
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports

Software defect prediction using
learning to rank approach
Ali Bou Nassif 1*, Manar Abu Talib 2, Mohammad Azzeh 3, Shaikha Alzaabi 1, Rawan Khanfar 1,
Ruba Kharsa 2 & Lefteris Angelis 4

Software defect prediction (SDP) plays a significant role in detecting the most likely defective
software modules and optimizing the allocation of testing resources. In practice, though, project
managers must not only identify defective modules, but also rank them in a specific order to optimize
the resource allocation and minimize testing costs, especially for projects with limited budgets. This
vital task can be accomplished using Learning to Rank (LTR) algorithm. This algorithm is a type of
machine learning methodology that pursues two important tasks: prediction and learning. Although
this algorithm is commonly used in information retrieval, it also presents high efficiency for other
problems, like SDP. The LTR approach is mainly used in defect prediction to predict and rank the
most likely buggy modules based on their bug count or bug density. This research paper conducts
a comprehensive comparison study on the behavior of eight selected LTR models using two target
variables: bug count and bug density. It also studies the effect of using imbalance learning and feature
selection on the employed LTR models. The models are empirically evaluated using Fault Percentile
Average. Our results show that using bug count as ranking criteria produces higher scores and more
stable results across multiple experiment settings. Moreover, using imbalance learning has a positive
impact for bug density, but on the other hand it leads to a negative impact for bug count. Lastly, using
the feature selection does not show significant improvement for bug density, while there is no impact
when bug count is used. Therefore, we conclude that using feature selection and imbalance learning
with LTR does not come up with superior or significant results.

Abbreviations
SDP	� Software defect prediction
ML	� Machine learning
LTR	� Learning to rank
FPA	� Fault percentile average
MLP	� Multilayer perceptron
SVR	� Support vector regression
KNR	� K-Neighbors regression
BRR	� Bayesian ridge regression
RF	� Random forest
XGB	� XGBoost (extreme gradient boosting)
ZIPR	� Zero inflated poisson regression
ZIGPR	� Zero inflated generalized poisson regression

Recently, software systems have experienced massive growth in number, size, and complexity. These dramatic
changes have elevated the demand on software testing, which is costly and time-consuming1. With the aim of
efficient allocation of software testing resources, Software Defect Prediction (SDP) has been an active area of
research. SDP is the predictive process of identifying software modules with defect- or bug-proneness based on
their method-level and class-level metrics2. It is a helpful tool during the testing phase to improve quality, reli-
ability, and cost reduction. Previous SDP models used classification Machine Learning (ML) algorithms, such as
Support Vector Machine (SVM)3, Random Forest (RF)4,5, K-Nearest Neighbor (KNN)6, and Naïve Bayes (NB),
to provide binary classifications for the existence of defects in software modules7,8. SDP as a classification tool
proved its importance. Still, its outcomes were insufficient in practice, as they do not account for the importance

OPEN

1Department of Computer Engineering, University of Sharjah, Sharjah, United Arab Emirates. 2Department of
Computer Science, University of Sharjah, Sharjah, United Arab Emirates. 3Department of Data Science, Princess
Sumaya University for Technology, Amman, Jordan. 4Department of Statistics and Information Systems, Aristotle
University of Thessaloniki, Thessaloniki, Greece. *email: anassif@sharjah.ac.ae

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-45915-5&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

of a defective module and which modules should be examined first9. To produce more accurate resource assign-
ments, researchers started to study SDP as a ranking problem using Learning-to-Rank (LTR) or regression
algorithms. Instead of finding an explicit defect count prediction, ranking algorithms work towards ordering
modules according to their defects or defect densities such that, for instance, the module with the highest rank-
ing is assigned the most testing resources10.

LTR is an algorithm of machine learning that builds a function to solve ranking problems on queries. It
works by predicting a score in each instance, and the instances are then sorted based on the score assigned by
the ranking model11. LTR is beneficial for many applications in information retrieval, such as e-commerce,
social networks, and recommendation systems. It has proven its performance in other applications like machine
translation, computational biology, recommender systems, and SDP in software engineering12. LTR algorithms
can be classified into three approaches based on their ranking mechanism: pointwise, pairwise, and listwise, as
illustrated in Fig. 1. The pointwise approach takes an individual item from the list and trains a regressor on it
to predict how relevant it is for the query. The score of each item in the list (in our case, each software module)
is independent of the scores of other modules. The final ranking is achieved by sorting the resultant list by the
scores of the software modules13. The pairwise approach looks at a pair of software modules at a time. Given a
pair of modules, it tries to come up with the optimal ordering for that pair and compare it to the actual ranks of
these pairs of modules. The listwise approach treats the whole list as an entity and predicts the optimal ordering
for each module. It uses probability models to minimize ordering errors14.

This research paper proposes a comprehensive comparison study of the listwise LTR approach for the SDP,
starting by importing datasets that contain previous details about software modules (i.e., quality metrics and the
number of bugs in each module). Subsequently, we build the SDP model by training a regression algorithm and
optimizing it using Grid Search with Fault-Percentile-Average as the objective function to achieve better ranking
accuracy15. Evaluation is the last step, yet the most essential, because it ensures the quality and reliability of the
model16. To further analyze the proposed process and provide the desired solutions, we address the following
research questions:

RQ1. What is the role of the target variables on the performance of the employed LTR techniques?
Two target variables are studied in this research paper: bug count and bug density. Bug count refers to the

number of bugs present in a module. Bug density is a measure of how frequently a bug appears per line of code.
Bug density gives a better indication of which modules require more testing resources. Given two modules with
the same number of bugs, the module with a smaller number of lines of code (LOC) has a higher testing priority,
as it has a higher bug density17.

RQ2. What is the average improvement when using imbalanced learning with LTR techniques?
Most SDP datasets have an imbalanced distribution with an excess of zero-count observations. Imbalanced

datasets negatively affect performance, as the model is likely to be influenced by the excessive observations18,19.
Typically, SDP datasets are imbalanced where the non-defective modules outnumber the defective modules. In
this paper, we study the impact of random under-sampling of the zero-count instances (non-defective modules)
on the performance of LTR techniques20.

RQ3. What is the role of feature selection in the accuracy of LTR techniques?
Feature selection is an essential preprocessing technique that can improve the execution time and accuracy

of ML models, especially in SDP21,22. Features irrelevant to the target value can affect the overall performance
of the model23. Feature selection is the process of choosing the most relevant attributes to train the model and
enhance prediction outcomes. In this study, we apply the Information Gain (InfoGain) method to eliminate
unrelated features and select the most related ones9.

The rest of the paper proceeds as follows. Section "Literature review" discusses the related work and relevant
literature. Section "Research methodology" highlights the methodology for building and evaluating the model.
Section "Results" illustrates the experimental work and the results, while Section "Threats to validity" mentions
threats to validity. Lastly, Section "Conclusion" provides a summarized conclusion and suggests directions for
future work.

Literature review
SDP has been a hot topic for many years. Researchers have conducted a large number of studies, explored many
areas in the field, and applied various algorithms seeking better accuracy. This section reviews the related works
and algorithms used to construct SDP models; however, it focuses on the SDP ranking models as they are most
relevant to our study.

Software defect prediction
Each dataset in the classification SDP model is defined as D = [xi , yi] , for modules i ∈ [1, n] .
xi = [xi1, xi2, xi3, . . . xim] represents a vector of m independent features (i.e., quality metrics) of the ith module.

Figure 1.   Pointwise, pairwise, and listwise LTR.

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

The dependent variable is yi ∈ {−1, 1} . “1” represents the defective modules; “-1” represents the clean ones.
The equation yi′ = f (xi) represents the ML classification models that predict yi′ depending on the xi . Different
algorithms f (.) , provide different accuracies in classifying the modules.

ML Classifiers have been the most popular approach in the field of SDP. Guo et al.4 constructed a classifica-
tion model using RF on five NASA datasets and used Defect Detection Rate (PD) and Overall Accuracy (ACC)
to evaluate the model. Alsghaier and Akour3 used the Genetic Algorithm (GA) and Particle Swarm Optimiza-
tion (PSO) to optimize the SVM algorithm and applied the model to 24 NASA datasets,they used accuracy,
recall, precision, specificity, and F-measure as evaluation measures. As the number of used classifiers increased,
researchers started conducting studies to compare them. Bansal24 constructed a comparative analysis of six clas-
sification algorithms. He compared the results from using static metrics, results from using change metrics, and
results from combining both. Bansal evaluated the models using the Matthews Correlation Coefficient (MCC)
and Area Under the Curve (AUC). He found that models trained by a combination of static and change metrics
performed the best. Moreover, models that used only change metrics slightly outperformed models that used
only static metrics.

