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Polygenic risk scores (PRSs) have been studied for predicting human diseases, and various methods 
for PRS calculation have been developed. Most PRS studies to date have focused on European 
ancestry, and the performance of PRS has not been sufficiently assessed in East Asia. Herein, we 
evaluated the predictive performance of PRSs for East Asian populations under various conditions. 
Simulation studies using data from the Korean cohort, Health Examinees (HEXA), demonstrated 
that SBayesRC and PRS-CS outperformed other PRS methods (lassosum, LDpred-funct, and PRSice) 
in high fixed heritability (0.3 and 0.7). In addition, we generated PRSs using real-world data from 
HEXA for ten diseases: asthma, breast cancer, cataract, coronary artery disease, gastric cancer, 
glaucoma, hyperthyroidism, hypothyroidism, osteoporosis, and type 2 diabetes (T2D). We utilized 
the five previous PRS methods and genome-wide association study (GWAS) data from two biobank-
scale datasets [European (UK Biobank) and East Asian (BioBank Japan) ancestry]. Additionally, we 
employed PRS-CSx, a PRS method that combines GWAS data from both ancestries, to generate a 
total of 110 PRS for ten diseases. Similar to the simulation results, SBayesRC showed better predictive 
performance for disease risk than the other methods. Furthermore, the East Asian GWAS data 
outperformed those from European ancestry for breast cancer, cataract, gastric cancer, and T2D, 
but neither of the two GWAS ancestries showed a significant advantage on PRS performance for the 
remaining six diseases. Based on simulation data and real data studies, it is expected that SBayesRC 
will offer superior performance for East Asian populations, and PRS generated using GWAS from non-
East Asian may also yield good results.

Genome-wide association studies (GWAS) have provided information on a large number of genetic variants that 
contribute to the risk of complex diseases. The genetic susceptibility of individuals to disease can be estimated by 
calculating the polygenic risk score (PRS) using the associated genetic variants. There has been considerable inter-
est in PRS and the field is growing rapidly, with more than 2700 PRS algorithms presented in the open resource 
catalog1. In addition, evidence for the clinical utility of PRS in diseases such as coronary artery disease (CAD)2, 
breast cancer3, and diabetes4 is currently increasing5, and the possibility of applying PRS for early detection, risk 
stratification, and personalized treatment of complex diseases has been suggested6,7.

PRSs are calculated from the number of alleles of genetic variants, typically weighted by the effect of the vari-
ants, estimated from GWAS data. In recent years, various methods for calculating Polygenic Risk Scores (PRS) 
have been developed. These methods include PRSice8, which employs linkage disequilibrium (LD) clumping and 
P-value thresholding (P + T), LDpred9, SBayesR10, and PRS-CS11, which utilize Bayesian regression frameworks; 
and LDpred-funct12 and SBayesRC13, which incorporate additional functional annotations. These methods differ 
in two key criteria: which genetic variants are included in the study, and how to apply weights for genetic variants. 
Frequently, comparisons between these methods are conducted using simulated data and real-world examples14.

Choosing an appropriate GWAS is one of the most important considerations to optimize PRS performance15. 
When selecting a GWAS, the ancestry of the study population is a key factor, since the transferability of PRSs 
across populations is poor owing to differences in allele frequencies and LD patterns of genetic variants16,17. 
Although the number of GWAS has been increasing in non-European ancestries18, most are still performed in 
European ancestry19. This imbalance in GWAS results has led to twice as many PRS studies for European than 
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non-European ancestries17. Moreover, the performance of PRS when applying data from GWAS conducted in 
European ancestry to populations with non-European is unclear.

To explore the performance of PRS for those of non-European ancestry, we tested PRSs under various con-
ditions in a South Korean cohort, Health Examinees (HEXA) of the Korean Genome and Epidemiology Study 
(KoGES)20. We employed five PRS methods based on single GWAS data: lassosum21, LDpred-funct, PRSice, 
PRS-CS, and SBayesRC. The predictive performance of the five PRS methods was assessed using simulated data 
representing different genetic architectures. In addition, we generated PRSs for ten diseases: asthma, breast can-
cer, CAD, cataract, gastric cancer, glaucoma, hyperthyroidism, hypothyroidism, osteoporosis, and type 2 diabetes 
(T2D), using the five PRS methods, and PRS-CSx, which allows for the integration of GWAS data from multiple 
populations. Biobank-scale GWAS summary statistics from European and East Asian cohorts, UK Biobank 
(UKB) and BioBank Japan (BBJ)22,23 were used, and each PRS method and GWAS population were compared 
using two predictive performance metrics. Our results can provide guidance in selecting an appropriate PRS 
method and its corresponding GWAS for a specific population of interest.

