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Development and validation 
of a predictive model for febrile 
seizures
Anna Cheng , Qin Xiong , Jing Wang , Renjian Wang , Lei Shen , Guoqin Zhang  & 
Yujuan Huang *

Febrile seizures (FS) are the most prevalent type of seizures in children. Existing predictive models 
for FS exhibit limited predictive ability. To build a better-performing predictive model, a retrospective 
analysis study was conducted on febrile children who visited the Children’s Hospital of Shanghai from 
July 2020 to March 2021. These children were divided into training set (n = 1453), internal validation 
set (n = 623) and external validation set (n = 778). The variables included demographic data and 
complete blood counts (CBCs). The least absolute shrinkage and selection operator (LASSO) method 
was used to select the predictors of FS. Multivariate logistic regression analysis was used to develop 
a predictive model. The coefficients derived from the multivariate logistic regression were used to 
construct a nomogram that predicts the probability of FS. The calibration plot, area under the receiver 
operating characteristic curve (AUC), and decision curve analysis (DCA) were used to evaluate model 
performance. Results showed that the AUC of the predictive model in the training set was 0.884 (95% 
CI 0.861 to 0.908, p < 0.001) and C-statistic of the nomogram was 0.884. The AUC of internal validation 
set was 0.883 (95% CI 0.844 to 0.922, p < 0.001), and the AUC of external validation set was 0.858 (95% 
CI 0.820 to 0.896, p < 0.001). In conclusion, the FS predictive model constructed based on CBCs in this 
study exhibits good predictive ability and has clinical application value.

Febrile seizures (FS) are the most common type of convulsions in childhood, primarily affecting children between 
the ages of 6 months and 6  years1. FS often induce panic in parents, leading them to employ unnecessary or 
excessive management measures due to concerns about potential neurological damage, asphyxia, or even death 
during these episodes. Consequently, FS are common conditions in the pediatric emergency  department2. The 
exact pathogenesis of FS is unknown, although some researchers suggest that it may be associated with factors 
such as infections, particularly viral infections, genetic susceptibility, and certain  vaccinations3,4. While it is 
previously widely believed that most FS are  harmless5, recent studies have revealed a correlation between FS and 
neurological, cognitive, and memory  deficits6–8. Furthermore, research has demonstrated that individuals with 
FS are at an increased risk of developing epilepsy or psychiatric disorders compared to children without FS, with 
the risk escalating with each occurrence of  FS9,10. Reports have also indicated an elevated risk of sudden death in 
patients with  FS11. Therefore, further exploration of methods for predicting FS is still necessary.

For the prediction of FS, Cokyaman et al. conducted a study utilizing serum Brain-derived neurotrophic 
factor levels to predict FS, yielding the area under the curve (AUC) of 0.72312. Bakri et al. discovered that 
neurotrophin-3 predicted FS with an AUC of 0.67813. In Baek et al.’s study, hypomagnesemia was identified 
as an independent risk factor for FS, and when used to predict FS, it achieved an AUC of 0.73114. Liu et al.’s 
study employed neutrophil to lymphocyte ratio (NLR) and mean platelet volume (MPV)/platelet count (PLT) 
ratio (MPR) to predict FS, resulting in AUC values of 0.768 and 0.689,  respectively15. On one hand, the existing 
FS predictive models demonstrated limited predictive ability, with AUC values below 0.8. On the other hand, 
complete blood counts (CBCs) have shown potential in predicting FS, such as the NLR single indicator with 
an AUC value of 0.768, which was close to 0.815. By incorporating additional CBCs, the model’s predictive abil-
ity could be significantly enhanced. Therefore, our study aims to establish an FS predictive model using CBCs 
that significantly improves predictive ability and holds practical value.
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Materials and methods
Study design and patients
The study protocol was approved by the Ethics Committee of Children’s Hospital of Shanghai (approval number 
2022R132). All methods were carried out in accordance with the relevant guidelines and regulations. Informed 
consent was obtained from the legal guardian(s) of each child.