Li et al.25 conducted a benchmark study using 17 classifiers on 27 datasets from MDP and Github. After
applying AUC to evaluate the classifiers, Li et al. found that RF and Multilayer Perceptron (MLP) achieved good
results,however, there was no significant difference in performance among the 17 classifiers. Weyuker et al.26
compared four modeling methods (NBR, RF, Recursive Partitioning (RP), and Bayesian Additive Regression
Trees (BART)) and found that NBR and RF significantly surpassed RP and BART. Previous studies have found
that eliminating irrelevant features using feature selection can significantly improve the model27–29. Chen et al.30
applied multi-objective optimization for feature selection. Yang et al.31 utilized InfoGain to select the most
relevant three metrics of each dataset and found that most of the selected metrics were change metrics. Wang
et al.28 applied a threshold-based feature selection method. They discovered that three features can construct an
effective classifier and that model prediction improved when they removed 98.5% of the features.

Balogun et al.32 conducted a comparative study between three of the most widely used filtering approaches
for dimensionality reduction (Chi-Square (CS), ReliefF (REF), and InfoGain)), for two of the SDP classifica-
tion algorithms (NB and DT). They also proposed the “Rank Aggregation-Based Multi-Filter Feature Selection
(RMFFS)” method, aggregating the resulting features from multiple filters. Balogun et al. found that RMFFS per-
formed noticeably better than the solo techniques, especially the G-Mean, which resulted in the best outcomes.

Shin et al.33 experimented on 32 SDP datasets with LIME and Breakdown to determine whether they rea-
sonably explain the classification results from 5 classifiers (see Table 1). Their experiments revealed that none
of the mentioned methods consistently explained different settings, making them unreliable for practical use.

López-Martín et al.34 developed a novel algorithm to predict the Defect Density (DD) of projects based on
function points (FP). The algorithm utilized transformation and reduction concepts to enhance and surpass
the limitations of the original KNN algorithm in regression. The “transformed k-nearest neighborhood output
distance minimization” algorithm (TkDM), minimizes the distance between the most similar k projects to the
project whose DD is being predicted,then, it applies an inverse transformation to the output. Four datasets were
selected from the ISBSG release 201835 containing various projects with various development types and program-
ming languages. López-Martín et al.34 chose the Mean Absolute Residuals (MAR) and Median Absolute Residuals
(MdAR) as the main accuracy metrics for the evaluation of their algorithm, as well as Standardized Accuracy
(SA) and effect size for further assessment of the algorithm performance. Also, they tested the algorithm against
the SVR and NN models. Moreover, they tested different values for the number of neighbors (K) to choose the
best one. Finally, they demonstrated that their algorithm yielded the highest SA and the least MAR and MdAR
values compared to other algorithms.

Learning to rank for software defects prediction
Recently, more research has been done on Software Number Prediction (SNP), where researchers predict the
exact number of defects in the software module using regression algorithms36–38. Bal and Kumar39 studied the
efficiency of the “extreme learning machine” (ELM) for imbalanced learning in SNP. They also derived a new
method called “weighted regularization ELM” and evaluated it on 26 datasets using the Average Absolute Error
(AAE), the Average Relative Error (ARE), and the Pred(I). Bal and Kumar39 found that the WR-ELM outper-
formed other techniques for predicting the minority classes in imbalanced datasets.

Tong et al.40 utilized the “subspace hybrid sampling ensemble” (SHSE) method for SNP. They evaluated their
model on 27 open-source, public datasets detailed in Table 1. The work of Tong et al.40 resulted in an approximate
FPA improvement of 8–15% compared to the previous ensemble and zero-inflated methods. A recent study by
Yu et al.41 demonstrated that the prediction of the exact number of bugs in the software modules (i.e., SNP) is
still difficult. They reached this conclusion after a detailed study using various regression algorithms, datasets,
and optimization methods (see Table 1 for details). They evaluated the regression algorithms on the Average
Absolute Error (AAE) and pred (0.3)42. Yu et al.41 suggested that the ranking SDP is the best approach for the
regression algorithms.

In the ranking SDP model, each module in the dataset used is represented as Mi = [xi , yi] , where
xi = [xi1, xi2, xi3, . . . xim] represents a vector of m independent features (i.e., quality metrics) of the ith module.
The dependent variable yi ∈ R represents the number of bugs in the ith module, or the bug density (i.e., #bugsLOC  ).
D = {Mi =

[

xi , yi
]

}ni=1 defines the software defect dataset, where n is the number of modules in D . The goal of
the LTR algorithms is to build a prediction model that ranks new modules based on the number of bugs or bug
density, where Mj > Mk means that module j is more defect-prone than module k31.

Unlike SDP for classification, SDP for ranking is still relatively new, with fewer studies and research. Ostrand
et al.43 performed a simple Negative Binomial Regression (NBR) on one static metric (i.e., LOC) to predict the

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

Title Algorithms Used datasets Performance measurements Key findings

Tong et al. “SHSE: A subspace
hybrid sampling ensemble method
for software defect number predic-
tion” (2022)40

SHSE

“JDT, PDE, Equinox, Lucene,
Mylyn, ant-1.3, ant-1.4, ant-1.5,
ant-1.6, ant-1.7, camel-1.0, camel-
1.2, camel-1.4, camel-1.6, ivy-1.12,
ivy-2.0, jEdit-3.2.1, jEdit-4.0,
jEdit-4.1, jEdit-4.2, log4j-1.0,
log4j-1.1, synapse-1.0, synapse-1.1,
synapse-1.2, xalan-2.4, xalan-2.6”

FPA
The FPA improved using SHSE by
approximately 8–15% on the zero-
inflated and resampling methods

Yu et al. Predicting the precise
number of software defects: Are
we there yet? (2022)41

“PR, ZIPR, NBR, ZINBR, HR, GP,
NNR, DTR, LR, BRR, SVR, KNR.”

“Ant 1.6, Ant 1.7, Camel 1.2,
Camel 1.4, Camel 1.6, Jedit 4.0,
Jedit 4.1, Jedit 4.2, Poi 2.0, Poi 2.5,
Poi 3.0, Xalan 2.4, Xalan 2.5, Xalan
2.6, Xalan 2.7, Xerces 1.2, Xerces
1.3, Xerces 1.4”

AAE and Pred(0.3)
Predicting the exact number of
module errors is still tricky in the
SDP field

Alazba and Aljamaan “Software
defect prediction using stacking
generalization of optimized tree-
based ensembles” (2022)49

Grid search with ensemble classi-
fiers “Ada, RF, ET, GB, HGB, XGB,
CATS”

“JM1, KC1, PC5, Eclipse JDT
Core, Eclipse PDE UI, camel
1.2, lucene 2.4, prop-1, prop-2,
prop-3, prop-4, prop-43, prop-5,
xalan 2.5.0, xalan 2.6.0, Eclipse
2.0 Eclipse 2.1, Eclipse 3.0, SWT,
Debug”

F-measure, AUC​ the RF and XGB outperformed all
other tree-based classifiers

Alsghaier et al. “Software fault
prediction using particle swarm
algorithm with GA and support
vector machine classifier” (2021)3

“SVM, PSO, GA.”

“CM1, KC2, KC3 KC4, MC1, MC2
MW1, PC1, PC2, PC3, PC4, PC5,
ant-1.6, camel-1, ivy-1.4, ivy-2.0,
jedit-4.1, log4j, lucene-2.2, poi-2.5,
poi-3.0, synapse-1.2, xalan-2.5,
xerces-1.3.”

accuracy, SD, error rate, specificity,
precision, recall, and F-measure

Integrating GA with SVM and
PSO improves the results when
applied to large-scale and small-
scale datasets and overcomes the
limitations of previous studies

Basal et al. “Comparative analysis
of classification methods for pre-
diction software fault proneness
using process metrics” (2021)24

“NB, Decision Tree, SVM, KNN,
Logistic Regression, and RF.”

“Ant1.4, Ant1.5, Ant1.6, Ant1.7,
Jedit4.0, Jedit4.1, Synapse1.1,
Synapse1.2, Xalan2.5.0, Xalan2.6.0,
Xalan2.7.0, Xerces1.2.0,
Xerces1.3.0, Xerces1.4.4.”

AUC and MCC

Models were trained by a combina-
tion of static and change metrics
and performed the best
Models that used change metrics
slightly outperformed models that
used static metrics

Balogun et al. “Empirical analysis
of rank aggregation-based multi-
filter feature selection methods
in software defect prediction”
(2021)32

“NB and DT with Chi, InfoGain
and ReF”

“CM1, KC1, KC2, KC3, MW1,
PC1, PC3, PC4, PC5”

Accuracy, F-measure, recall, preci-
sion, AUC​

The G-mean RMFFS outper-
formed solo methods in filtering
the features and reducing the
dimensionality

Shin et al. “Explainable software
defect prediction: are we there
yet?” (2021)33

LIME and Breakdown to explain
the results of “Averaged Neural
Network (AVNNet), Extreme
Gradient Boosting Tree (xGBTree),
DT, RF, and Gradient Boosting
Machine (GBM)”

“ActiveMQ versions 5.0, 5.1, 5.2,
5.3 ,5.8
Camel versions 1.4, 2.9, 2.10, 2.11
Derby versions 10.2, 10.3, 10.5
Groovy versions 1.5.7, 1.6.0.b1,
1.6.0.b2
HBase versions 0.94, 0.95.0, 0.95.2
Hive versions 0.9, 0.10, 0.12
JRuby versions 1.1, 1.4, 1.5, 1.7
Lucene versions 2.3, 2.9, 3.0, 3.1
Wicket versions 1.3.b1, 1.3.b2,
1.5.3.”