Results
For the analysis, we used data from HEXA, which consists of over the 40-year-old South Korean adults24. Table 1 
presents the descriptive characteristics of the participants for the 10 diseases: asthma, breast cancer, CAD, cata-
ract, gastric cancer, glaucoma, hyperthyroidism, hypothyroidism, osteoporosis, and T2D. For each disease group, 
more than 300 cases and 30,000 controls were included, and the average age of disease cases was higher than 
that of the controls (P < 0.05, Student’s t-test). For asthma, hyperthyroidism, hypothyroidism, and osteoporosis, 
there was a significantly higher proportion of women in the disease cases and these diseases are known to affect 
women more frequently25–27. For T2D, CAD, and gastric cancer, the incidence in men was higher, which is in 
accordance with previous research28–30. In the disease groups for asthma, CAD, and T2D, for which body mass 
index (BMI) is a risk factor31–33, the average BMI was higher than that in the control groups. The SNP-heritability 
of the diseases in HEXA was varies from 0.08 to 0.48 (Table S1).

Simulations for evaluating PRS methods in East Asian
We examined the predictive performance of five PRS methods, lassosum, LDpred-funct, PRSice, PRS-CS, and 
SBayesRC, that utilize single GWAS summary statistics across a range of simulated genetic architectures. We 
used individual-level genotype inputs from HEXA and applied training and testing sets (Methods). The predic-
tion accuracy for all methods was assessed by calculating Nagelkerke’s R2 between the observed and predicted 
traits in an independent testing set.

Figure 1 shows the prediction performance of five PRS methods. As expected, the prediction performance 
increased in all cases as the heritability increased. In fixed heritability 0.1 (Fig. 1A), the prediction accuracy 
remained relatively stable as the number of causal variants increased, and there was no notable variation in the 
performance across the different methods. For the higher fixed heritability (0.3 and 0.7), the overall prediction 
performance generally decreased as the number of causal variants increased (Fig. 1B,C). Furthermore, SBayesRC 
and PRS-CS outperformed the other methods, and this difference became more pronounced as the heritability 
increased from 0.3 to 0.7. When the proportion of causal variants was 0.001, SBayesRC demonstrated better 
performance than PRS-CS. In contrast, lassosum displayed comparatively lower performance throughout the 
simulation analysis. LDpred-funct exhibited good performance regardless of the heritability when proportion 
of the causal variants was 0.01.

Performance of PRS in an East Asian population
We calculated PRSs for ten diseases using GWAS summary statistics obtained from UKB for the European 
population and BBJ for the East Asian population. Five PRS methods, including lassosum, LDpred-funct, PRSice, 
PRS-CS, and SBayesRC, were implemented using single GWAS summary statistics. Furthermore, the PRS-CSx 
was employed to integrate GWAS summary statistics from UKB and BBJ. A total of 110 PRSs, including 11 PRSs 
for each disease, were generated. The association between each PRS method and the target diseases through 
logistic regression is summarized in Table S2.

To quantify and compare the predictive performance of PRS for each disease, we considered evaluation 
metrics such as R2 and area under the curve (AUC) (Table S3). In the simulated case where only chromosome 
1 was considered, we observed that SBayesRC and PRS-CS exhibited the highest prediction accuracy across 
various genetic architectures. Similarly, SBayesRC performed well for most cases in terms of R2 (Fig. 2). When 
using the summary statistics from BBJ, SBayesRC showed better performance compared to other PRS meth-
ods in diseases excluding gastric cancer and hypothyroidism. Additionally, when utilizing the UKB summary 
statistics, SBayesRC exhibited superior performance in diseases excluding asthma, CAD, cataracts, and gastric 
cancer. Actually, none of the PRSs utilizing the UKB summary statistics showed significant associations (apply 
Bonferroni correction < 0.004545) with cataracts and gastric cancer (Table S2). The other four methods, las-
sosum, LDpred-funct, PRSice, and PRS-CS, did not demonstrate notable performance. PRS-CSx, an extension 
method of PRS-CS, showed improved performance compared to PRS-CS using UKB and BBJ in breast cancer, 
cataract, gastric cancer, glaucoma, hyperthyroidism, and T2D. For the remaining diseases, despite utilizing the 
summary statistics from both UKB and BBJ, PRS-CSx did not exhibit better performance compared to PRS-CS 
using a single set of summary statistics.