We collected demographic data and CBCs of 3031 febrile children (328 children with FS and 2703 febrile 
children without seizures) who visited the emergency department of Children’s Hospital of Shanghai from July 
2020 to March 2021. All the children were aged between 6 months and 6 years old. The diagnosis of FS was 
performed according to the clinical practice guideline for the long-term management of the child with simple 
febrile seizures by the Subcommittee on FS American Academy of  Pediatrics16. The exclusion criteria consisted 
of the following: (1) the presence of central nervous system infection; (2) the presence of underlying diseases or 
conditions such as epilepsy, gastroenteritis, perinatal abnormalities, delayed psychomotor development, chro-
mosomal abnormalities, congenital metabolic disorders, brain tumors, or history of intracranial surgery; (3) 
history of seizures unrelated to fever; (4) cases with missing values (missing demographic variables or missing 
CBCs). Through screening, a total of 2854 children were included in the study, consisting of 299 children with 
FS and 2555 febrile children without seizures. The 2020 data was randomly divided into training set and internal 
validation set in a 7:3 ratio. 1453 children were included in the training set, and 623 children were included in the 
internal validation set. Data from January to March 2021 were used as the external validation set, with a sample 
size of 778. Data exclusion and data splitting were shown in Fig. 1.

Variables
Demographic information, including age and gender, as well as CBCs were collected. The CBCs encompassed the 
following indicators: absolute neutrophil count (ANC), absolute lymphocyte count (ALC), absolute monocyte 
count (AMC), absolute eosinophil count (AEC), absolute basophil count (ABC), red blood cell count (RBC), 
hematocrit (Hct), mean corpuscular volume (MCV), hemoglobin (Hb), mean corpuscular hemoglobin (MCH), 
mean corpuscular hemoglobin concentration (MCHC), platelet count (PLT), mean platelet volume (MPV), red 
blood cell distribution width (RDW), platelet distribution width (PDW), and C-reactive protein (CRP). Addi-
tionally, the neutrophil to lymphocyte ratio (NLR) was calculated.

Statistical analysis
Statistical analysis was performed using SPSS (version 25.0), STATA (version 17) and R language (version 4.2.3). 
Continuous variables were described using means and standard deviations (SD), while categorical variables were 
described using frequencies and percentages. The training set was utilized for model development, while the 
internal validation set, and external validation set was used for testing the model.

The least absolute shrinkage and selection operator (LASSO) method was used to select the predictors of FS. 
Variables with non-zero coefficients were selected in the LASSO regression model. Multivariate logistic regres-
sion model was used to predict FS. The coefficients obtained from the multivariate logistic regression were used 
to create a nomogram that predicts the probability of FS.

The receiver operating characteristic curve (ROC) was utilized to evaluate the predictive performance. The 
AUC was calculated for three sets to assess the model’s discriminatory capacity. The discriminatory capac-
ity was categorized as poor (AUC: 0.6–0.69), adequate (AUC: 0.7–0.79), good (AUC: 0.8–0.89), or excellent 
(AUC: 0.9–1.0)17. The validation of the nomogram involved assessing its discrimination (C-statistic) and cali-
bration (calibration plot). Generally, a C-statistic value greater than 0.75 was considered indicative of relatively 
good discrimination.

Finally, we measured the applicability of the nomogram to clinical practice through decision curve analysis 
(DCA) and clinical impact curve (CIC). A significance level of p < 0.05 was considered statistically significant 
in all analyses.

The reporting of this study followed the guidelines of Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRIPOD)18.

Results
Analysis of clinical profiles and laboratory variables in the training set
Within the training set, patients were divided into two groups: 152 (7.3%) in the FS group, with a mean age of 
28 ± 15 months, and 1301 (62.7%) in the control group, with a mean age of 38 ± 16 months. Table 1 presents 
a comparison of variables between the FS group and the control group in the training set. In comparison to 
the control group, the FS group exhibited a higher proportion of males (p < 0.001). Furthermore, the FS group 
demonstrated significantly higher levels of ANC, AMC, RDW, and NLR compared to the control group (all 
p < 0.05). Conversely, the FS group had significantly lower levels of ALC, MCV, Hb, MCH, MCHC, PLT, and 
CRP compared to the control group (all p < 0.05). No significant differences in other laboratory variables were 
observed between the two groups (all p > 0.05).

