pixels. This testing for the continuity of potential edge pixels in the 

Figure 4.  Concrete sample with artificial cracks having widths ranging from 0.2 to 1.5 mm, as imaged through 
the SWIR camera with the camera located 1.3 m above the sample. (a) Averaged image of the sample with the 
red LED light on. (b) Cracks detected after processing using the Canny edge detection algorithm. (c) Averaged 
image with the LED turned off. As expected, no meaningful fluorescence was observed in this control case. (d) 
Image (c) after processing using Canny algorithm, where no cracks were detected in the control case.

Figure 5.  Concrete sample with artificial cracks having widths ranging from 0.2 to 1.5 mm, as imaged through 
the SWIR camera with the camera located 0.5 m above the sample. (a) Averaged image of the sample with the 
red LED light on. (b) Cracks detected after processing using the Canny edge detection algorithm.
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Canny algorithm helps eliminate false positive signals due to a sample’s surface texture; that is, the disconnected 
nature of shadows resulting from surface texture are not continuous features and are rejected by the algorithm.

It is worth noting that there were some gaps in the 0.5 mm and 1.5 mm cracks identified using the Canny 
algorithm shown in Fig. 4b. The gap in the middle region of the 1.5 mm crack corresponds to an area that is 
considerably wider and shallower than the rest of the crack, resulting in lower contrast between the interior of 
the crack and the sample surface, thus it was not treated as a crack by the algorithm. The other gap in the 1.5 
mm crack, near the top, as well as the gaps in the 0.5 mm crack also appear to have been due to low contrast 
between the crack and the surrounding cement surface. The post-processing algorithm relied on contrast to 
identify potential edge pixels. In any case, although the edge detection algorithm included these relatively small 
gaps, the use of concrete fluorescence at 1140 nm was shown to be capable of identifying cracks whose widths 
are at or slightly below the camera’s resolution. It is possible that future work combining the results of different 
post-processing algorithms with different strong points may minimize such gaps in crack identification.

Extreme environmental conditions such as exposure to seawater and deicing salt require that cracks in 
concrete not exceed 0.15 mm and 0.18 mm, respectively (the ACI specified damage threshold for concrete in 
these environments)29, 30. Therefore, a concrete sample with a 0.08 mm crack (i.e., a crack that was a factor of 
two smaller than this threshold) was created using a flexure apparatus.  The goal was to demonstrate that the 
technique could not only detect cracks at this threshold for damage but also identify smaller cracks that could be 
repaired prior to causing damage.  The sample was imaged with the SWIR camera located at a distance of 43 cm 
from the surface, which was the closest position possible for the available lens.  This crack’s width is classified as 
“Very Fine” and is a factor of two smaller than the ACI 224R limits for reinforced concrete members exposed 
to seawater and deicing chemicals. Again, a 5 s exposure time was employed and 10 images were captured and 
averaged as described previously.  The crack was not detectable using the Canny edge detection algorithm.  The 
crack was visible using the preceding steps in the imaging processing algorithm: (1) averaging of ten images to 
minimize random noise; (2) Use of the OpenCV THRESH_TRUNC thresholding function to remove the effect 
of dead pixels; and (3) the use of OpenCV’s Gaussian Blur function to smooth the image and enhance crack vis-
ibility. It is noteworthy that the crack was below the SWIR camera’s resolution (0.1 mm per pixel).  Nevertheless, 
the resulting image shown in Fig. 6 demonstrates the ability to identify even small cracks prior to their reaching 
a size that can threaten a structure’s integrity.  The limited visibility of the crack was due to the relatively low 
resolution of the employed SWIR camera. It can be extrapolated that with a higher resolution camera (e.g., 1 MP 
camera), one could detect cracks on the order of 0.1 mm at distances on the order of meters.  

It is important to note that the Canny algorithm helps to make cracks standout, but the crack shown in Fig. 6 
lacked the necessary contrast for Canny to detect it. This was because the crack was below the pixel resolution 
of the camera, thus pixels contained a mix of the crack and surrounding fluorescing material. The cracks were 
nevertheless present and can be detected by the human eye. It is also worth noting that though the contrast 
between the shaded interiors and the fluorescing sample surface makes the cracks visible, it precludes the ability 
to measure a crack’s depth. That is, the shading of the interiors prevents one from observing or measuring the 
interiors of cracks.

