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Chaotic signal denoising based 
on energy selection TQWT 
and adaptive SVD
Xinlu Yang  & Wenbo Wang *

Aiming at the problem of denoising chaotic signals with low signal-to-noise ratio and unknown 
dynamic system parameters, a new chaotic signal denoising algorithm is proposed, which combines 
adjustable Q-factor wavelet transform (TQWT) and adaptive singular value decomposition (ASVD). 
This method uses TQWT to decompose the noisy chaotic signal. According to the maximum wavelet 
entropy theory and energy threshold rule, the subband of TQWT is accurately divided into signal 
subband and noise subband. For noise subbands, adaptive SVD is used to denoise them, to achieve 
preliminary denoising. In ASVD, the standard deviation of the singular value subset is used to 
determine the effective reconstruction order to improve the noise suppression effect. To further 
remove noise in the signal subband, TQWT reconstruction is performed on the preliminarily denoised 
signal, and ASVD is used to denoise the reconstructed signal again to obtain the chaotic signal after 
secondary denoising. Chua’s simulated signal and four kinds of underwater radiated noise measured 
by TQWT-ASVD were denoised, and compared with the SVD denoising method, TQWT denoising 
method, complete ensemble empirical mode decomposition with adaptive noise and threshold 
denoising method (CEEMDAN-WT) and modified ensemble empirical mode decomposition combined 
with least squares denoising method (MEEMD-LMS), The experimental results show that the TQWT-
ASVD method can reduce the noise of chaotic signals more effectively. Compared with SVD, TQWT, 
CEEMDAN-WT, MEEMD-LMS, and Chua’s signal denoising method, the signal-to-noise ratio (SNR) 
of this method increased by 23.22%, 26.46%, 18.79%, 16.11% the root mean square error (RMSE) 
decreased by 32.53%,39.48%, 30.96%, 27.94%, and the row entropy (PE) decreased by 40.44%, 
41.96%, 22.78%, 20.59%; After reducing the radiation noise of cargo ships, the PE value of this 
method is reduced by 13.91%, 10.18%, 10.88%, 8.68% respectively, and the FE value is reduced by 
33.66%, 31.42%, 26.98%, 21.32% respectively.

Chaos is a seemingly random and irregular motion that occurs in a deterministic system1, preprocessing the 
observed data is crucial for effectively extracting the required chaotic information. However, when observing 
chaotic data, it is highly susceptible to noise interference, resulting in significant errors in extracting the required 
chaotic information. Therefore, it is necessary to perform denoising preprocessing on observed chaotic data 
without affecting the dynamic characteristics of the signal2,3.

Since the spectrum of chaotic signals often overlaps with the spectrum of noise4, traditional linear low-pass 
filtering cannot effectively denoise chaotic signals. The chaotic signal denoised by low-pass filtering will be a 
severely smooth transition, losing a large amount of detailed information. Therefore, how to effectively denoise 
chaotic signals based on their spectral characteristics is the research focus of chaotic signal-denoising.

In recent years, many chaotic signal-denoising algorithms have been proposed3,5–17. Singular spectrum 
analysis18 and local projection method5,6 are chaotic noise reduction algorithms based on phase space recon-
struction. The chaotic signal and noise after phase space reconstruction have different dynamic characteristics, 
so this method can be used to separate chaotic signal and noise. However, the singular spectrum analysis method 
is difficult to accurately determine the noise boundary point for noise reduction, and the parameter selection 
method of local projection also has some limitations. Therefore, when the noise of a chaotic signal is serious, the 
noise reduction ability of the method based on phase space reconstruction will be seriously reduced. The local 
curve fitting algorithm performs segmented smoothing on noisy signals and uses least squares polynomial fitting 
to achieve signal denoising7. However, due to the highly nonlinear nature of chaos, it is difficult to accurately 
reconstruct signals using local linear approximation methods. The collaborative filtering denoising algorithm 
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[uses the self-similarity of chaotic signals in the time domain to group similar blocks8,9, and the denoising effect 
of reconstructed signals after filtering is obvious. However, the selection of its filtering parameters is not adaptive, 
so the application of this method is still limited.

Threshold denoising methods are noise suppression algorithms based on time–frequency analysis, such as 
wavelet thresholding (WT) denoising3 and empirical mode decomposition (EMD) threshold denoising10,11. 
The main idea of the threshold denoising method is to first decompose the noisy signal in the time–frequency 
domain, and then separate the signal from the noise through threshold processing.

Hu et al. used variational modal decomposition to decompose noisy signals, selected the decomposed noise 
components through correlation coefficients, and then denoised the noise components using wavelet soft thresh-
olding to obtain the denoised signal12. Gu et al. improved the wavelet threshold based on variational mode 
decomposition and calculated the optimal denoising threshold by minimizing Stein unbiased risk estimation, 
achieving good denoising results13. Liu et al. used wavelet packets to decompose chaotic signals and then used 
fuzzy analysis to construct wavelet packets the denoising thresholds to achieve the denoising of chaotic signals14.

Huang et al. utilized EMD to decompose the signal and then constructed an adaptive soft threshold algorithm 
to filter and process the various frequency band components after EMD decomposition15. Chen et al. combined 
the improved IENEMD algorithm with the adaptive threshold (ATD) for signal denoising, where ATD is calcu-
lated based on the Pearson correlation coefficient and semi-soft threshold, which has better adaptability16. Yang 
et al. combined Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Analysis (CEEM-
DAN) with wavelet packet thresholding. They first used the correlation coefficient method to select the noise 
components after CEEMDAN decomposition and then used the wavelet packet thresholding to denoise the 
high-frequency noise components. This method improves the disadvantage of EMD denoising methods that 
may lose useful components17.