Hit-rate and rank-difference

The LIME and Breakdown yielded
inconsistent results for different
datasets and classifiers. Thus, they
are not reliable in explaining the
SDP ML conclusions

López-Martín et al. “Transformed
K-nearest neighborhood output
distance minimization for predict-
ing the defect density of software
projects”34

TkDM Four datasets selected from the
ISBSG MAR, MdAR, SA, and Effect Size

K = 6 yielded the best results when
using the TkDM algorithm to pre-
dict the Defect Density (DD) based
on the Function points (FP)
TkDM outperformed other algo-
rithms (e.g., SVR, NN), resulting
in the least AR and highest SA

Bal and Kumar “WR-ELM:
weighted regularization extreme
learning machine for imbalance
learning in software fault predic-
tion” (2020)39

WR-ELM

“Ant 1.5, Camel 1.0, Jedit 4.3, Ivy
1.4, 2.0, Poi 2.0, Synapse 1.0, Prop
1 (V4, V40, V185), Prop 2 (V9,
V44, V128, V164, V192), Prop
3 (V255, V236, V245, V265),
Prop 4 (V285, V292, V305), Prop
5 (V347, V362), Prop 6 (V452,
V453)

AAE, ARE, Pred(I)
The WR-ELM outperformed
other techniques in handling the
prediction of the minority classes
in imbalanced datasets

Yang et al. “A learning-to-rank
approach to software defect pre-
diction” (2020)31

“Linear regression optimized with
CoDE.”
FPA

“Eclipse_II_File2.0, Eclipcs_
II_File2.1, Eclipcs_II_File3.0,
Eclipcs_II_Package2.0, Eclipse_
II_Package2.1, Eclipse_II_Pack-
age3.0, eclipse, equinox, lucene,
mylyn, pde”

FPA and CLC

Directly optimizing the ranking
performance instead of predicting
the exact number of defects in
each module can improve ranking
results

Continued

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

number of defects in each module. Then, they ranked the modules according to their defect density. They evalu-
ated the model by calculating the percentage of faults in the top 20% of modules. This produced better results
than a simple regression model. Yang et al.31 proposed an LTR approach that optimized the linear regression
model using CoDE with FPA as the objective function and the performance measurement. They demonstrated
the effectiveness of the LTR approach by directly optimizing the algorithm. Yu et al.9 applied 23 LTR algorithms
to 41 datasets from the PROMISE repository44, then performed Norm(Popt) and FPA to evaluate and compare
the algorithms. They found that Bayesian Ridge Regression (BRR) performed the best according to FPA, while
BRR and LTR (by Yang et al.) performed the best when evaluated with FPA and Norm(Popt). Yu et al.9 divided
the 23 algorithms into four categories: Classification-based pointwise approach, Regression-based pointwise
approach, pairwise approach, and Listwise approach.

Some ML algorithms do not perform well with their default hyper-parameter settings. Selecting the best
hyper-parameter of these algorithms can boost their predictive performance45. Researchers have utilized many
optimization techniques to enhance and improve their model’s performance by tuning the hyper-parameters of
the algorithm to minimize or maximize an objective function. Tantithamthavorn et al.46 applied an automated
parameter optimization technique called Caret to optimize the SDP and found that the AUC improved by 0.4
points after applying Caret. Yang et al.31 performed CoDE optimization, with FPA as the objective function to
directly optimize the ranking performance of the SDP. Canfora et al. applied GA to optimize the algorithm.
Buchari et al.47 used a meta-heuristic chaotic Gaussian PSO for optimizing their regression model and chose FPA
as their objective function. PSO was introduced by Kennedy and Eberhart48. They derived the algorithm from the
behavior of birds and fish when they search for food in groups: every group member benefit from the knowledge
of its swarm. A flock of birds can integrate the experiences of all members to find food in much less time. PSO
is a heuristic algorithm used to search for the optimal maximum or minimum solution to a problem. Although
PSO does not guarantee finding the real global optimal, it finds a value that is close enough to be sufficient in
most cases. Alazba and Aljamaan49 combined ensemble learning with optimization methods. They used a grid
search to find the best hyperparameters of tree-based ensemble algorithms. After assessing their approach on 21
datasets, Alazba and Aljamaan49 found that the RF and XGB outperformed all tree-based classifiers. Ni et al.38
investigated the usefulness of effort for cross-project defect prediction. The results obtained are promising and
show superior results than traditional cross-project techniques.

Table 1.   Summary of literature review.

Title Algorithms Used datasets Performance measurements Key findings

Li et al. “Evaluating software
defect prediction performance:
an updated benchmarking study”
(2019)25

“Bagged MLP, artificial neural
network, Boosted decision trees,
CART, Logistic regression, Multi-
layer” “perceptron artificial neural
network, Random forest, Ridge
Regression, Linear support vector
machine, SVM with radial basis
kernel function, Alternating deci-
sion tree Tree Augmented Naive
Bayes, J4.8, k-nearest neighbor, 8
Logistic model tree, Naive Bayes,
Radial basis function neural
network, Voted perceptron”

“CM1, JM1, KC1, KC3, MC1,
MC2, MW1, PC1, PC2, PC3, PC4,
PC5, Android-Universal-Image-
Loader, BroadleafCommerce,
MapDB, antlr4, ceylon-ide-eclipse,
elasticsearch, hazelcast, junit,
mcMMO, mct, neo4j, netty,
orientdb, oryx, titan.”

AUC and H measure

RF and Neural Network Model
(MLP) achieved good results
There was no significant difference
in the performance among the 17
classifiers

Yu et al. “An empirical study of
learning to rank techniques for
effort-aware defect prediction”
(2019)9

“NB, LogR, CART, Bagging, RF,
KNN, DTR, LR, BRR, NRR, SVR,
KNR, GBR, SDGR, Ranking
SVM, RankBoost, RankNet,
LambdaRank, ListNet, AdaRank,
Coordinate Ascent, LTR”

“Ant, Camel, Ivy, Jedit, Log4j,
Lucene, Poi, Synapse, Xalan
Xerces”

Norm(Popt) and FPA

BRR performed the best according
to FPA
BRR and LTR (by Yang et al.)
performed the best when evaluated
with FPA and Norm(Popt).

Buchari et al. “Implementation of
chaotic Gaussian PSO for optimize
Learning-to-Rank software defect
prediction model construction”
(2018)47

“Linear regression optimized with
Gaussian PSO.”

“Apache Lucene Eclipse, JDT
Core Equinox. Framework Eclipse
PDE, UI Mylyn, Eclipse_File2.0,
Eclipse_File2.1, Eclipse_File3.0,
Eclipse_Package2.0, Eclipse_Pack-
age2.1, Eclipse_Package2.0.”

FPA Improved prediction accuracy in
some datasets

Chen et al. “Applying feature selec-
tion to software defect prediction
using multi-objective optimiza-
tion” (2017)30

“MOFES”
“Ant-1.7, Camel-1.6, Ivy-2.0,
Jedit-4.0, Lucene-2.4, Poi-3.0, Syn-
apse-1.2, Velocity-1.6, Xalan-2.6,
Xerces-1.4”

AUC​
The proposed method achieved
better performance with fewer
features and acceptable cost

Wang et al. “How many software
metrics should be selected for
defect prediction?” (2011)28

“Multilayer Perceptron, KNN, and
Logistic Regression.”