Selection of predictors using the LASSO logistic regression model
Since we have many covariates, we used LASSO regression for variable selection to simplify the model. Optimal 
parameter (lambda) selection in the LASSO model used fivefold cross-validation via minimum criteria, optimal 
lambda (λ = 0.0032). Do LASSO regression based on this lambda. The optimal lambda resulted in 13 variables 
with non-zero coefficients. These variables were Age, Gender, ANC, ALC, AMC, MCV, Hb, MCH, PLT, RDW, 
PDW, CRP, NLR (Fig. 2).
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Logistic regression and nomogram
The 13 variables selected through LASSO regression entered the logistic regression model. The expression was: 
logit (p) = 3.707 − 0.060*Age – 0.299*Gender + 0.095*ANC – 0.404*ALC + 0.633*AMC – 0.029*MCV – 0.022*Hb 
−0.092*MCH – 0.006*PLT + 0.091*RDW + 0.064*PDW – 0.052*CRP + 0.159*NLR. Among these variables, ANC, 
AMC, RDW, and NLR demonstrated significant positive effects on FS, while age, ALC, Hb, MCH, PLT, and CRP 
exhibited negative effects on FS (p < 0.05). The effects of gender, MCV, and PDW were not significant (p > 0.05). 
Based on the coefficients obtained from the logistic regression model, which identified risk factors for FS, a novel 
nomogram was developed to predict the risk of FS (Fig. 3). In the nomogram, "Points" correspond to the risk 
value of a single variable, which was then summed up to calculate the "Total Points". The "FS Risk" was deter-
mined based on the "Total Points". For instance, a boy with 55 months (points 20), ANC of 10 ×  109/L (points 
15), ALC of 5 ×  109/L (points 50), AMC of 2 ×  109/L (points 20), MCV of 70 fL (points 20), Hb of 100 g/L (points 
30), MCH of 30 pg (points 10), PLT of 200 ×  109/L (points 30), RDW of 40 fl (points 50), CRP of 50 mg/L (points 
60), and NLR of 2 (points 5), would have a total of 315 points, corresponding to a risk of FS of less than 1%.

Predictive model validation
The ROC curves of training set, internal validation set, and external validation set were presented in Fig. 4.A. In 
the training set, the AUC was 0.884 (95% CI 0.861 to 0.908, p < 0.001), with a sensitivity of 0.908 and a specificity 
of 0.725. In the internal validation set, the AUC was 0.883 (95% CI 0.844 to 0.922, p < 0.001), with a sensitivity 

Figure 1.  Flow diagram of participants selection.
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of 0.862 and a specificity of 0.783. In the external validation set, the AUC was 0.858 (95% CI 0.820 to 0.896, 
p < 0.001), with a sensitivity of 0.829 and a specificity of 0.774. The Sensitivity, Specificity, PPV, NPV, LR+ and 
LR− at four suggested thresholds (100%, 95%, 90% and 85%) were summarized in Table 2.

Calibration measurements was performed with C-statistic and calibration plot. In the training set (Fig. 4B), 
C-statistic was 0.884 (95% CI 0.861 to 0.908); calibration intercept (calibration-in-the-large) was 0.000 (95% 
CI −0.197 to 0.197); calibration slope was 1.000 (95% CI 0.852 to 1.148). In the internal validation set (Fig. 4C), 
C-statistic was 0.883 (95% CI 0.844 to 0.922); calibration intercept was 0.000 (95% CI −0.306 to 0.306); calibra-
tion slope was 1.000 (95% CI 0.779 to 1.221). In the external validation set (Fig. 4D), C-statistic was 0.858 (95% 
CI 0.820 to 0.896); calibration intercept was 0.000 (95% CI −0.261 to 0.261); calibration slope was 1.000 (95% CI 

Table 1.  Comparison of variables in FS group and control group in the training set.