However, the denoising performance of the wavelet threshold method is greatly affected by the wavelet basis 
and the number of decomposition layers, which reduces the adaptability of the method. Although the EMD 
threshold denoising method overcomes the problem of selecting basis functions, the lack of a theoretical basis 
makes it very difficult to determine a more suitable threshold. Tunable Q-factor wavelet transform (TQWT) is a 
new type of discrete wavelet transform proposed by Selenick in 201119. TWQT can freely and flexibly construct 
wavelet basis functions by adjusting its quality factor Q and redundancy factor r, adaptive optimal matching of 
wavelet basis functions and decomposition layers can be achieved based on the characteristics of the signal, thus 
overcoming the difficulty of selecting wavelet bases and decomposition layers in traditional wavelet transform 
denoising. TQWT can more effectively remove noise, but due to the overlapping spectrum of chaotic signals and 
noise, a single TQWT method is difficult to completely remove noise from chaotic signals.

Given this, this article proposes a chaotic signal denoising method that combines TQWT with adaptive SVD. 
This method first utilizes TQWT to decompose chaotic signals and determines the noise frequency band based on 
the frequency band energy ratio and relative wavelet entropy. Using ASVD to process the noise frequency band 
to achieve preliminary denoising of chaotic signals, and using the standard deviation of singular value subsets 
in ASVD to determine the effective reconstruction order. Then, the preliminary denoised signal is reconstructed 
using TQWT, and the reconstructed signal is subjected to secondary denoising using ASVD to obtain the final 
denoised chaotic signal. Finally, the effectiveness of the proposed method was verified by simulating chaotic 
signals and measuring chaotic signals.

The main structure of this article is as follows. In Section “The principle of tunable Q-factor wavelet transform 
(TQWT)”, the basic theories of TQWT and SVD are introduced. In Section “TQWT noise frequency band selec-
tion based on energy proportion”, a preliminary denoising method based on TQWT and a secondary denoising 
method based on adaptive SVD are presented. In Section “SVD denoising based on singular value subset order 
determination”, the basic steps of the proposed method are presented. In Section “Experiment and analysis”, 
noise reduction experiments are conducted using Lorenz chaotic signals and measured chaotic signals, and the 
proposed method is compared and analyzed with the other four methods for noise reduction. The conclusion 
will be drawn in Section “Conclusion”.

The principle of tunable Q‑factor wavelet transform (TQWT)
The TQWT method was originally proposed in 2011 as an improved time–frequency analysis method based on 
the oscillation characteristics of wavelet basis. The main adjustable parameters of TQWT are Q-factor, oversam-
pling rate (redundancy) r , and decomposition level J . The Q-factor is defined as

where the Q-factor is obtained by the ratio of the signal center frequency f  to the signal bandwidth B . The larger 
the value of the Q-factor, the higher the vibration attribute of the corresponding wavelet basis function. The 
redundancy coefficient is obtained by the ratio of the total number of wavelet coefficients to the signal length, 
which can be used to explain how much spectral overlap exists between adjacent bandpass filters, usually using 
r = 3. The number of decomposition layers J represents both the number of stages (levels) in TQWT and the 
number of filter banks. TQWT decomposition and reconstruction are composed of J-layer filter banks, totaling 
J + 1 subbands.

By adjusting these three parameters, the scaling factor of the filter bank can be changed α and β . Thus, a 
wavelet basis that fits the frequency characteristics of the signal is obtained, and the relationship between the 
parameters of TQWT is as follows:

(1)Q =
f

B
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TQWT adopts a reversible oversampling filter bank with a real value sampling factor to realize signal decom-
position and reconstruction. Its structure is shown in Fig. 1, where LPS and HPS represent low-pass scaling and 
high-pass scaling, respectively. α and β Represent low-pass scaling and high-pass scaling parameters, respectively.

The TQWT wavelet uses the above two-channel filter banks to iterate the low-pass channels of the signal, 
decomposing the signal into J + 1 narrowband signals. The decomposition process of the three-layer TQWT 
is shown in Fig. 2. To achieve perfect reconstruction, the frequency response Hi(ω) , i = 0, 1 of TQWT should 
meet the following requirements:

Among them, H0(ω)andH1(ω) defined as:

The values of scaling parameters α and β meet 0 < β ≤ 1,0 < α < 1,α + β > 1 . The definition of function 
θ(ω) is:

Considering the bandwidth limitation of the filter, the maximum decomposition level of TQWT is usually 
determined by the following equation:

where N represents the length of the signal.

TQWT noise frequency band selection based on energy proportion
Compared to traditional wavelet analysis methods, the tunable Q-factor wavelet transform can set the value of 
its Q-factor according to the changes in waveform characteristics without relying on wavelet basis functions. 
Assuming that the noisy mixed signal is:

(2)
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Figure 1.   Block diagram of TQWT analysis and synthesis filter bank.

Figure 2.   Three-layer TQWT decomposition process ( J = 3).
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In the above equation, x(k) is the original signal, and n(k) is the superimposed Gaussian white noise signal. 
After setting the Q factor and redundancy factor r of TQWT, the decomposition level J can be obtained through 
Eq. (7). After TQWT decomposition, J + 1 subbands can be obtained.