“Eclipse 2.0–10, Eclipse
2.0–5, Eclipse 2.0–3, Eclipse
2.1–5, Eclipse 2.1–4, Eclipse 2.1–2,
Eclipse 3.0–10, Eclipse 3.0–5,
Eclipse 3.0–3”

AUC​

An effective classifier can be con-
structed with only three features
The model prediction improved
when they removed 98.5% of
irrelevant features

Weyuker et al. “Comparing the
effectiveness of several modeling
methods for fault prediction”
(2010)26

“NBR, RF, RP, BART.” “Thirteen datasets from the NASA
Metrics DataProgram repository” FPA NBR and RF significantly sur-

passed RP and BART​

Guo et al. “Robust prediction of
fault-proneness by random forests”
(2004)4

RF “CM1, JM1, KC1, KC2, PC1” PD, ACC​

The proposed methodology is
more robust concerning noise than
other models, works well with
large-scale projects, and achieves
higher accuracy

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

It is important to note that some researchers proposed using the concept of effort-aware to prioritize soft-
ware modules and aim to detect more bugs while inspecting a specific number of modules. For instance, Mende
et al.50 introduced the concept of "effort-aware" and presented two strategies for evaluating EADP models. Kamei
et al.51 found that process metrics yielded better results than product metrics in EADP models. In their work,
Kamei et al.52 proposed an Effort-Aware Linear Regression (EALR) model, demonstrating its ability to detect
35% of defective code changes by examining only 20% of all changes. Yang et al.53 confirmed the effectiveness
of slice-based cohesion metrics for EADP. Bennin et al.54 investigated optimal EADP algorithms and explored
the practical benefits of data resampling techniques. Yang et al.58 discovered that the unsupervised method
ManualUp34 generally outperformed several simple supervised models for change-level EADP. Fu et al.55 intro-
duced the OneWay method, which utilizes the training dataset to automatically select the best software feature
for ManualUp. Different studies explored various Effort Aware Defect Predictions9,56–58.

Qu et al.59 suggested integrating developer information into EADP to enhance performance. Carka et al.60
proposed using the normalized PofB to assess EADP performance, which ranked software modules based on
predicted defect densities. Huang et al.61 presented the Classify Before Sorting (CBS +) algorithm for EADP,
which outperformed other algorithms to identify defective changes. Compared to ManualUp, The CBS + identi-
fied a similar number of defective changes but required inspection of fewer changes and significantly reduced
the Initial False Alarms. Finally, Li et al.62 investigated the impacts of different feature selection algorithms for
effort-aware defect predictions. Finally, Multiple authors investigated the importance of effort aware methods
for just in time software defect prediction36,37,63

Research methodology
This section discusses the research approach for constructing different SDP ranking models. It states the char-
acteristics of the used datasets, explains the data preprocessing and optimization techniques, explores multiple
algorithms for building the regression model, and presents an evaluation strategy to assess and compare models
based on various criteria. Figure 2 summarizes the conducted research methodology in this paper.

As depicted in Fig. 2, we start with an unprocessed dataset, which is imbalanced, unnormalized, and con-
tains many inessential features. Working with raw data is always ineffective; therefore, we preprocess the data
using suitable preprocessing techniques (i.e., removing outliers, data normalization, and feature selection). We
then build our regression models using the best-known regression algorithms. Our experiments are done on
eight algorithms: MLP, SVR, KNR, BRR, RF, XGB, ZIPR, and ZIGPR. We chose the best hyperparameters of
the algorithms (except for the zero-inflated ones) using a grid search that explores many possible variants of
the hyperparameters and chooses the best combination that optimizes a quality metric. In this case, we search
for the hyperparameters that minimize the error of the algorithm predictions. Our approach utilizes three-fold
cross-validation for fair and precise assessment and evaluation of our models. The process is performed with
two target variables: bug count and bug density. Finally, we present a comprehensive comparison study between
the correctness and performance of the eight models on the target variables. The rest of this section gives more
details about the methodology, datasets, and metrics we adopted.

Datasets
Most previous studies in this field use datasets from the BUG PREDICTION and PROMISE repositories44,64.
These datasets belong to public projects and contain different types of quality metrics. Early datasets contain
method-level metrics (e.g., LOC, McCabe Complexity, and Halstead metrics). However, more recent data-
sets employ object-oriented and change metrics65. Tables 2 and 3 show static and change metrics from Bansal
research24.

This research paper uses datasets from public projects to train and test the model. These datasets have differ-
ent attributes and instances. D’Ambros et al.64 collected the bug prediction repository that consists of PDE and
JDT datasets. On the other hand, Ant, Camel, Ivy, Jedit, Lucene Poi, Synapse, Velocity, Xalan, and Xerces are
parts of the Promise Software Engineering Repository. Table 4 summarizes the characteristics of each dataset44,64.

Data preprocessing
Data preprocessing is an essential step in building ML models. The Garbage in Garbage Out principle (GIGO)66
highlights the importance of the data preprocessing stage in data analysis. The results depend heavily on the com-
pleteness, quality, integrity, and consistency of the data fed to the model. Therefore, increasing the data quality
can considerably boost the reliability of the results. Data preprocessing techniques include data normalization,
under-sampling, and feature selection67,68. Normalization is transforming the data in all attributes into similar
ranges to avoid problems related to the considerable difference between the ranges. The dataset is normalized
using the min–max normalization technique69,70. This technique transforms all data points into values between
zero and one using (1).

Feature selection is a principal data preprocessing technique that enhances performance and reduces com-
plexity by removing irrelevant attributes. This research utilizes InfoGain to select the most crucial features
and demonstrates that there are cases where we can achieve the same results using a small percentage of the
attributes71. InfoGain measures the dependencies between each attribute and the target value,after that, it ranks
the variables based on the gain in the target variable (i.e., bug count or density). The attributes that reduce the
uncertainty of the target have higher information gain values and thus have a higher chance of being selected67,71.
Equations (2), (3), and (4) are used to calculate the InfoGain.

(1)xsc =
x−xmin

xmax−xmin

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

 where H(Y  ) is the entropy of the target variable Y, and y is each class in Y; however, since the entropy expects a
discrete number of classes, we will convert the bug density into discrete ranges, then apply Eq. (3).

The result “ H(Y |X) ” is the conditional entropy of the target variable Y given a feature X . Lastly, Eq. (4) finds
the gain in Y after using the feature variable X.

These formulas are applied to the features (one at a time) to select the most relevant ones.

Model selection and optimization
The comparative study utilizes five state-of-the-art supervised machine learning algorithms to construct a regres-
sion model that learns from known observations to predict the bug density and bug count of new observations.
These models are: SVR, MLP, KNR, BRR, RF, and XGB. The study also uses the famous zero-inflated models (i.e.,
ZIPR, ZIGPR) to compare results and better understand trends and observations. SVR is a generalized linear

(2)H(Y) = −
∑

y∈Y

p(y)log2p(y)

(3)H(Y |X) = −
∑

x∈X

p(x)
∑

y∈Y

p(y|x)log2p(y|x)

(4)I(X,Y) = H(Y)−H(Y |X)

Figure 2.   The process of building the SDP model using the LTR approach.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

regressor that predicts based on constructing a hyperplane with the maximum margin of the samples. MLP is a
neural network model with input, output, and multiple hidden layers. The model is designed to discover complex
hidden patterns in the data and can work for regression and classification. BRR is based on the Bayes theorem
and supposes that the software features are independent. It dramatically simplifies the complexity of Bayesian
methods. KNR predicts the number of bugs of the new software modules based on the number of bugs of the
nearest one or several software modules. The choice of k number of nearest neighbors and aggregation method
are the main factors of KNR. RF generates an ensemble model with essential decision trees. It randomly samples
each instance to train different decision trees. XGB is an optimized distributed gradient boosting algorithm robust
enough to handle various data types, relationships, and distributions. ZIFR and ZIGPR are regression techniques
designed to count data with an excess of zero counts in case of bug counts and bug density.

Creating general ML models can produce acceptable results regardless of the discussed problem, even without
using the data to tune them; however, it does not achieve the most desirable performance. Model optimization is
finding the hyperparameters that minimize or maximize a scoring function for a specific task. Each model has
its hyperparameters with a set of possible values72. This research employs the Grid Search technique to uncover
the optimum values of the hyperparameters. Grid Search accepts the hyperparameter names (e.g., the learning
rate in MLP or the kernel in SVM) and a vector of possible values for each. Then, the function goes through all
the combinations and returns a fine-tuned model using the best combination of values. Even though Grid Search
can require more resources and time than other optimization methods, it works better with the SDP problem
since the datasets are not enormous and most of the model’s hyperparameters are non-numeric (i.e., categorical
or binary). Table 5 shows the hyperparameter configuration of each algorithm used by Grid search to find the
best set of parameters.

Model evaluation (fault percentile average)
As discussed previously in the literature, FPA is a state-of-the-art performance measurement for ranking SDP
models. FPA is a metric for evaluating the performance of the built models. Consider a dataset that contains
k modules, m1,m2,m3, . . . ,mk ordered in increasing value according to predicted defects where mk contains
the most predicted defects. Let ni represent the actual defects in mi , and the total number of actual defects is

Table 2.   Static code metrics description24.

Static metrics Description

WMC Weighted method per class

DIT Depth of inheritance tree

NOC Number of children

CBO Coupling between objects

RFC Response for a class

LCOM Lack of cohesion in methods

LCOM3 Lack of cohesion in methods version 3

NPM Number of public methods

DAM Data access metric

MOA Measure of aggregation

MFA Measure of functional abstraction

CAM Cohesion among methods

IC Inheritance coupling

CBM Coupling between methods

AMC Average method complexity

Ca Afferent coupling

Ce Efferent coupling

Max (CC) Maximum McCabe’s complexity

Avg (CC) Average McCabe’s complexity

LOC Line of code

Table 3.   Change metrics description24.