AUC, which estimate the probability that the predicted risk of a randomly selected case is higher than the 
predicted risk of a randomly selected control, also demonstrated a similar pattern to R2 (Fig. 3). In diseases 
other than gastric cancer and hypothyroidism, the use of summary statistics from the BBJ dataset revealed 
that SBayesRC exhibited higher AUC compared to other PRS methods. In the case of utilizing UKB summary 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19195  | https://doi.org/10.1038/s41598-023-45859-w

www.nature.com/scientificreports/

Table 1.   Basic characteristics of Health Examinees participants. All data are presented as mean ± standard 
deviation or numbers (%). BMI body mass index, CAD coronary artery disease, T2D type 2 diabetes.

Case Control

Asthma

 N 959 56,702

 Age, years 55.4 (8.4) 53.8 (8)

 Women 682 (71.1%) 37,064 (65.4%)

 BMI 24.3 (3.2) 23.9 (2.9)

Breast cancer

 N 351 30,752

 Age, years 54 (7.1) 52.9 (7.7)

 Women 351 (100%) 30,752 (100%)

 BMI 23.5 (2.8) 23.6 (2.9)

CAD

 N 1643 56,022

 Age, years 59.9 (6.8) 53.6 (8)

 Women 783 (47.7) 36,965 (66%)

 BMI 24.9 (2.9) 23.9 (2.9)

Cataract

 N 2068 56,544

 Age, years 61.8 (6.3) 53.5 (7.9)

 Women 1222 (59.1%) 37,128 (65.7%)

 BMI 24.3 (2.8) 23.9 (2.9)

Gastric cancer

 N 302 48,150

 Age, years 58.2 (7.9) 53.6 (8)

 Women 137 (45.4%) 31,233 (64.9%)

 BMI 22.1 (3.1) 23.9 (2.9)

Glaucoma

 N 374 47,028

 Age, years 59.6 (7.5) 53.7 (8)

 Women 204 (54.5%) 31,125 (66.2%)

 BMI 23.9 (2.8) 23.9 (2.9)

Hyperthyroidism

 N 836 38,151

 Age, years 54.5 (7.7) 53.7 (8.1)

 Women 725 (86.7%) 24,748 (64.9%)

 BMI 23.4 (2.8) 23.9 (2.9)

Hypothyroidism

 N 860 38,151

 Age, years 54.2 (7.4) 53.7 (8.1)

 Women 800 (93%) 24,748 (64.9%)

 BMI 23.6 (3) 23.9 (2.9)

Osteoporosis

 N 3010 54,641

 Age, years 59.6 (6.4) 53.5 (8)

 Women 2878 (95.6%) 34,863 (63.8%)

 BMI 23.5 (2.8) 23.9 (2.9)

T2D

 N 4886 51,340

 Age, years 57.9 (7.4) 53.4 (8)

 Women 2424 (49.6%) 34,416 (67%)

 BMI 25 (3.1) 23.8 (2.8)
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statistics, SBayesRC demonstrated superior AUC performance in diseases excluding asthma, CAD, cataracts, and 
gastric cancer as well. PRS-CSx, utilizing both UKB and BBJ summary statistics, demonstrated higher AUC value 
compared to other PRS methods in cataracts. Furthermore, it showed improved AUC performance compared 
to the conventional PRS-CS method in diseases excluding asthma, CAD, hypothyroidism, and osteoporosis.

Discussion
To date, the utility and performance of PRS methods for disease risk prediction have been predominantly inves-
tigated in populations with European ancestry. In addition, the transferability of the European PRS to East Asian 
populations has remained unclear. Given the deficiency of PRS studies for East Asian population, we explored 
not only which PRS calculation methods proved optimal for specific diseases in an East Asian population, but 
also whether the PRS generated using GWAS data from European ancestry is effective for risk prediction in East 
Asian. In the current study, we assessed PRSs for ten diseases in Korean population. Through simulation studies 
on various genetic architectures, we investigated the performance of five PRS methods (lassosum, LDpred-funct, 
PRSice, PRS-CS, and SBayesRC) that using a single set of GWAS summary statistics in Koreans. Afterwards, 
we applied the five PRS methods to the ten diseases using GWAS summary statistics from both East Asian and 
European ancestries, respectively. Furthermore, we applied PRS-CSx as an algorithm utilizing GWAS summary 
statistics from multiple populations, resulting in a total of 110 PRS being generated. The performance of each 
PRS was compared using metrics such as R2 and AUC, based on the results from the simulation.