Frequency band energy ratio of TQWT
TQWT can concentrate the energy of useful signals on a few wavelet coefficients, while white noise is still white 
noise after TQWT decomposition. According to wavelet decomposition theory, the wavelet coefficients of useful 
signals are usually larger than those of noise with scattered energy and smaller amplitude. Therefore, after the 
TQWT decomposition of chaotic signals containing noise, the energy of the noise components is mainly concen-
trated in the high-frequency subbands and distributed evenly, while the energy of chaotic signals is concentrated 
in a few wavelet subbands with larger amplitudes. According to the distribution characteristics of signal and noise 
wavelet coefficients, a suitable subband selection threshold can be selected to truncate the wavelet subband. Zero 
the wavelet subbands below this threshold, preserve the wavelet subbands above this threshold, and then perform 
the inverse transformation on the retained TQWT subband coefficients to obtain the denoised chaotic signal.

However, the setting of the subband selection threshold is very important, which directly affects the denois-
ing effect of TQWT. This article is based on the energy ratio of noise and signal and optimizes the subband 
selection threshold of TQWT through the frequency band energy ratio. Assuming that the subband coefficient 
after TQWT decomposition is wj(k), j = 1, 2, …, J + 1, k = 1, 2, …, N , the energy of the j th subband is defined as:

The total energy of the frequency band is defined as:

Calculate the percentage of each subband energy Ej in the total energy E of the frequency band:

Pj is called the percentage of subband energy. Sort the subband signals according to the percentage of energy 
in the subband, and the sorted result can be assumed to be:

Calculate the cumulative energy ratio of each subband:

Set cumulative energy ratio threshold � , Accumulate the proportion of subband energy according to 
Eq. (13) until it exceeds the threshold of cumulative energy ratio � . When stopping, the effective subband value 
[P̃1, P̃2, . . . , P̃j] during denoising can be determined.

Adaptive determination of cumulative energy ratio threshold
In the process of frequency band selection based on energy ratio in TQWT, the selection of the cumulative 
energy ratio threshold � is crucial for effectively separating signals from noise. If the cumulative energy ratio 
threshold is too small, the frequency band containing valid information will be missed. If the cumulative energy 
ratio threshold is too large, it will still result in a large amount of noise in the reconstructed signal. This article 
aims to adaptively determine the cumulative energy ratio threshold through noise variance and signal energy �.

According to the noise variance estimation formula proposed by Donoho, the noise standard deviation of 
the noisy signal after wavelet decomposition is:

where median{·} represents the median value, W (1) represents the first layer of high-frequency wavelet coefficients 
after wavelet decomposition of the signal, and n represents the length of the signal. According to Eq. (9), the 
energy mean of noisy signals can be expressed as:

The ratio of the variance of noise energy σ 2
n to the mean of signal energy ε2y can approximately represent the 

energy occupied by noise in noisy signals. Therefore, the threshold for the cumulative energy ratio can be set as:

(9)Ej =
∑N

k=1
|wj(k)|2

(10)E =
∑J+1

j=1
Ej

(11)Pj =
Ej

E

(12){[P̃1, P̃2, . . . , P̃J , P̃J+1]), where P̃j > P̃j+1, 1 ≤ j ≤ J

(13)CPj =
∑j

m=1
P̃m

(14)σn =
median(|w1(k)|)

0.6745
, 1 ≤ k ≤ N

(15)ε2y =
1

N

∑N

k=1
y2(k)

(16)� = 1−
σ 2
n

ε2y
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When the cumulative energy ratio of the first j0 subbands satisfies the following equation. It is considered 
that the selected subband already includes all signal subbands, and the remaining subbands [P̃j0+1, . . . , P̃J+1] 
are noise subbands.

The Lorenz system is used to generate a chaotic signal with a length of N = 1024, and white noise with an 
SNR of 70% is added to it. TQWT is used to decompose the signal, Q-factor Q = 2, redundancy factor r = 3, 
determine the number of decomposition layers J = 7, and finally, 8 subbands are obtained, as shown in Fig. 3, 
and the subband energy distribution is shown in Fig. 4. In Fig. 3, the first line shows the Lorenz signal polluted 
by noise, and the second to ninth lines show the TQWT decomposition results ( W (1),W (1), . . . ,W (8) ). It can 
be seen that the vast majority of noise is concentrated in the wavelet coefficients W (1) of the first layer, and W (1) 
is basically composed of noise. From Fig. 4, it can be seen that the subband energy after TQWT decomposition 
varies greatly. The blue dashed line in Fig. 4 represents the energy percentage threshold, and the subbands in 
dashed boxes 1, 2, and 3 are above a certain energy percentage ratio. The specific subbands that contain most of 
the energy are generally considered signal subbands, such as subbands 3, 5, and 8 in Fig. 4. These three subbands 
concentrate the majority of the signal’s energy and can therefore be identified as signal subbands. The energy of 
the 1st, 4th, and 7th subbands is very small and can be considered noise subbands based on their energy ratio.

SVD denoising based on singular value subset order determination
After selecting the signal sub-bands [P̃1, P̃2, . . . , P̃k0 ] and noise sub-bands [P̃k0+1, P̃k0+2, . . . , P̃K ] , the signal sub-
bands [P̃1, P̃2, . . . , P̃k0 ] can be directly used for TQWT inverse transformation to obtain the denoised chaotic 
signal. However, due to the presence of some signal details in the noise subband and a certain amount of noise 
in the signal subband, directly using the signal subband reconstruction to obtain denoised signals will to some 
extent affect the denoising effect of chaotic signals. To further preserve the detailed information of the signal and 
remove noise as much as possible, this paper adopts an improved singular value decomposition (SVD) method 
to perform secondary denoising on the noise and signal subbands.

(17)CPj0 =
∑j0

m=1
P̃m ≥ �
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Figure 3.   Schematic diagram of TQWT decomposition.