Change metrics Description

NR Number of revisions

NDC Number of distinct committers

NML Number of modified lines

NDPV Number of defects in previous versions

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

n = n1 + n2 + n3 + · · · + nk . The sum of actual defects computed from the modules with the highest numbers of
predicted defects is

∑k
i=r ni . Therefore, the proportion of actual defects in the top predicted defective r modules

to the total number of defects is:

The FPA is the average of Pr

The previous equation shows that FPA is the average of the proportions of actual defects in the top r predicted
defective modules to the total defects. Where r = 1, 2, 3, .., k , FPA is compatible with ranking models because it
takes the order of the predicted defects into account. Better models have higher FPA values because their rank-
ing is more accurate26.

Our research testing plan uses k-fold cross-validation to evaluate the ML model’s reliability, avoid biased and
misleading results, and get the most accurate and fair assessment of each model’s performance. This approach
involves testing different portions of the datasets iteratively, which allows all data points to contribute to the
testing process instead of one fixed model testing. Since the observations in each dataset are limited, this study
uses three-fold cross-validation, computes the quality metric (i.e., FPA) in each of the three iterations, and then
finds the mean for all FPA over the iterations to achieve stable, unbiased results. After building the models,

(5)Pr =
1

n

k
∑

i=k−r+1

ni

(6)FPA =
1

k

∑k

r=1

1

n

k
∑

i=k−r+1

ni

Table 4.   Dataset characteristics.

Dataset Name Number of attributes Number of instances Total number of bugs %buggy modules

PROMISE

Ant-1.7

21

745 338 45.4

Camel-1.0 339 14 4.1

Camel-1.6 965 500 51.8

Ivy-2.0 352 40 11.4

Lucene-2.0 196 93 47.4

Poi-2.0 314 39 12.4

Synapse-1.0 157 21 13.4

Synapse-1.2 257 145 56.4

Velocity-1.6 229 190 83.0

Xalan-2.4 723 156 21.6

Xerces-1.2 440 115 26.1

Xerces-1.3 453 193 42.6

Bug prediction dataset

PDE R2_0

49

576 242 42.0

PDE R2_1 761 231 30.4

PDE R3_0 881 584 66.3

PDE R3_1 1108 773 69.8

PDE R3_2 1351 1124 83.2

JDT_R2_0 2397 1102 45.97

JDT_R2_1 2743 876 31.94

JDT_R3_0 3420 1320 38.60

JDT_R3_1 3883 1272 32.76

JDT_R3_2 2233 816 36.54

Table 5.   Hyperparameters configurations.

Model Hyperparameter configurations

SVR Kernel = {‘rbf ’, ‘linear’,’sigmoid’}, c = {0, 0.5, 1}

KNR K = {1, 3,5,7,9}

BRR Alpha = {0.01, 0.02}, max_iteration = {100, 200, 300}

RF Number of estimators = {50, 60, 70, 80, 90}, minimum number of leaves = {3, 5, 7}

XGB Number of estimators = {50, 60, 70, 80, 90}

MLP Number of hidden layers = {2, 3, 4}, number of hidden neurons = {20, 30, 40, 50}

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

optimizing them, and computing all FPA for the models with different percentages of attributes, the following
section reflects on the results and discusses the main observations and findings.

Compliance with ethical standards
The authors would like to convey their thanks and appreciation to the “University of Sharjah” for supporting the
work through the research group – Open UAE Research and Development.

Informed consent
This study does not involve any experiments on animals.

Results
We present the results of our comparison study on SDP in this section. We include a detailed description of how
the experiments were designed, how the results were evaluated, and a discussion of the results.

RQ1. What is the role of the target variables on the performance of the employed LTR techniques?
To answer this research question, the eight models were first trained to predict either bug count or bug

density. The FPA scores of all results were calculated, and the average score of each model was found. The eight
models were compared based on the FPA scores of the two target variables and were visualized using box plots.

Table 6 presents the mean FPA results of our models, applied to the Promise and Bug Prediction repository
datasets. The FPA values are in the form of “mean ± standard deviation.” A higher mean FPA indicates that the
model could rank the defective modules more accurately. A higher standard deviation shows higher dispersion
in FPA scores. Hence, the model has low stability and less reliability as the model gives variant results. Therefore,
maximizing the mean FPA and minimizing the standard deviation is desired.

The table compares the mean of the FPA results of each model for all datasets with different target variables.
The first and second rows indicate the FPA scores when the target variables are bug count and bug density,
respectively, with the best performance highlighted in bold type.

The best FPA scores when the target variable is bug count are achieved by MLP, SVR, KNR, BRR, XBG, and
ZIGPR, ranging between 74.6 and 77.6%. On the other hand, the best scores when the target variable is bug
density are produced by MLP, BRR, XGB, and ZIGPR, with scores ranging from 61.3 to 63.0%. In addition, the
bug count results are more reliable, as they have a lower standard deviation than bug density results. It can further
be seen that ZIPR has a contrasting behavior compared to other models since its bug density score has a higher
FPA mean and a lower standard deviation compared to bug count scores.

Figure 3 visualizes the results of the table in box plots. The box plot shows the mean FPA results of the
proposed models. Each model has a pair of box plots: bug count and bug density, colored in blue and yellow,
respectively. The box plot shows that seven out of eight models perform significantly better when the target
variable is bug count, as they have higher FPA scores and lower standard deviations since they have smaller box
plots. This can be statistically proven using the non-parametric Wilcoxon test, with a 95% confidence interval
applied to the bug count and bug density FPA scores. The null hypothesis states that using the bug count or the
bug density as the target variable is statistically indifferent. Performing the Wilcoxon test produces a p-value
of 5.706 e-09, which is less than 0.05, rejecting the null hypothesis. In contrast to the rest of the models, ZIPR
produces a meager FPA score when the target variable is the bug count.

Overall, using bug count as the target variable is more reliable and stable than the bug density, as visualized
in Fig. 4. The box plot summarizes the results for all models and all datasets. The bug counts results have more
outliers due to the low results of ZIPR model.

RQ2. What is the average improvement when using imbalanced learning with LTR techniques?
To answer this research question, the datasets were under-sampled by reducing the number of instances with

a zero bug count. The under-sampling was done at different rates: 50%, 75%, 85%, 90%, and 95%, where the rate
represents the percentage of non-defective samples that were randomly selected and removed from the training
set. The effect of under-sampling was measured by the improvement rate calculated using (12).

Table 7 shows the improvement rates of results after performing under-sampling. The improvement rates
are calculated relative to the results of the original dataset and are written in the form “mean ± standard devia-
tion.” The positive improvement rate represents increasing FPA, while the negative improvement rate represents
a decrease. In general, increasing the under-sampling rate slightly decreases the FPA results when the target
variable is bug count, as opposed to the bug density results where the scores improved with increasing the
under-sampling rate.

Figure 5 illustrates the change in FPA results with the change of the under-sampling rate for bug count and
bug density targets. The under-sampling rates are distinguished with different colors, as indicated in the legend

(7)improvement rate = 1−
FPA score before undersampling

FPA score after undersampling

Table 6.   Mean FPA results of the eight models. Bold indicates best results.

Target Variable MLP SVR KNR BRR RF XGB ZIPR ZIGPR

Bug count 0.749 ± 0.056 0.762 ± 0.060 0.746 ± 0.055 0.770 ± 0.048 0.672 ± 0.056 0.776 ± 0.045 0.333 ± 0.173 0.756 ± 0.058

Bug density 0.63 ± 0.097 0.573 ± 0.094 0.587 ± 0.092 0.617 ± 0.102 0.567 ± 0.070 0.613 ± 0.097 0.514 ± 0.108 0.618 ± 0.098

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

of the graph. The box plot visually describes the effect of changing the under-sampling rates, as in Table 7. While
under-sampling improved the results of bug density, bug count results remained higher in all cases.

RQ3. What is the role of feature selection in the accuracy of LTR techniques?
To answer this research question, InfoGain feature selection was first applied to the features, which ranked

them based on their significance on the prediction. The models were trained using different subsets of the
features, where the subset is a percentage of the top features. All results’ FPA scores were calculated, and each
percentage’s average score was found and compared for both bug count and bug density.

Table 8 shows the results for bug count and bug density with different feature selection percentages from
10 to 100% with an increment of 10%, where 100% means all features are selected. The results are in the form
“mean ± standard deviation,” with the highest highlighted in bold type. For bug count, the maximum score was

Figure 3.   Box plot for bug count and bug density FPA results for all models.

Figure 4.   Summarized box plot for bug count and bug density FPA results.

Table 7.   Mean FPA results with different under-sampling rates.