As described above, the detection of cracks using Near-IR fluorescence imaging was conducted in the presence 
of indoor laboratory lighting (using a white LED light source); specifically, the sample did not need to be kept 
in a dark enclosure. A spectroscopic analysis of the light emitted from fluorescent light sources shows that 
these sources emit no light in the vicinity of the 1140 nm concrete  fluorescence31. As a result, the demonstrated 
technique is expected to be effective under fluorescent lighting. Natural daylight, however, does present 
a complication. The solar spectrum extends into the infrared and includes light emitted at the fluorescence 
wavelength (1140 nm) which could overwhelm the fluorescence signal. However, there is an  H2O absorption 
band centered at 1140 nm. Absorption due to atmospheric water vapor leads to a strong depletion of solar 
radiance at this  wavelength32, 33. The question is, whether there is still enough solar radiation at 1140 nm when 

Figure 6.  Image of a 0.08 mm wide crack (a) imaged using an iPhone camera where the displayed portion of 
the image has the same resolution as the SWIR camera. (b) After being processed using THRESH_TRUNC 
algorithm. Note that the width of the crack was below the camera’s 0.1 mm resolution.
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sunlight reaches the ground to overwhelm light emitted by concrete fluorescence. Depending on the solar angle 
and atmospheric humidity, direct sunlight may well include too much 1140 nm to use this technique. Diffuse 
sunlight on cloudy days, though, shows a very strong reduction in 1140 nm  light32, 34; additional daylight studies 
would be necessary to determine whether this reduction is to the point where ambient 1140 nm light does not 
compete with the concrete fluorescence. Indeed, it may be possible to shade the measurement area using a filter-
tent made of a Near-IR shielding  textile35 which filters out the deleterious 1140 nm wavelength from sunlight. 
In any case, the technique can be employed before dawn and after sunset using appropriate artificial lighting.

Future work
The work presented in this paper represents a proof of concept demonstration of using near-IR fluorescence to 
detect cracks in concrete. We have identified additional work that would build upon this demonstration to make 
it practical crack detection technique. For example:

• The demonstration maximized crack detectability by using LED bars that were parallel to the direction of 
the cracks which helped optimize the shaded regions within cracks. A practical extension to detect randomly 
oriented cracks would involve recording several fluorescence images for each sample area, where the LED 
light was rotated for each image; this would ensure that randomly oriented cracks would have shaded interiors 
in at least one of the images.

• The demonstration used Gaussian Blurring and the Canny Edge Detection algorithm to address issues such 
as shadows due to a sample’s surface roughness. Additional studies with different types, grades, surface 
roughness, and ages of concrete may provide insight for optimizing the post-processing parameters and 
determining the effectiveness of the technique.

• The proposed technique may be combined with AI routines, which have already shown some success in the 
detection of cracks in  concrete21.

Conclusions
Cracks in concrete samples were detected by recording images of the 1140 nm fluorescence of concrete when 
excited using red LED light (λpeak = 632 nm) while in ambient laboratory lighting. Excitation light was incident 
on samples at a shallow angular range (θi was between 10 and 40 degrees). The shallow angle was used to ensure 
that the interior surfaces of cracks received no excitation light. As a result, images show a fluorescing concrete 
surface with cracks appearing as dark features, due to their lack of fluorescence. Image processing using Canny 
edge detection from the OpenCV library was used to highlight cracks recorded in the images. Images of artificial 
cracks having widths 0.2 mm, 0.5 mm, 0.7 mm, 1.2 mm, and 1.5 mm were recorded using a SWIR camera 
demonstrated the capability to identify cracks approaching the threshold at which damage would occur to 
concrete structures. A second sample crack having a width of 0.08 mm was also imaged and demonstrated the 
ability to identify cracks that could be precursors to damage of concrete structures. The primary limitation to 
the sizes of the cracks detected in the reported work, as well as the distance between the camera and the sample, 
was the relatively low resolution of the SWIR cameras. The use of a higher resolution camera should enable the 
detection of cracks from larger distances, on the order of meters, potentially enabling the detection of cracks in 
bridges, walls, ceilings, and other difficult-to-reach surfaces using mobile non-contact cameras. The proposed 
method can be combined with unmanned aerial vehicles for future bridge or road crack detection.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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