Among the various PRS methods, SBayesRC showed the best performance in simulation data with high 
fixed heritability of 0.3 and 0.7 (Fig. 1). Consistent with the simulation results, SBayesRC demonstrated the best 
performance in each GWAS summary data of BBJ and UKB, for diseases other than the three diseases with the 
lowest heritability (asthma, CAD, and cataract) and gastric cancer (Figs. 2 and 3, Table S1). Furthermore, when 
applying BBJ summary statistics from the same East Asian ancestry with HEXA-KoGES population, SBayesRC 

Figure 1.   Predictive performance of five polygenic prediction methods in simulation studies. East Asian 
sample of the 1000 Genomes Project phase 3 was applied as an external linkage disequilibrium (LD) reference 
panel. Nagelkerke’s R2 was used to quantify the prediction accuracy between the predicted and observed traits 
in a separate test dataset. Each panel correspond to three heritability (0.1 in A, 0.3 in B, and 0.7 in C) and 
was simulated in three genetic architectures (0.001, 0.01, and 0.1 Polygenicity). In each box, the central mark 
represents the mean across 10 simulations, while the edges of the box indicate the 25th and 75th percentiles of 
the data distribution, with outliers plotted individually.
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exhibited the best performance even for the three diseases with the lowest heritability and showed the second-
highest performance in gastric cancer. Based on the results of both simulation and real data analysis, it is expected 
that utilizing SBayesRC for East Asian PRS studies with GWAS summary statistics from same ancestry would 
be yield good performance. Additionally, it is anticipated that SBayesRC would exhibit notable performance for 
East Asian PRS studies using GWAS summary statistics from other ancestries, including European ancestry.

The transferability of PRSs across populations is hindered by disparities in allele frequencies and LD patterns 
of genetic variants17. In breast cancer, cataract, gastric cancer, and T2D, the BBJ GWAS summary statistics from 
the same ancestry with HEXA showed better predictive performance compared to the UKB summary statis-
tics (Figs. 2 and 3). For the remaining diseases, the performance of BBJ and UKB was comparable, with some 
instances showing that UKB had better performance. While complex genetic mechanisms may be involved, 
the difference in statistical power between the BBJ and UKB GWAS summary statistics could be one possible 
reason. Examining the diseases where BBJ showed better performance, it can be attributed to the observed 

Figure 2.   Prediction accuracy estimated as the R2 between polygenic risk scores (PRSs) and diseases. Colors 
of the bar indicate the use of genome-wide association study (GWAS) summary statistic from BioBank Japan 
(red), GWAS summary statistics from UK Biobank (blue), and the integration of both GWAS summary statistics 
(green). Six PRS methods were applied to predict ten diseases, asthma, breast cancer, coronary artery disease 
(CAD), cataract, gastric cancer, glaucoma, hyperthyroidism, hypothyroidism, osteoporosis, and type 2 diabetes 
(T2D). Prediction accuracy was measured by the Nagelkerke’s R2.
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SNP-heritability, which was observed to be approximately 2.8 to 10 times higher in BBJ compared to that of 
UKB (Table S4). In the case of the remaining diseases, the observed SNP-heritability in BBJ was either less than 
twice as high as UKB or higher in UKB. Similar to previous studies34,35, our results highlight an opportunity to 
use large-scale European GWAS data for the construction of PRSs in East Asia.

In our study, we conducted PRS study in an East Asian cohort using not only GWAS summary data from the 
same ancestry but also from European ancestry. The study results may be specific to the Korean, since there is 
limited research on cross-ancestry PRS studies for non-European populations, and Asian populations are known 
to be ethnically and genetically diverse36. Comparing our findings to a study that investigated the transferability 
of PRS from UKB European to UKB East Asian populations37, we observed differences in AUC for most dis-
eases (Fig. S1). In the future, more precise comparisons can be conducted by using the same PRS method and 
accounting for various covariates.