Target

Under-sampling rates

0.5 0.75 0.85 0.9 0.95

Bug count − 0.013 ± 0.079 − 0.041 ± 0.112 − 0.069 ± 0.139 − 0.088 ± 0.156 − 0.116 ± 0.176

Bug density − 0.0113 ± 0.182 0.008 ± 0.184 0.024 ± 0.193 0.052 ± 0.185 0.097 ± 0.176

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

achieved using 10% of the features. The maximum score was achieved for bug density using 100% or 90% of
the features.

Figures 6 and 7 visualize the impact of feature selection on different models for both bug count and bug
density, respectively. Figure 6 shows that most models maintained similar scores and were not significantly
affected by feature selection. However, ZIPR showed unusual behavior, with shallow scores from 30 to 100% of

Figure 5.   Box plot of FPA results after under-sampling.

Table 8.   Mean FPA results with feature selection. Bold indicates best results.

Target

Feature selection

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bug count 0.728 ± 0.088 0.705 ± 0.143 0.693 ± 0.153 0.689 ± 0.171 0.688 ± 0.172 0.688 ± 0.174 0.691 ± 0.175 0.691 ± 0.173 0.691 ± 0.172 0.691 ± 0.170

Bug density 0.563 ± 0.100 0.569 ± 0.103 0.576 ± 0.099 0.585 ± 0.100 0.582 ± 0.098 0.591 ± 0.101 0.601 ± 0.102 0.608 ± 0.097 0.611 ± 0.103 0.611 ± 0.101

Figure 6.   Box plot of bug count results with feature selection.

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

the features but increasing sharply at 20% and 10% of the features. This shows that ZIPR is highly sensitive to
the features used in the training set. In Fig. 7, most models show a decreasing FPA score as the feature selection
rate decreases. Some models, such as BRR, ZIPR, and RF, show less sensitivity to features than others, such as
SVR, XGB, and KNR.

Figure 8 shows the average performance of the eight models and compares the effect of feature selection on
both bug count and bug density. Overall, bug count results seem to maintain the same score with all feature
selection rates. This means that using the minimum number of features (10%) yields the same performance
that using 100% of the features yields, reducing computational power and time requirements significantly. In
contrast, bug density results showed that even the less significant features positively contribute to the model
results. This was proven using the Wilcoxon test with a 95% confidence interval. The null hypothesis states that
using 10% and 100% of features are statistically indifferent. Applying the test to bug count and bug density
results in p-values of 0.8986 and 1.314e−10, respectively. The bug count results are statistically indifferent since
the p-value is greater than 0.05. However, the p-value for the bug density results is less than 0.05; therefore, they
are statistically different.

Threats to validity
This section presents the threats that were the main factors in the validity of our comparison study. We begin with
the internal validity, which is associated with the trustworthiness of the results of our study. First, data sampling
methods may have affected the results, as threefold cross-validation was used. Although other sampling methods
are less biased, such as tenfold and leave-one-out cross-validation, they are computationally expensive for large
datasets. We tested our study on 24 datasets with large numbers of attributes and instances; therefore, using
threefold cross-validation was a compromise solution. Second, machine learning models are primarily affected

Figure 7.   Box plot of bug density results with feature selection.

Figure 8.   Overall box plot of results after feature selection.

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

by the data, which is why the models used in our study were chosen based on features of our datasets, such as
the distribution of the data and the characteristics of the dependent variable. While many popular performance
metrics are commonly used for regression problems, such as the mean absolute error, mean squared error, and
R-squared, the most appropriate metric for ranking problems is FPA. Lastly, external validity is the ability to
generalize the results of the study for all datasets. This paper used 24 datasets from PROMISE and bug predic-
tion repositories to generalize our results. We followed the approach of within-project prediction, and we did
not validate the cross-project or cross-company approaches.

Conclusion
Software Defect Prediction (SDP) is essential to software testing and quality assurance. It has become even
more fundamental in recent years, as the number of programs and software products has also increased in size
and complexity. In practice, project managers are not only interested in identifying defective modules but also
want to rank the potential defective modules to optimize resource allocation and minimize testing costs. This
is notably observed for projects with limited budgets. Thus, this paper compared multiple LTR models using
two standard output metrics: bug count and bug density as target variables. It also studied the effect of using
imbalance learning and feature selection on eight models with Grid Search optimization. The FPA results of the
models showed that using bug count as the target variable produced higher scores and more stable results. The
use of imbalance learning has shown significant improvement in the FPA scores of the bug density results but less
significant on the bug count results. Finally, using feature selection with LTR has reduced the FPA score of the
bug density metric while it had no impact on bug count results. Thus, we conclude that using feature selection
and imbalance learning with LTR does not come up with superior or significant results. Our study has several
implications for the software industry. LTR helps by ranking modules based on the defect severity, which helps
to direct focus and resources to the modules that need more testing.

Data availability
All datasets used in this research are publicly available through PROMISE44, and Bug Prediction datasets44,64.
Please check http://​promi​se.​site.​uotta​wa.​ca/​SERep​osito​ry/​datas​ets-​page.​html and https://​bug.​inf.​usi.​ch/​index.​
php.

Received: 27 June 2023; Accepted: 25 October 2023

References
	 1.	 Bertolino, A. Software testing research: achievements, challenges, dreams. In Future of Software Engineering (FOSE ’07), pp. 85–103.

https://​doi.​org/​10.​1109/​FOSE.​2007.​25 (2007).
	 2.	 Catal, C. & Diri, B. A systematic review of software fault prediction studies. Expert Syst. Appl. 36(4), 7346–7354. https://​doi.​org/​

10.​1016/j.​eswa.​2008.​10.​027 (2009).
	 3.	 Alsghaier, H. & Akour, M. Software fault prediction using particle swarm algorithm with genetic algorithm and support vector

machine classifier. Softw. Pract. Exp. 50(4), 407–427. https://​doi.​org/​10.​1002/​SPE.​2784 (2020).
	 4.	 Guo, L., Ma, Y., Cukic, B., & Singh, H. Robust prediction of fault-proneness by random forests. In Proceedings—International

Symposium on Software Reliability Engineering, ISSRE, pp. 417–428. https://​doi.​org/​10.​1109/​ISSRE.​2004.​35 (2004).
	 5.	 Magal, K. & Gracia Jacob, S. Improved random forest algorithm for software defect prediction through data mining techniques.

Int. J. Comput. Appl. 117(23), 18–22. https://​doi.​org/​10.​5120/​20693-​3582 (2015).
	 6.	 Goyal, R., Chandra, P. & Singh, Y. Suitability of KNN regression in the development of interaction based software fault prediction

models. IERI Proc. 6, 15–21. https://​doi.​org/​10.​1016/J.​IERI.​2014.​03.​004 (2014).
	 7.	 Wang, T., & Li, W. H. Naïve Bayes Software Defect Prediction Model. In 2010 International Conference on Computational Intel-

ligence and Software Engineering, CiSE 2010. https://​doi.​org/​10.​1109/​CISE.​2010.​56770​57 (2010).
	 8.	 Asmono, R., Wahono, R., & Syukur, A. Absolute correlation weighted Naïve Bayes for software defect prediction. J. Softw. Eng.

1(1), 38–45 (2015).
	 9.	 Yu, X., Bennin, K. E., Liu, J., Keung, J. W., Yin, X., & Xu, Z. An empirical study of learning to rank techniques for effort-aware

defect prediction. In SANER 2019 - Proceedings of the 2019 IEEE 26th International Conference on Software Analysis, Evolution,
and Reengineering, pp. 298–309. https://​doi.​org/​10.​1109/​SANER.​2019.​86680​33 (2019).

	10.	 Yang, X., Tang, K., & Yao, X. A learning-to-rank algorithm for constructing defect prediction models. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7435 LNCS, pp. 167–175.
https://​doi.​org/​10.​1007/​978-3-​642-​32639-4_​21 (2012).

	11.	 Joachims, T., Li, H., Liu, T. Y. & Zhai, C. X. Learning to rank for information retrieval (LR4IR 2007). SIGIR Forum. 41(2), 58–62.
https://​doi.​org/​10.​1145/​13289​64.​13289​74 (2007).

	12.	 Cao, Z., Qin, T., Liu, T. Y., Tsai, M. F., & Li, H. Learning to rank: from pairwise approach to listwise approach. In Proceedings of the
24th International Conference on Machine Learning, in ICML ’07 pp. 129–136 (Association for Computing Machinery, New York,
NY, USA, 2007). https://​doi.​org/​10.​1145/​12734​96.​12735​13.

	13.	 Ibrahim, M., & Carman, M. Comparing pointwise and listwise objective functions for random-forest-based learning-to-rank.
ACM Trans. Inf. Syst. 34(4). https://​doi.​org/​10.​1145/​28665​71 (2016).