Variables FS group (n = 152) Control group (n = 1301) P values

Age, months, mean (SD) 28 (15) 38 (16)  < 0.001

Gender (female), n (%) 54 (35.5) 686(52.7)  < 0.001

ANC, ×  109/L, mean (SD) 12.06 (4.18) 8.34 (4.37)  < 0.001

ALC, ×  109/L, mean (SD) 1.83 (0.97) 2.59 (1.36)  < 0.001

AMC, ×  109/L, mean (SD) 1.24 (0.51) 1.04 (0.46)  < 0.001

AEC, ×  109/L, mean (SD) 0.31 (1.22) 0.38 (1.38) 0.558

ABC, ×  109/L, mean (SD) 0.02 (0.02) 0.02 (0.02) 0.553

RBC, ×  1012/L, mean (SD) 4.54 (0.36) 4.52 (0.50) 0.626

Hct, %, mean (SD) 35.47 (2.57) 35.82 (4.00) 0.147

MCV, fL, mean (SD) 76.91 (5.27) 78.97 (7.73) 0.001

Hb, g/L, mean (SD) 121.86 (9.55) 124.54 (13.63) 0.002

MCH, pg, mean (SD) 26.86 (1.62) 27.59 (2.68)  < 0.001

MCHC, g/L, mean (SD) 343.76 (12.543) 346.83 (31.75) 0.023

PLT, ×  109/L, mean (SD) 220.06 (53.00) 229.75 (56.44) 0.044

PCT, %, mean (SD) 0.22 (0.05) 0.22 (0.06) 0.438

MPV, fl, mean (SD)) 9.82 (0.79) 9.79 (1.19) 0.711

RDW, fl, mean (SD) 36.09 (2.61) 35.23 (4.76) 0.001

PDW, fl, mean (SD) 10.84 (1.71) 10.72 (1.94) 0.432

CRP, mg/L, mean (SD) 8.29 (6.17) 13.35 (15.21)  < 0.001

NLR, mean (SD) 8.47 (5.15) 4.36 (3.37)  < 0.001

Figure 2.  Selection of predictors using the LASSO logistic regression model. (A) Optimal parameter (lambda) 
selection in the LASSO model used fivefold cross-validation via minimum criteria. The mean-squared error 
curve was plotted versus lambda. Dotted vertical lines were drawn at the optimal values by using the minimum 
criteria and the 1 SE of the minimum criteria (the 1-SE criteria). (B) LASSO coefficient profiles of the 20 
features. LASSO least absolute shrinkage and selection operator, SE standard error.
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0.791 to 1.209). The predictive model, the internal validation set, and the external validation set showed a very 
good degree of fit from the calibration curves.

Decision curve analysis and clinical impact curve
DCA is an advanced method used to analyze the net clinical benefits of predictive models. In this study, we evalu-
ated the clinical applicability of established FS nomograms through DCA (Fig. 5A). The results showed that the 
most favorable threshold probabilities for predicting FS in the training set with the nomogram were 0.1–0.4. As 
demonstrated by the favorable threshold probability, it indicated that the nomogram had a satisfactory clinical 
benefit and can assist clinicians to predict FS accurately. Figure 5B showed the CIC of the predict model and 
indicated that as the predicted probability increases, the population predicted by the model to have a high risk 
becomes increasingly consistent with the population of individuals who actually experience the outcome event.

Discussion
Predictive models are currently receiving increasing attention in various clinical fields, including malignant 
tumors, sepsis, and Kawasaki disease, with a growing number of publications in these  areas19–22. However, exist-
ing predictive models for FS demonstrate limited predictive  ability12–15. Consequently, our study aims to explore 
the predictive value of CBCs in FS and construct a highly effective predictive model based on these indica-
tors. In this retrospective analysis, a multivariable logistic regression model was constructed to predict FS. The 
model’s results were visually presented and interpreted using a nomogram, and the predictive performance was 
assessed using ROC and DCA. Key findings of the study were as follows: (1) The multivariable logistic regres-
sion analysis identified four variables, ANC, AMC, RDW, and NLR, that positively influenced the likelihood of 
FS. Conversely, six variables including age, ALC, Hb, MCH, PLT, and CRP had a negative impact on FS. (2) The 
nomogram results highlighted the significant contributions of the CRP, ALC and RDW. C-statistic, a measure of 
discrimination and calibration, was calculated to be 0.884, indicating good predictive accuracy. (3) In the train-
ing set, the AUC was 0.884 ((95% CI 0.861 to 0.908, p < 0.001), sensitivity and specificity were 0.908 and 0.725, 
respectively. In the internal validation set, the AUC was 0.883 (95% CI 0.844 to 0.922, p < 0.001), sensitivity and 
specificity were 0.862 and 0.783, respectively. In the external validation set, the AUC was 0.858 (95% CI 0.820 
to 0.896, p < 0.001), sensitivity and specificity were 0.829 and 0.774, respectively. These findings suggested that 
the developed predictive model exhibits favorable predictive value.