Figure 3.   Receiver operator characteristic curves (AUCs) of polygenic risk scores (PRSs) for ten diseases in 
East Asian individuals. Colors of the bar indicate the use of genome-wide association study (GWAS) summary 
statistic from BioBank Japan (red), GWAS summary statistics from UK Biobank (blue), and the integration of 
both GWAS summary statistics (green). Six PRS methods were applied to predict ten diseases, asthma, breast 
cancer, coronary artery disease (CAD), cataract, gastric cancer, glaucoma, hyperthyroidism, hypothyroidism, 
osteoporosis, and type 2 diabetes (T2D). The values of AUC were calculated as the average of five-fold cross-
validation.
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In summary, we generated PRS for ten diseases in East Asia using GWAS data from European and East 
Asian ancestries. We employed six PRS calculation methods, including five single GWAS data-based methods 
and one multi-GWAS data-based method. We estimated the predictive performance of various PRSs using two 
metrics and showed that a PRS based on GWAS, not only from East Asian but also from European ancestry, 
works well as a predictor of disease risk in East Asia. Furthermore, through simulation analysis and real data 
analysis, we showed that SBayesRC exhibited superior performance in the Korean cohort. While it is evident that 
a grid search, encompassing all known PRS methods and GWAS summary statistics, is the optimal approach to 
identify the most suitable PRS model, our study results can assist researchers in selecting the appropriate PRS 
method and GWAS data. Further exploration of diverse PRS methods, various traits, and a wide range of study 
population is necessary to validate our findings.

Methods
Study populations
The present study was conducted using community-based genomic cohort data from the HEXA of the Korean 
Genome and Epidemiology Study24. The survey for the HEXA study was performed at 38 hospitals and local 
health-screening centers from 2004 to 2013, following standardized procedures. In total, 65,642 urban partici-
pants completed the initial and follow-up surveys. Epidemiological data were provided by the Korea Centers for 
Disease Control and Prevention. For sample quality control, participants with a genotype relative score greater 
than 0.125 or a body mass index outside the criteria of 15–50 were excluded.

Genotype data
The genotype data were produced by the Korea BioBank Array, which is optimized for the Korean population and 
includes 833,535 single nucleotide polymorphisms (SNPs)38. Imputation analysis was conducted with ShapeIT 
v239 and IMPUTE v240 using 1000 Genomes Phase 3 data (1 KG) as a reference panel41. For quality control, SNPs 
with minor allele frequency less than 0.01 or Hardy–Weinberg equilibrium P-values less than 10–6 or missing 
data > 0.05 were excluded. A total of 7,915,509 SNPs remained.

Phenotype definition
For the PRS analysis, we selected the disease based on the following criteria:

1.	 The number of disease cases ≥ 300 in HEXA.
2.	 The SNP-heritability of the disease > 0 in HEXA.
3.	 GWAS summary statistics for the disease are available from both BBJ and UKB.

As a results, ten diseases (asthma, breast cancer, CAD, cataract, gastric cancer, glaucoma, hyperthyroidism, 
hypothyroidism, and osteoporosis, T2D) passed the criteria.

Participants who constituted the T2D case and control groups were identified by their answers to the ques-
tionnaire on T2D diagnostic history and fasting glucose level. Those who replied ‘Yes’ to the questionnaire or 
had a fasting glucose level above 126 mg/dL were classified into the case group, and those who answered ‘No’ to 
the questionnaire and had a fasting glucose level less than 126 mg/dL constituted the control group.

We identified case groups for breast cancer and gastric cancer from participants who responded ’yes’ to the 
questionnaire on cancer diagnosis. Among these participants, those who indicated “breast cancer” in response 
to the question on cancer type were classified as the breast cancer case group, while those who indicated “gastric 
cancer” were classified as the gastric cancer case group. The cancer control group was defined as those who 
answered ‘No’ to the questionnaire on cancer diagnosis.

For the other diseases (asthma, CAD, cataract, glaucoma, hyperthyroidism, hypothyroidism, and osteoporo-
sis), the participants were classified using a diagnostic history questionnaire for each disease. Those who answered 
‘Yes’ were defined as disease cases, and those who answered ‘No’ were defined as controls. The case group for 
all the diseases comprised more than 300 individuals. The characteristics of the samples are listed in Table 1.