	14.	 Li, H. A short introduction to learning to rank. IEICE Tran. 94, 1854–1862. https://​doi.​org/​10.​1587/​trans​inf.​E94.D.​1854 (2011).
	15.	 Yang, X., Tang, K. & Yao, X. A learning-to-rank approach to software defect prediction. IEEE Trans. Reliab. 64(1), 234–246. https://​

doi.​org/​10.​1109/​TR.​2014.​23708​91 (2015).
	16.	 Raschka, S. Model evaluation, model selection, and algorithm selection in machine learning (2018).
	17.	 Bach, T., Andrzejak, A., Pannemans, R. & Lo, D. The impact of coverage on bug density in a large industrial software project. ACM/

IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM) 2017, 307–313. https://​doi.​org/​10.​1109/​ESEM.​2017.​44 (2017).
	18.	 Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232. https://​doi.​

org/​10.​1007/​S13748-​016-​0094-0 (2016).
	19.	 Ganganwar, V. An overview of classification algorithms for imbalanced datasets. Int. J. Emerg. Technol. Adv. Eng. 2, 42–47 (2012).
	20.	 Mohammed, R., Rawashdeh, J., & Abdullah, M. Machine Learning with Oversampling and Undersampling Techniques: Overview

Study and Experimental Results. In 2020 11th International Conference on Information and Communication Systems (ICICS), pp.
243–248. https://​doi.​org/​10.​1109/​ICICS​49469.​2020.​239556 (2020).

http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://bug.inf.usi.ch/index.php
https://bug.inf.usi.ch/index.php
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1002/SPE.2784
https://doi.org/10.1109/ISSRE.2004.35
https://doi.org/10.5120/20693-3582
https://doi.org/10.1016/J.IERI.2014.03.004
https://doi.org/10.1109/CISE.2010.5677057
https://doi.org/10.1109/SANER.2019.8668033
https://doi.org/10.1007/978-3-642-32639-4_21
https://doi.org/10.1145/1328964.1328974
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/2866571
https://doi.org/10.1587/transinf.E94.D.1854
https://doi.org/10.1109/TR.2014.2370891
https://doi.org/10.1109/TR.2014.2370891
https://doi.org/10.1109/ESEM.2017.44
https://doi.org/10.1007/S13748-016-0094-0
https://doi.org/10.1007/S13748-016-0094-0
https://doi.org/10.1109/ICICS49469.2020.239556

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

	21.	 Perera, A., Aleti, A., Turhan, B. & Boehme, M. An experimental assessment of using theoretical defect predictors to guide search-
based software testing. IEEE Trans. Softw. Eng. 1, 1. https://​doi.​org/​10.​1109/​TSE.​2022.​31470​08 (2022).

	22.	 Kabir, M. A., Keung, J., Turhan, B. & Bennin, K. E. Inter-release defect prediction with feature selection using temporal chunk-
based learning: An empirical study. Appl. Soft Comput. 113, 107870. https://​doi.​org/​10.​1016/j.​asoc.​2021.​107870 (2021).

	23.	 Li, J. et al. Feature selection: A data perspective. ACM Comput. Surv. 50, 1. https://​doi.​org/​10.​1145/​31366​25 (2016).
	24.	 Bansal, A. Comparative analysis of classification methods for prediction software fault proneness using process metrics. TechRxiv

(2021).
	25.	 Li, L., Lessmann, S. & Baesens, B. Evaluating Software Defect Prediction Performance: An Updated Benchmarking Study. SSRN

Electronic Journal 1, 1 (2019).
	26.	 Weyuker, E., Ostrand, T. & Bell, R. Comparing the effectiveness of several modeling methods for fault prediction. Springer 15(3),

277–295. https://​doi.​org/​10.​1007/​s10664-​009-​9111-2 (2010).
	27.	 Wang, H., Khoshgoftaar, T., & Napolitano, A. A comparative study of ensemble feature selection techniques for software defect

prediction. In Ninth International Conference on Machine Learning and Applications (2010).
	28.	 Wang, H., Khoshgoftaar, T., & Seliya, N. How many software metrics should be selected for defect prediction? Twenty-Fourth

International (2011).
	29.	 Gao, K., Khoshgoftaar, T. & Wang, H. Choosing software metrics for defect prediction: An investigation on feature selection

techniques. Wiley Online Library 41(5), 579–606. https://​doi.​org/​10.​1002/​spe.​1043 (2011).
	30.	 Chen, X., Shen, Y., Cui, Z., & Ju, X. Applying feature selection to software defect prediction using multi-objective optimization. In

2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), pp. 54–59. https://​doi.​org/​10.​1109/​COMPS​
AC.​2017.​65 (2017).

	31.	 Yang, X., Tang, K., & Yao, X. A learning-to-rank approach to software defect prediction. ieeexplore.ieee.org (2014).
	32.	 Balogun, A. O. et al. Empirical analysis of rank aggregation-based multi-filter feature selection methods in software defect predic-

tion. Electronics (Basel) 10(2), 179. https://​doi.​org/​10.​3390/​elect​ronic​s1002​0179 (2021).
	33.	 Shin, J., Aleithan, R., Nam, J., Wang, J., & Wang, S. Explainable software defect prediction: Are we there yet? 10.5281/

zenodo.5425868.
	34.	 López-Martín, C., Villuendas-Rey, Y., Azzeh, M., Bou Nassif, A. & Banitaan, S. Transformed K-Nearest neighborhood output

distance minimization for predicting the defect density of software projects. J. Syst. Softw. 167, 110592. https://​doi.​org/​10.​1016/j.​
jss.​2020.​110592 (2020).

	35.	 ISBSG. Guidelines for use of the ISBSG data. In International Software Benchmarking Standards Group, Release 2018 (2018).
	36.	 Xu, Z. et al. Effort-aware just-in-time bug prediction for mobile apps via cross-triplet deep feature embedding. IEEE Trans Reliab

71(1), 204–220. https://​doi.​org/​10.​1109/​TR.​2021.​30661​70 (2022).
	37.	 Cheng, T., Zhao, K., Sun, S., Mateen, M. & Wen, J. Effort-aware cross-project just-in-time defect prediction framework for mobile

apps. Front. Comput. Sci. 16(6), 1–15. https://​doi.​org/​10.​1007/​S11704-​021-​1013-5/​METRI​CS (2022).
	38.	 Ni, C., Xia, X., Lo, D., Chen, X. & Gu, Q. Revisiting supervised and unsupervised methods for effort-aware cross-project defect

prediction. IEEE Trans. Softw. Eng. 48(3), 786–802. https://​doi.​org/​10.​1109/​TSE.​2020.​30017​39 (2022).
	39.	 Bal, P. R. & Kumar, S. WR-ELM: Weighted regularization extreme learning machine for imbalance learning in software fault

prediction. IEEE Trans. Reliab. 69(4), 1355–1375. https://​doi.​org/​10.​1109/​TR.​2020.​29962​61 (2020).
	40.	 Tong, H., Lu, W., Xing, W., Liu, B. & Wang, S. SHSE: A subspace hybrid sampling ensemble method for software defect number

prediction. Inf. Softw. Technol. 142, 950–5849. https://​doi.​org/​10.​1016/j.​infsof.​2021.​106747 (2022).
	41.	 Yu, X. et al. Predicting the precise number of software defects: Are we there yet?. Inf. Softw. Technol. https://​doi.​org/​10.​1016/j.​

infsof.​2022.​106847 (2022).
	42.	 Macdonell, S. G. Establishing relationships between specification size and software process effort in CASE environments. Inf. Softw.

Technol. 39, 35–45 (1997).
	43.	 Ostrand, T. J., Weyuker, E. J. & Bell, R. M. Predicting the location and number of faults in large software systems. IEEE Trans.

Softw. Eng. 31(4), 340–355. https://​doi.​org/​10.​1109/​TSE.​2005.​49 (2005).
	44.	 Boetticher, G., Menzies, T. & Ostrand, T. Promise repository of empirical software engineering data (West Virginia University, 2007).
	45.	 Yang, L. On hyperparameter optimization of machine learning algorithms: Theory and practice (Elsevier, 2014).
	46.	 Tantithamthavorn, C., McIntosh, S., & Hassan, A. E. Automated parameter optimization of classification techniques for defect

prediction models. In IEEE/ACM 38th International Conference on Software Engineering (ICSE), vol. 14–22, pp. 321–332. https://​
doi.​org/​10.​1145/​28847​81.​28848​57 (2016).

	47.	 Buchari, M. & Mardiyanto, S. Implementation of chaotic Gaussian particle swarm optimization for optimize learning-to-rank
software defect prediction model construction. J. Phys. 978, 12079. https://​doi.​org/​10.​1088/​1742-​6596/​978/1/​012079 (2017).

	48.	 Eberhart, R., & Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks,
pp. 1942–1948 (1995).

	49.	 Aljamaan, H., & Alazba, A. Software defect prediction using tree-based ensembles. In Proceedings of the 16th ACM International
Conference on Predictive Models and Data Analytics in Software Engineering, pp. 1–10. https://​doi.​org/​10.​1145/​34165​08.​34171​14
(2020).