Figure 4.   Schematic diagram of subband energy proportion.
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SVD noise reduction principle
Assuming that a noise subband signal selected by TQWT is w = [w1, w2, . . . , wN] , according to the phase space 
reconstruction theory of chaotic signals, the Hankel matrix of w can be constructed as follows:

Among them, N represents the length of the subband signal, N = p+ q− 1 , and p ≥ q . By performing SVD 
decomposition on H , the following equation can be obtained:

where U  and VT are matrices of sizes p× p and q× q , respectively. � is a diagonal matrix of size p× q , with the 
main diagonal element �i ( i = 1, 2, . . . , k ), i.e.:

where, �1, �2, . . . , �k represents the singular value of matrix H , and �1 ≥ �2 ≥ . . . ≥ �k ≥ 0,k = min(p, q).
According to the theory of singular value decomposition and the best approximation theorem of matrices20–24, 

it is known that after the SVD decomposition of noisy signals, the singular values corresponding to the real signal 
are relatively large, mainly reflected by the first r larger singular values. The singular values corresponding to noise 
are often small, mainly reflected by the last k-r singular values. And the singular values representing the signal 
and noise will undergo a sudden change at a certain singular value point. If the singular value mutation point is 
used as the boundary point between the signal and noise, the first r singular values representing the signal are 
retained, and the remaining k–r singular values representing the noise are set to 0. By reconstructing the signal 
based on the SVD inverse transformation, the denoised signal can be obtained. That is to say, after determining 
the first r singular values representing the signal, the Hankel matrix can be rewritten as:

After setting k-r singular values representing noise to 0, the estimation matrix of H can be obtained as follows:

Matrix Ĥ is the best approximation matrix with rank r of H . In matrix Ĥ , noise has been greatly compressed. 
By adding and averaging the anti-diagonal elements of Ĥ , the denoised signal can be obtained20–24. From this, it 
can be seen that the key to the SVD denoising algorithm is how to determine the order r of the effective rank of 
the Hankel matrix and achieve accurate division of the signal space and noise space.

Determination of effective rank order based on singular value adaptive grouping
The essence of SVD decomposition denoising is to group singular values based on their size relationship, that is, 
to find the mutation points of singular values and determine the order of the effective rank of the Hankel matrix. 
At present, methods for determining the effective rank order include the Singular value percentage method21, 
singular spectral analysis22, the relative rate of change method23, truncated SVD24, etc. However, the values of 
existing methods all have a certain degree of subjectivity. To determine the effective rank order more accurately 
and objectively, this paper proposes a method based on singular value adaptive subsets to determine the order 
r of the effective rank. This method can automatically find the optimal boundary point for singular values, and 
the specific steps are as follows:

Step 1. Arrange the singular values in ascending order. Let Ar1 = rk ,Ar2 = rk−1, . . . ,Ark−1 = r2,Ark = r1 , 
and the sorted singular value is:

Step 2. Create a singular value subset, which is composed of singular value 1 to the singular value i , i.e.:

Step 3. Calculate the standard deviation for each subset:

Step 4. Calculate the integer lower bound �i of the standard deviation for each subset σi:

⌊σi⌋ represents the maximum integer that is not greater than σi.

(18)Hp×q =



w1 w2 . . . wq

w2 w3 . . . wq+1

. . . . . . . . . . . .

wp wp+1 . . . wN




(19)H = U�VT

(20)� = diag(�1, �2, . . . , �k)

(21)H = U�VT = U

[
�r 0

0 �k−r

]
VT

(22)Ĥ = U

[
�r 0

0 0

]
VT

(23)[Ar1,Ar2, . . . ,Ark−1,Ark],Ar1 ≤ Ar2 ≤ · · · ≤ Ark−1 ≤ Ark

(24)S1 = [Ar1], S2 = [Ar1,Ar2], . . . Si = [Ar1,Ar2, . . .Ari], . . . Sk = [Ar1,Ar2, . . .Ark]

(25)σi =
√

1

i

∑i

s=1
(Ars − Ari)

2,Ars ∈ Si , i = 1, 2, . . . , k

(26)�(i) = ⌊|σi|
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Step 5. Adaptive search for mutation point positions in singular value subsets. When �(i0) > 0 and 
�(i0 − 1) = 0 appear for the first time, denote i0 as the mutation point of the singular value subset.

Step 6. Updating Singular Values of Hankel Matrices, ri′ =
{
ri , i ≥ i0
0, i < i0

 , Reconstruct using the updated singu-

lar values [ri′]i=1,2,...,k to obtain the denoised signal.

Utilize the Lorenz system to generate a chaotic signal with a length of N=1024 and a noise intensity of 70% 
for singular value decomposition, and arrange the obtained singular values in descending order. Calculate the 
standard deviation of the singular value subset according to Eq. (23)–(26), as shown in Fig. 5. A local magnifica-
tion of Fig. 5 clearly shows that i=438 is the mutation point of the singular value subset. The slope of the singular 
value standard deviation change before the mutation point is relatively small, and the slope of the singular value 
standard deviation change after the mutation point is very large.

Joint TQWT and adaptive SVD noise reduction algorithm process
The chaotic signal contaminated by noise is decomposed by TQWT, and noise and signal subbands are selected 
through the proportion of subband energy. For noise subbands, use the adaptive SVD algorithm in Sec-
tion “Determination of effective rank order based on singular value adaptive grouping” for noise reduction 
processing. Perform TQWT inverse transformation on the denoised noise and signal subbands to obtain the 
preliminary denoised chaotic signal. To enhance the smoothness of the signal and further remove noise from 
the signal, an adaptive SVD decomposition is used to perform secondary noise reduction on the reconstructed 
chaotic signal.