Figure 3.  FS risk assessment tool by nomogram. "Points" correspond to the risk value of a single variable; "Total 
Points" is the sum of the risk values of all variables; “Risk” is determined by “Total points”.
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Figure 4.  (A) ROC analysis. AUC = 0.884 (95% CI 0.861 to 0.908, p < 0.001) in training set; AUC = 0.883 (95% 
CI 0.844 to 0.922, p < 0.001) in internal validation set; AUC = 0.858 (95% CI 0.820 to 0.896, p < 0.001) in external 
validation set. Calibration curves of the nomogram to predict the probability of FS in training set (B), internal 
validation set (C), and external validation set (D). The “Ideal” represents the ideal reference line, the “Apparent” 
represents the model calibration curve, and the “Bias-corrected” represents the 1000 Bootstrap results.

Table 2.  Diagnostic performance of the predictive model in the validation set. The data are value (95% CI). 
Cut-off scores are generated from the ROC analysis of the training set. PPV positive predictive value, NPV 
negative predictive value, LR+ positive likelihood ratio, LR− negative likelihood ratio.

Dataset
Cut-off score (target 
sensitivity) Sensitivity Specificity PPV NPV LR + LR-

Internal valida-
tion set

 > 0.004 (100%) 1.000 (1.000–1.000) 0.115 (0.090–0.142) 0.116 (0.113–0.119) 1.000 (1.000–1.000) 1.130 (1.098–1.165) 0.000 (0.000–0.000)

 > 0.05 (95%) 0.923 (0.846–0.985) 0.634 (0.595–0.674) 0.227 (0.205–0.251) 0.986 (0.973–0.997) 2.525 (2.431–2.594) 0.121 (0.026–0.228)

 > 0.08 (90%) 0.877 (0.800–0.954) 0.728 (0.690–0.765) 0.273 (0.242–0.307) 0.981 (0.968–0.993) 3.219 (3.077–3.342) 0.169 (0.067–0.281)

 > 0.10 (85%) 0.862 (0.769–0.938) 0.776 (0.742–0.810) 0.309 (0.272–0.350) 0.980 (0.967–0.991) 3.846 (3.611–4.049) 0.178 (0.083–0.285)

External valida-
tion set

 > 0.004 (100%) 1.000 (1.000–1.000) 0.088 (0.068–0.109) 0.114 (0.112–0.117) 1.000 (1.000–1.000) 1.096 (1.072–1.123) 0.000 (0.000–0.000)

 > 0.05 (95%) 0.939 (0.878–0.988) 0.555 (0.517–0.592) 0.199 (0.184–0.215) 0.987 (0.975–0.997) 2.108 (2.046–2.152) 0.110 (0.024–0.206)

 > 0.08 (90%) 0.854 (0.780–0.927) 0.691 (0.657–0.726) 0.246 (0.220–0.273) 0.976 (0.963–0.988) 2.763 (2.699–2.844) 0.212 (0.111–0.319)

 > 0.10 (85%) 0.829 (0.744–0.902) 0.763 (0.731–0.795) 0.292 (0.259–0.329) 0.974 (0.962–0.986) 3.498 (3.359–3.621) 0.224 (0.133–0.322)
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Our study revealed that ANC, AMC, RDW, and NLR had a positive influence on FS, aligning with the find-
ings of Liu et al., who also observed significantly elevated levels of ANC and NLR in the FS group compared to 
the control  group15. Similarly, other studies such as Aziz et al. and Sharawat et al. demonstrated higher RDW 
levels in the FS group and lower Hb and MCH levels compared to the non-seizure  group23,24. However, it’s worth 
noting that Liu et al. did not find a statistically significant difference in AMC levels between the FS and control 
 groups15, which diverges from our study. This discrepancy may be attributed to the use of univariate analysis 
in their study, whereas our study employed multivariable logistic regression analysis for a more comprehensive 
assessment. Furthermore, our study identified age, ALC, Hb, MCH, PLT, and CRP as negative influencers of FS. 
Previous studies have shown that FS were most common in children between the ages of 6 months and 3 years, 
with a peak incidence at around 18  months3. Liu et al. observed significantly reduced levels of ALC, PLT, and 
CRP in the FS group compared to the control  group15. Similarly, Gontko-Romanowska et al. found significantly 
lower ALC, PLT, and CRP levels in the FS group compared to the control  group25. In summary, our study’s find-
ings regarding the impact of these variables on FS were in line with previous research.