	50.	 Mende, T., & Koschke, R. Effort-aware defect prediction models. In Proceedings of the European Conference on Software Maintenance
and Reengineering, CSMR, pp. 107–116. https://​doi.​org/​10.​1109/​CSMR.​2010.​18 (2010).

	51.	 Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K. I., Adams, B., & Hassan, A. E. Revisiting common bug prediction findings
using effort-aware models. In IEEE International Conference on Software Maintenance, ICSM. https://​doi.​org/​10.​1109/​ICSM.​2010.​
56095​30 (2010).

	52.	 Kamei, Y. et al. A large-scale empirical study of just-in-time quality assurance. IEEE Trans. Softw. Eng. 39(6), 757–773. https://​doi.​
org/​10.​1109/​TSE.​2012.​70 (2013).

	53.	 Yang, Y. et al. Are slice-based cohesion metrics actually useful in effort-aware post-release fault-proneness prediction? An empirical
study. IEEE Trans. Softw. Eng. 41(4), 331–357. https://​doi.​org/​10.​1109/​TSE.​2014.​23700​48 (2015).

	54.	 Bennin, K. E., Keung, J. W. & Monden, A. On the relative value of data resampling approaches for software defect prediction.
Empir. Softw. Eng. 24(2), 602–636. https://​doi.​org/​10.​1007/​s10664-​018-​9633-6 (2019).

	55.	 Fu, W., & Menzies, T. Revisiting unsupervised learning for defect prediction, vol. 17, pp. 72–83. https://​doi.​org/​10.​1145/​31062​37.​
31062​57 (2017).

	56.	 Yu, X. et al. Finding the best learning to rank algorithms for effort-aware defect prediction. Inf. Softw. Technol. 157, 107165. https://​
doi.​org/​10.​1016/J.​INFSOF.​2023.​107165 (2023).

	57.	 Du, X. et al. CoreBug: Improving Effort-Aware Bug Prediction in Software Systems Using Generalized k-Core Decomposition in
Class Dependency Networks. Axioms 11, 205. https://​doi.​org/​10.​3390/​AXIOM​S1105​0205 (2022).

	58.	 Yu, X. et al. Improving effort-aware defect prediction by directly learning to rank software modules. Inf. Softw. Technol. 10, 7250.
https://​doi.​org/​10.​1016/J.​INFSOF.​2023.​107250 (2023).

	59.	 Qu, Y., Chi, J. & Yin, H. Leveraging developer information for efficient effort-aware bug prediction. Inf. Softw. Technol. 137, 106605.
https://​doi.​org/​10.​1016/J.​INFSOF.​2021.​106605 (2021).

	60.	 Çarka, J., Esposito, M. & Falessi, D. On effort-aware metrics for defect prediction. Empir. Softw. Eng. 27(6), 1–38. https://​doi.​org/​
10.​1007/​S10664-​022-​10186-7 (2022).

https://doi.org/10.1109/TSE.2022.3147008
https://doi.org/10.1016/j.asoc.2021.107870
https://doi.org/10.1145/3136625
https://doi.org/10.1007/s10664-009-9111-2
https://doi.org/10.1002/spe.1043
https://doi.org/10.1109/COMPSAC.2017.65
https://doi.org/10.1109/COMPSAC.2017.65
https://doi.org/10.3390/electronics10020179
https://doi.org/10.1016/j.jss.2020.110592
https://doi.org/10.1016/j.jss.2020.110592
https://doi.org/10.1109/TR.2021.3066170
https://doi.org/10.1007/S11704-021-1013-5/METRICS
https://doi.org/10.1109/TSE.2020.3001739
https://doi.org/10.1109/TR.2020.2996261
https://doi.org/10.1016/j.infsof.2021.106747
https://doi.org/10.1016/j.infsof.2022.106847
https://doi.org/10.1016/j.infsof.2022.106847
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1145/2884781.2884857
https://doi.org/10.1145/2884781.2884857
https://doi.org/10.1088/1742-6596/978/1/012079
https://doi.org/10.1145/3416508.3417114
https://doi.org/10.1109/CSMR.2010.18
https://doi.org/10.1109/ICSM.2010.5609530
https://doi.org/10.1109/ICSM.2010.5609530
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2014.2370048
https://doi.org/10.1007/s10664-018-9633-6
https://doi.org/10.1145/3106237.3106257
https://doi.org/10.1145/3106237.3106257
https://doi.org/10.1016/J.INFSOF.2023.107165
https://doi.org/10.1016/J.INFSOF.2023.107165
https://doi.org/10.3390/AXIOMS11050205
https://doi.org/10.1016/J.INFSOF.2023.107250
https://doi.org/10.1016/J.INFSOF.2021.106605
https://doi.org/10.1007/S10664-022-10186-7
https://doi.org/10.1007/S10664-022-10186-7

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:18885 | https://doi.org/10.1038/s41598-023-45915-5

www.nature.com/scientificreports/

	61.	 Jiarpakdee, J., Tantithamthavorn, C. & Treude, C. The impact of automated feature selection techniques on the interpretation of
defect models. Empir. Softw. Eng. 25(5), 3590–3638. https://​doi.​org/​10.​1007/​S10664-​020-​09848-1/​METRI​CS (2020).

	62.	 Li, F. et al. The impact of feature selection techniques on effort-aware defect prediction: An empirical study. IET Softw. 17(2),
168–193. https://​doi.​org/​10.​1049/​SFW2.​12099 (2023).

	63.	 Li, W., Zhang, W., Jia, X. & Huang, Z. Effort-aware semi-supervised just-in-time defect prediction. Inf. Softw. Technol. 126, 106364.
https://​doi.​org/​10.​1016/J.​INFSOF.​2020.​106364 (2020).

	64.	 D’Ambros, M., Lanza, M., & Robbes, R. An extensive comparison of bug prediction approaches. In 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010), pp. 31–41 (2010).

	65.	 Moser, R., Pedrycz, W., & Succi, G. Analysis of the reliability of a subset of change metrics for defect prediction. In ACM-IEEE
international symposium on Empirical software engineering and measurement, pp. 309–311, https://​doi.​org/​10.​1145/​14140​04.​14140​
63 (2004).

	66.	 Sanders, H., Garbage in, garbage out: How purportedly great ml models can be screwed up by bad data. In Proceedings of Blackhat
2017 (2017).

	67.	 Ahmed, T., Md Siraj, M., Zainal, A., Elshoush, H. & Elhaj, F. Feature selection using information gain for improved structural-based
alert correlation. PLoS One 11, e0166017. https://​doi.​org/​10.​1371/​journ​al.​pone.​01660​17 (2016).

	68.	 Bach, M., Werner, A. & Palt, M. The proposal of undersampling method for learning from imbalanced datasets. Proc. Comput. Sci.
159, 125–134. https://​doi.​org/​10.​1016/j.​procs.​2019.​09.​167 (2019).

	69.	 Borkin, D., Nemethova, A., Michalconok, G. & Maiorov, K. Impact of data normalization on classification model accuracy. Res.
Papers Faculty Mater. Sci. Technol. Slovak Univ. Technol. 27, 79–84. https://​doi.​org/​10.​2478/​rput-​2019-​0029 (2019).

	70.	 Singh, D. & Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft. Comput. 10, 5524.
https://​doi.​org/​10.​1016/j.​asoc.​2019.​105524 (2019).

	71.	 Azhagusundari, B., & Thanamani, A. S. Feature selection based on information gain. In International Journal of Innovative Technol-
ogy and Exploring Engineering (IJITEE) (2013).

	72.	 Sun, S., Cao, Z., Zhu, H. & Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern.
50(8), 3668–3681. https://​doi.​org/​10.​1109/​TCYB.​2019.​29507​79 (2020).

Author contributions
A.B.N., M.A., S.A., Ra.K. and Ru.K. wrote the main manuscript. A.B.N., M.A., M.A.T. and L.A. wrote the meth-
odology used in this research. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.B.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1007/S10664-020-09848-1/METRICS
https://doi.org/10.1049/SFW2.12099
https://doi.org/10.1016/J.INFSOF.2020.106364
https://doi.org/10.1145/1414004.1414063
https://doi.org/10.1145/1414004.1414063
https://doi.org/10.1371/journal.pone.0166017
https://doi.org/10.1016/j.procs.2019.09.167
https://doi.org/10.2478/rput-2019-0029
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1109/TCYB.2019.2950779
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Software defect prediction using learning to rank approach
	Literature review
	Software defect prediction
	Learning to rank for software defects prediction

	Research methodology
	Datasets
	Data preprocessing
	Model selection and optimization
	Model evaluation (fault percentile average)
	Compliance with ethical standards
	Informed consent

	Results
	Threats to validity
	Conclusion
	References