The specific steps for joint denoising of TQWT and improved SVD (TQWT-adaptive SVD, TQWT-ASVD) 
are as follows:

(1)	 Perform TQWT decomposition on chaotic signals to obtain wavelet coefficients {wj}j=1,2,...,J corresponding 
to the number of decomposed subbands. Sort the subband signals according to the percentage of energy 
in the energy subband, and assume that the sorted result is {w̃j}j=1,2,...,J.

(2)	 Calculate the cumulative energy ratio threshold � according to Eq. (16), and filter the signal sub-band 
[w̃1

, w̃
2
, . . . , w̃

j0 ] and noise sub-band [w̃j0+1
, w̃

j0+2
, . . . , w̃

J ] through Eq. (17).
(3)	 For the noise sub-band [w̃j0+1

, w̃
j0+2

, . . . , w̃
J ] , use the improved SVD algorithm in Section “Determination 

of effective rank order based on singular value adaptive grouping” for noise reduction, and set the processed 
noise sub-band as [w̃j0+1

d , w̃
j0+2

d , . . . , w̃
J
d].

(4)	 The signal sub-band [w̃1
, w̃

2
, . . . , w̃

j0 ] and the noise sub-band [w̃j0+1

d , w̃
j0+2

d , . . . , w̃
J
d] processed by SVD are 

used as inputs for TQWT reconstruction to obtain the first denoised chaotic signal.
(5)	 Using ASVD to perform secondary denoising on the signal after the first denoising, enhancing smoothness, 

and obtaining the final denoised chaotic signal.

Based on the above analysis, the process of chaotic signal denoising algorithm based on TQWT-ASVD is 
shown in Fig. 6.

Experiment and analysis
This article will conduct a denoising experimental analysis on the chaotic signals of the classic Chua’s circuit and 
the underwater radiated noise signals of ships to verify the effectiveness of the proposed TQWT-ASVD secondary 
denoising method. The experimental environment is Windows 10, the CPU is Core i7-7500, the memory is 8 GB, 
and the compilation and running environment is Matlab-2020a. To compare the noise reduction effect of the 
proposed method, fitting error minimum SVD (FEM-SVD)25, TQWT26, CEEMDAN combined with threshold 

Figure 5.   Standard deviation values of singular value subsets.
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(CEEMDAN-WT)27, MEEMD combined with least mean square (MEEMD-LMS)28, and the proposed method 
(TQWT-ASVD) for denoising analysis.

Evaluation indicators for noise reduction effect
To compare the denoising effects of different algorithms, this article uses three indicators: signal-to-noise ratio 
(SNR), root mean square error (RMSE), and normalized permutation entropy (PE) to measure the denoising 
effect of chaotic signals. The formulas for signal-to-noise ratio (SNR) and root mean square error (RMSE) are 
as follows:

where s(n) represents the real signal, ŝ(n) represents the denoised signal, N represents the data length, and var(·) 
represents the variance. The SNR reflects the denoising ability of the algorithm, and the larger its value, the better 
the denoising effect. RMSE reflects the average deviation between the denoised signal and the original signal, 
and the smaller its value, the better the denoising effect.

There are a total of m! possible sorting indices for m-dimensional sequences. The type of sorting index that 
occurs is denoted as J , and the probability of the occurrence of the j th sorting index is defined as pj , 1 ≤ j ≤ J , 
then the formula for calculating the normalized sorting entropy is:

For the time series { Xi,i=1, 2, …, n}, taking m as the window, the time series is divided into k = n – m +  1 series. 
Calculate the Chebyshev distance dij between each sequence and all k sequences, calculate the fuzzy membership 
Dm
ij  from the distance dij , and average �m(t) for all membership degrees except itself. Then the window length is 

increased to m + 1, and �m+1(t) is obtained. The formula for calculating fuzzy entropy is:

HPE and HFE can effectively measure the complexity of time series and detect dynamic changes in time series, 
so they can be used to quantify the complexity of denoised signals. The smaller the HPE and HFE value, the more 
regular the data after denoising, and the better the denoising effect.

Chaotic signal noise reduction of Chua’s circuit
Chua’s circuit is the first physical achievement achieved by researchers in the field of chaos. The normalization 
equation of its system is as follows.

(27)SNR = 10× log10

[
var

(
ŝ(n)

)

var
(
ŝ(n)− s(n)

)
]

(28)RMSE =
√∑N

n=1
(̂s(n)− s(n))2/N

(29)HPE(m) =
−
∑J

j=1pjlog2pj

log2m!

(30)HFE(m) = ln�m(t)− ln�m+1(t)
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Figure 6.   Flow chart of the improved algorithm in this article.
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Analyze the equilibrium point and Lyapunov exponent of a differential Eq. (32). When the parameters are α
=10, β=15.68, a =  − 1.276, b =  − 0.6888, the Chua circuit is in a chaotic state, and the two-vortex chaotic attractor 
appears. Taking the initial value [0.1, 0.1, 0.1], the fourth-order Runge–Kutta algorithm was used to simulate 
the interval [0, 300], and 5, 589 × 3 data were generated in total. The last  211 × 3 sampling points were taken as 
experimental data, and the sampling frequency was 55.89 HZ. Gaussian white noise with an SNR of 25 dB was 
added to the simulation signal, and then the FEM-SVD, TQWT, CEEMDAN-WT, MEEMD-LMS and the method 
proposed in this paper were respectively used for denoising processing. The two-dimensional phase space tra-
jectory diagram of the original signal, the denoised signal, and the five de-denoised signals are shown in Fig. 7.

Figure 7a and b respectively show the phase space and time sequence diagram of the original Chua’s circuit 
signal, and Fig. 7c–h respectively show the phase space diagram of the signal with noise, the FEM-SVD, the 
TQWT, the CEEMDAN-WT, the MEEMD-LMS denoising algorithms and the signal denoised by the method 
in this paper.