PRS calculations
For the PRS calculation, GWAS summary statistics from the UKB and BBJ were selected. We used a total of 
20 summary statistics. GWAS summary statistics were obtained from the NHGRI-EBI GWAS Catalog (www.​
ebi.​ac.​uk/​gwas) and JENGER (jenger.riken.jp/result)23,42. The information of GWAS data is shown in Table S5.

We applied five methods for PRS calculation, lassosum21, LDpred-funct12, PRSice8, PRS-CS11, and SBayesRC13, 
each using a single GWAS summary statistics. lassosum uses the lasso regression to select informative SNPs, 
based on their effect sizes. It allows for tuning of parameters without the need for external validation datasets 
or phenotype data, using a pseudovalidation. We used the ancestry-matched LD reference panel of the 1 KG.

LDpred-funct is a method that leverages trait-specific functional priors. It fits functional priors using a 
baseline-LD model that includes coding, conserved, regulatory, and LD-related annotations. LDpred-funct esti-
mates the posterior mean causal effect sizes of variants by considering both functional priors and LD between 
variants. As an input parameter, SNP-heritability was calculated using LDSC43.

PRSice, is a P + T method that tests PRS at a large number of thresholds and applies the best-fit PRS to the 
study samples. PRS is calculated as the sum of the remaining independent SNPs with a GWAS association P-value 
below a threshold PT. We consider PT (minimum = 5E−08, maximum = 0.5, interval = 5E−05) and other param-
eters (physical distance > 250 kb and r2 < 0.1) with default setting. The PT value that maximizes the prediction 

http://www.ebi.ac.uk/gwas
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accuracy in the validation dataset is selected, and the performance of the optimized PRS was assessed in an 
independent testing dataset.

PRS-CS is Bayesian method that leverages GWAS summary statistics and LD information to estimate the 
effect size of each variant on a trait. It employs a continuous shrinkage prior to SNP effect sizes, which reduces 
the influence of noisy SNPs and improving the accuracy of the PRS. In the analysis, we used default parameter 
settings, along with an LD reference panel based on external European and East Asian samples from the 1 KG, 
considering the ancestry of the GWAS summary statistics.

SBayesRC is a Bayesian method that assumes a multi-normal mixture distribution for SNP effects. It assumes 
that the effects of standardized SNPs follow a mixture of normal distributions with different variances (0, 0.001, 
0.01, 0.1, and 1%), with each SNP explaining genetic variance ranging from zero to 1%. Also, SBayesRC utilizes 
annotation data that can influence the probability of a SNP being considered causal, as well as the magnitude 
of its causal effect size. We utilized the provided genomic annotation data and LD reference of EAS and EUR 
from UKB.

Additionally, we applied PRS-CSx, which an extension of PRS-CS that enables the integration of GWAS 
summary statistics from various populations. PRS-CSx leverages the correlation among genetic effects while 
considering the allele frequency and LD information that are unique to each population. We applied the 1 KG 
LD reference panel in accordance with ancestry.

Simulations
We performed simulation studies using real genetic data on chromosome 1 of 6000 individuals form the HEXA. 
Synthetic phenotypes were generated using GCTA​44 with varying levels of polygenicity (0.001, 0.01, and 0.1), 
heritability (0.1, 0.3, and 0.7), and a default prevalence of 0.1. The sample was divided into a training set and a 
test set at a ratio of 4:1. GWAS was performed on the training set, and PRS was calculated for the test set using 
the five PRS methods. The simulation was repeated 10 times.

Statistical analysis
SNP quality control, sample filtering, and PRS calculation were performed using PLINKv.1.9.045. GWAS analysis 
was performed using SAIGE46. The SNP-heritability was estimated using LDSC43, which utilized pre-calculated 
LD scores, regression weights, and allele frequencies from the 1 KG in a relevant ancestral population. We 
excluded variants in the HLA region (hg19, chr6:26 Mb–34 Mb) for the calculation of heritability. For the 
evaluation of PRS performance, AUC was calculated by applying five-fold cross-validation for each subject of 
the disease47. Student’s t-tests and regression analyses were performed using basic packages of R version 4.05. 
Nagelkerke’s R2 was calculated using R package ‘lrm’. The bar plot and box plot were created using the R package 
‘ggplot2’.

Data availability
UKB and BBJ summary statistics used in this study were downloaded from NHGRI-EBI GWAS Catalog (www.​
ebi.​ac.​uk/​gwas) and JENGER (jenger.riken.jp/result). This paper does not report custom code.
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