It should be noted that CRP, ALC and RDW were the three indicators that showed the highest values in the 
nomogram, indicating their significant contributions to the predictive model. This highlights the importance of 
CRP and RDW in influencing FS. In a previous study conducted by Liu et al.15, the AUC value of NLR in pre-
dicting FS was 0.768, suggesting its predictive value was sufficient. However, in our study, when considering the 
nomogram, the contribution of NLR was relatively lower compared to age, CRP, RDW, and ALC. We speculate 
that this could be due to the inclusion of ANC and ALC in our predictive model, which partly replaced the 
contribution of NLR.

For the training set, the nomogram results showed a C-statistic of 0.884, indicating good predictive value. 
Additionally, the ROC analysis of the internal validation set yielded an AUC of 0.883 (95% CI 0.844 to 0.922, 
p < 0.001), further confirming the predictive capability of the model. These results suggest that the predictive 
model developed in this study is highly accurate, approaching an excellent level of prediction. External validation 
was also performed, and the ROC analysis of the external validation set showed that the AUC was 0.858 (95% CI 
0.820 to 0.896, p < 0.001). This external validation further supports the good predictive value of the multivari-
ate logistic regression model established in our study. Moreover, the minimal differences in AUC values among 
the training set, internal validation set, and external validation set indicate that high accuracy and consistent 
performance of our predictive model in predicting FS. Notably, the sensitivity in the training set reached 0.908, 
suggesting a high probability of accurately identifying individuals with FS among fever patients using this model. 
This highlights the significant clinical utility of the model.

On one hand, our study holds academic value as the AUC values achieved 0.884, 0.883 and 0.858 in the 
training set, internal validation set and external validation sets respectively, indicating the strong predictive 
performance of the regression model. This contributes to a deeper understanding of FS and enables clinicians 
to identify patients at risk of developing FS within the population, advancing FS prediction research. The high 
consistency in the three datasets suggests the generalizability of the predictive model, making it suitable for 
practical extension and application in clinical practice. On the other hand, in terms of practical significance 
and clinical value, our study exhibited remarkable sensitivity, indicating that the model effectively distinguishes 
patients who are likely to progress to FS. This highlights its potential clinical utility. Additionally, the nomogram, 
which visually represents complex regression equations, is location-independent and can be easily understood 

Figure 5.  (A) Decision curve analysis (DCA) of the predictive model for FS. X-axis and Y-axis represent 
threshold probability and net benefit. The most favorable threshold probabilities for predicting FS are 0.1–0.4. 
(B) Clinical impact curve of the predictive model for FS. The red line represents the number of people judged as 
high risk by the model at different probability thresholds; The blue line represents the number of true positives 
judged as high risk by the model at different probability thresholds. The cost benefit ratio represents the 
proportion of cost and benefit at different probability thresholds. The Y-axis is measured in units of 1000 people.
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and utilized by healthcare professionals at all levels, as well as the public without medical backgrounds, with 
simple training. It enables personalized risk prediction and has gained increasing attention and utilization in 
medical  research20–22. Furthermore, the demographic variables (age, gender) and blood indicators used in this 
study are readily accessible in hospitals of all levels, do not require advanced medical equipment, have high 
acceptance, and have low economic burden. This makes the regression model highly applicable in clinical set-
tings, emphasizing its clinical value.

One of the limitations of our study was its single-center design, which lacks validation in diverse populations. 
It remains unclear whether our results can be generalized to different regions and races. To improve the accuracy 
and representativeness of the predictive model, multicenter studies with larger sample sizes are needed. While 
the validation sets’ AUC values in this study were high, the scarcity of studies on FS predictive models calls for 
further research to validate our model. Moreover, the specificity of the constructed model in this study was not 
sufficiently high, which may limit its ability to identify febrile children without seizures. Strengthening the predic-
tive ability and practical clinical application value of the model by achieving higher specificity and sensitivity is 
an avenue for future research. Another aspect for improvement in this study could be the inclusion of additional 
demographic variables and laboratory indicators. However, it should be noted that in most cases, the additional 
laboratory indicators may lead to unnecessary medical interventions, causing discomfort for children and finan-
cial burdens for families. Additionally, adding more variables may significantly increase the complexity of the 
model, hindering its widespread clinical application. In conclusion, further research is warranted to enhance the 
prediction of FS in children, with future advancements in testing techniques and algorithms.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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