It can be seen from Fig. 7c that the phase space of the chaotic signal of Chua’s circuit after adding noise is in 
a very chaotic state. From Fig. 7e–g, it can be seen that after noise reduction using the TQWT, CEEMDAN-WT, 
and MEEMD-LMS methods, the high-frequency noise in the signal is well removed, the interference of noise 
on Phase space is suppressed to a certain extent, and the Phase space epidemic curve becomes relatively smooth. 
However, compared with the Phase space of the original Chua’s circuit chaotic signal, it can be seen that there 
is still a certain amount of noise left in the signal after noise reduction, resulting in no obvious repair effect on 
the overall popular structure of the Phase space As can be seen from Fig. 7d, after the chaotic signal of Chua’s 
circuit is de-noised by FEM-SVD algorithm, the overall popular structure of the signal Phase space has been 
better repaired, and the Phase space curve of the signal is smoother after noise reduction. However, it can be seen 
that some curves in the Phase space are not smooth enough, the regularity of the fluid–structure in the Phase 
space has also been damaged to a certain extent, and some fluid structures still appear messy. It can be seen from 
Fig. 7h that after the TQWT-ASVD method proposed in this paper for noise reduction, the overall manifold 
structure of the phase space and the smoothness of the manifold curve have been well repaired. The phase space 
track of the signal after noise reduction is smoother and more regular, and the similarity is significantly higher 
than the phase space of the original Chua’s circuit chaotic signal. Therefore, it can be seen from Fig. 7 that the 
TQWT-ASVD method proposed in this paper can better remove the noise in the chaotic signal of Chua’s circuit, 
and also better maintain the phase space structure and smoothness of the signal.

The comparison between the five denoising methods and the original signal is shown in Fig. 8. Intercept the 
part of t  from 250 to 450 for local magnification (a small part of Fig. 8). By comparing the waveforms of the 
de-noising signal and the original Chua’s circuit chaotic signal, it can be seen that although the five methods 
can remove the noise in the chaotic signal better, the FEM-SVD method has lost a lot of detailed information 
after de-noising, especially at the breakpoint, the signal amplitude after de-noising has a large deviation from the 
original signal amplitude. Although the amplitude of the TQWT, CEEMDAN-WT, and MEEMD-LMS methods 
is similar to the original signal, there are many noise disturbances near the breakpoint. The denoised signal in 
this paper is smoother and has less amplitude error than the original signal, and can better retain the abrupt 
information of the signal at the abrupt point of the original signal. By comparing the noise reduction waveforms 
of the five methods, it can be seen that the denoised signal in this method is smoother, flat, and closer to the 
original signal, and has a better noise reduction effect.

To compare the noise reduction effects of the three methods at different noise intensities, Gaussian white 
noise with SNR of 5, 10, 15, 20, and 25 were added to Chua’s circuit chaotic sequence respectively, and the SNR, 
RMSE, and PE of the three methods at different noise intensities were calculated. The larger the SNR, the smaller 
the RMSE and PE, the better the noise reduction effect. Considering the randomness of the added Gaussian 
white noise, 20 experiments were conducted for each noise intensity, and the average value was taken as the final 
experimental result. The detailed experimental results of the three methods under different noise intensities are 
shown in Table 1 and Fig. 9.

From Fig. 9a, when the noise intensity in the chaotic signal is relatively small (i.e. when the SNR is large), 
the SNR after denoising by the TQWT-ASVD method proposed in this paper is not significantly different from 
the SNR after denoising by the other four methods. For example, when the SNR = 25 dB, the SNR of the TQWT-
ASVD method is only about 2 dB higher than that of the FEM-SVD, TQWT, CEEMDAN-WT, and MEEMD-LMS 
methods. However, as the noise intensity increases, the SNR improvement amplitude after noise reduction by the 
TQWT-ASVD method gradually increases. When SNR = − 5 dB, the SNR after noise reduction by the proposed 
method increases by about 2.98 dB on average compared with the other four methods.

From Fig. 9b, the denoised RMSE and SNR of the proposed method have a similar trend. When the SNR is 
large (such as SNR ∈ [15 dB, 25 dB]), although the TQWT-ASVD method has the smallest RMSE after noise 
reduction, compared with the other four methods, the reduction in RMSE is not significant. For example, 
when SNR = 25 dB, RMSE only decreases by about 0.02. But when the SNR of chaotic signals is small (such as 
SNR ∈ [− 5 dB, 15 dB]), the RMSE of the TQWT-ASVD method after noise reduction is significantly lower than 
that of the other four methods. When SNR = − 5 dB, the RMSE decreases by about 0.26 on average.

From Fig. 9c, chaotic signals with different SNR, the PE values of the signals denoised by both FEM-SVD 
and TQWT methods are relatively large and unstable, and the average PE value of FEM-SVD is about 0.8722, 

(31)

{
ẋ = α[y − x − f (x)]
ẏ = x − y − z
ż = −βy

(32)f (x) = bx + (a− b)(|x + 1| − |x − 1|)/2
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while the average PE value of TQWT method is about 0.8949. This shows that the denoising effect of FEM-
SVD and TQWT methods is not stable, and the complexity of the denoised chaotic signal is high and irregular. 
Compared with the FEM-SVD and TQWT methods, E decreases significantly and is relatively stable after noise 
reduction by CEEMD-WT and MEEMD-LMS methods. The average PE value of the MEEMD-LMS method 
is about 0.6542, while the average PE value of the CEEMD-WT method is about 0.6727. The PE value of the 
MEEMD-LMS method is slightly lower than that of the CEEMD-WT method. This shows that the CEEMD-WT 

(a) Phase diagram of the original signal (b) Original signal timing diagram

(c) Phase diagram of a noisy signal (d) Phase diagram after FEM-SVD 

(e) Phase diagram after TQWT (f) Phase diagram after CEEMDAN-WT

(g) Phase diagram after MEEMD-LMS (h) Phase diagram after TQWT-ASVD 

Figure 7.   Comparison of the phase diagram of simulated Chua’s chaotic signal after noise adding (SNR = 25) 
and denoising by FEM-SVD, TQWT, CEEMDAN-WT, MEEMD-LMS, and TQWT-ASVD methods.
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and MEEMD-LMS methods can effectively improve the denoising effect of chaotic signals, and the denoised 
signals are relatively regular. After noise reduction, the average PE value of the proposed method is about 0.5195, 
which is significantly lower than the average value of the CEEMD-WT and MEEMD-LMS methods. Moreover, 
the PE value of this method is stable at around 0.52, and there is no obvious fluctuation of PE value with the SNR 
decreases. This indicates that for chaotic signals with low SNR, the proposed method can still completely remove 
the noise from the signal, the signal complexity after denoising is relatively low and the data is relatively regular.

Based on the above experimental results, it can be concluded that under different noise intensities, the SNR 
of the signals denoised by the TQWT-ASVD method is the highest, while RMSE and PE are both the lowest. 
Especially when the SNR is low, the denoising effect of the TQWT-ASVD method is significantly better than the 
other four algorithms. The experimental results in Fig. 9 also demonstrate the effectiveness of the TQWT-ASVD 
method in denoising chaotic signals with low SNR.

As can be seen from Table 1, compared with the five methods for noise reduction, the SNR of the TQWT-
ASVD method proposed in this paper is the largest, while RMSE and PE are the smallest. Compared with FEM-
SVD, TQWT, CEEMDAN-WT, and MEEMD-LMS, SNR increased by 23.22%, 26.46%, 18.79%, and 16.11%, 
respectively. RMSE decreased by 32.53%,39.48%, 30.96%, and 27.94%, respectively. PE decreased by 40.44%, 
41.96%, 22.78%, and 20.59%, respectively.

In Table 1, for 0 dB chaotic signals with low SNR, compared with FEM-SVD, TQWT, CEEMDAN-WT, and 
MEEMD-LMS methods, the SNR after noise reduction of the proposed method is increased by 70.78%, RMSE 
is reduced by 29.17%, and PE is reduced by 33.2%.

For − 5 dB chaotic signals with low SNR, compared with FEM-SVD, TQWT, CEEMDAN-WT, and MEEMD-
LMS methods, the SNR after noise reduction of the proposed method is increased by 67.94%, RMSE is reduced 
by 37.3%, and PE is reduced by 37.37%.

From the denoising results of the newly added low SNR chaotic signal, it can be seen that the proposed 
method can also obtain better denoising results for the low SNR chaotic signal. Moreover, it can be seen from 
Table 1 that when the added noise SNR is within the range of 25 to − 5, the advantages of this method become 
increasingly apparent as the noise SNR ratio decreases.

(a) Time sequence diagram of the original signal and noisy signal

(b) Time sequence diagram of the original signal and FEM-SVD denoising

(c) Time sequence diagram of the original signal and ES-TQWT denoising

(d) Time sequence diagram of the original signal and CEEMDAN-WT denoising

(e) Time sequence diagram of the original signal and MEEMD-LMS denoising

(f) Time sequence diagram of the original signal and TQWT-ASVD denoising

Figure 8.   Comparison of signal timing graphs of noisy Chua’s chaotic signal after FEM-SVD, TQWT, 
CEEMDAN-WT, MEEMD-LMS, and TQWT-ASVD methods.
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In conclusion, the noise reduction method based on TQWT-ASVD proposed in this paper can obtain better 
noise reduction effects and higher reliability when de-noising chaotic signals. While effectively removing noise 
and maintaining the overall smoothness of the signal system, the signal details are well preserved.

Noise reduction of ship underwater radiation signal
Ship underwater radiation signal has nonlinear, non-stationary, and chaotic characteristics, and its research has 
attracted wide attention. To verify the noise reduction performance of the proposed method on actual ship sig-
nals, cargo ship radiated noise was selected as the experimental data. The selection of measured data comes from 
the National Park Service. Vessel Sounds in the Sounds Recorded in Glacier Bay Plate (https://​www.​nps.​gov/​glba/​
learn/​nature/​sound​clips.​htm). The recordings of vessels were made at various distances from the hydrophone, 
and under a variety of sea conditions, but demonstrate that different types of vessels can be distinguished from 
one another. FEM-SVD, TQWT, CEEMDAN-WT, MEEMD-LMS, and the proposed method (TQWT-ASVD) 
were used to denoise the underwater radiation signals of cargo ships. In the TQWT method and the TQWT-
ASVD method proposed in this paper, the Q-factor of TQWT is set as Q = 1, the redundancy factor as r = 3, 
and the number of decomposition layers as J = 7. A total of 8 subbands are obtained, and the signal and energy 

Table 1.   SNR, RMSE, and PE indexes after noise reduction with different noise intensities.

Index Noise (dB) Observed signal FEM-SVD TQWT CEEMDAN-WT MEEMD-LMS TQWT-ASVD

SNR

− 5 − 4.9867 4.9033 3.3684 4.0351 4.4773 7.1734

0 − 0.0299 5.7536 5.0213 6.3739 6.5920 9.9678

5 4.8822 10.3436 9.8792 11.1640 11.9920 14.5221

10 9.9199 15.6098 13.5005 16.5561 16.1488 18.8470

15 15.1918 19.5213 20.8698 20.5611 21.1821 24.3642

20 20.1231 23.4926 24.6230 25.2248 25.5472 28.0388

25 25.0310 28.2161 27.8189 27.9416 28.5083 29.9674

RMSE

− 5 2.5506 0.8168 0.9747 0.9027 0.8579 0.6290

0 1.4415 0.7407 0.8058 0.6896 0.6725 0.4559

5 0.8188 0.4366 0.4606 0.3973 0.3612 0.2699

10 0.4585 0.2381 0.3036 0.2136 0.2238 0.1640

15 0.2631 0.1518 0.1300 0.1347 0.1254 0.0869

20 0.1400 0.0961 0.0844 0.0787 0.0758 0.0569

25 0.0805 0.0517 0.0635 0.0576 0.0539 0.0456

PE

− 5 0.9997 0.9960 0.7247 0.6032 0.6590 0.4981

0 0.9996 0.9993 0.7879 0.7311 0.7053 0.5047

5 0.9999 0.9997 0.9989 0.7356 0.6881 0.5219

10 0.9987 0.9066 0.9962 0.7002 0.6640 0.5285

15 0.9987 0.6279 0.9927 0.6746 0.6542 0.5254

20 0.9922 0.8254 0.9068 0.6575 0.6070 0.5295

25 0.9613 0.7505 0.8577 0.6068 0.6017 0.5283

(a) SNR index comparison (b) RMSE index comparison (c) PE index comparison

Figure 9.   SNR, RMSE, and PE after noise reduction under different noise intensity.

https://www.nps.gov/glba/learn/nature/soundclips.htm
https://www.nps.gov/glba/learn/nature/soundclips.htm
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proportion of each subband are shown in Fig. 10. The first line in the figure is the observed underwater radiated 
noise of the cargo ship, and the second line to the ninth line is the TQWT decomposition result. Among them, 
subband 8 can be considered as the signal subband, and subband 1 can be considered as the noise subband, but 
it is difficult to determine whether subband 2 to subband 7 is the noise part or the signal part, and the noise part 
needs to be removed by SVD processing.

In the proposed method, the noise subband and signal subband after TQWT decomposition are selected 
according to formulas (16) and (17), and the noise subband is denoised using the SVD method of singular 
value subset order determination. The order selection diagram of the noise subband 1 when using singular 
value subset order determination is shown in Fig. 11. Compared with figure (a), figure (b) can see the boundary 
point of singular value more clearly. Hence the same SVD method is used to process subbands 2–7. The signal 
is reconstructed by noise subband and signal subband after noise reduction, and the reconstructed signal is 
denoised again by ASVD.

The original phase space trajectory diagram of the underwater radiation signal sequence of the cargo ship 
and the phase space trajectory after noise reduction by the five methods are shown in Fig. 12. By comparing 
Fig. 12a, it can be seen that due to noise interference in the process of data acquisition, the phase space trajectory 
of the underwater radiation signal sequence of the original cargo ship is very messy. In comparison Fig. 12b and 
e, after noise reduction by the FEM-SVD and MEEMD-LMS methods, the noise in the signal is removed to a 
certain extent., and the phase space manifold structure is much clearer, but because the noise is not completely 
removed, the phase space manifold structure curve of the sequence after noise reduction is not smooth, and even 
some curves overlap together and are difficult to distinguish.

It can be seen from Fig. 12c and d that after the sequence is denoised by TQWT and CEEMDAN-WT, the 
noise is better suppressed and the phase space trajectory becomes smoother, but the overall manifold structure 
is still not regular enough, some manifold structure curves are interlaced, and the geometric structure of the 
chaotic attractor is not clear enough. It can be seen from Fig. 12f that the two-dimensional phase space trajec-
tory after noise reduction in this method is more smooth and regular, the manifold curves in phase space are 
basically separated from each other, and the geometric structure of the chaotic attractor of the original signal 

Figure 10.   TQWT decomposition results of underwater radiation signals from cargo ships.

Figure 11.   SVD order determination results: (a) Calculation of singular value normalization; (b) Calculation of 
deviation of singular value subset.
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can be more clearly displayed. Therefore, the phase space trajectory after noise reduction of this method is also 
better than the other two methods.

The five denoising methods can effectively remove interference noise from the original sequence. The nor-
malized arrangement entropy values after denoising by the three methods are shown in Fig. 13. As can be seen 
from Fig. 13, the PE value and FE of the signal after noise reduction by the proposed method are significantly 
lower than those of the FEM-SVD, TQWT, CEEMDAN-WT, and MEEMD-LMS methods. PE value decreased by 
13.91%, 10.18%, 10.88%, and 8.68%, and FE value decreased by 33.66%, 31.42%, 26.98%, and 21.32% respectively. 

(a) Phase diagram of the observation data (b) Phase diagram after FEM-SVD 

(c) Phase diagram after TQWT (d) Phase diagram after CEEMDAN-WT

(e) Phase diagram after MEEMD-LMS (f) Phase diagram after TQWT-ASVD 

Figure 12.   Phase-space comparison of noise reduction effects of underwater radiation signals of cargo ships: 
(a) Observation data; (b) FEM-SVD; (c) TQWT; (d) CEEMDAN-WT; (e) MEEMD-LMS; (f) TQWT-ASVD.



15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18873  | https://doi.org/10.1038/s41598-023-45811-y

www.nature.com/scientificreports/

This shows that the second denoising method proposed in this paper removes most of the noise in the sequence, 
and on the premise of ensuring the denoising effect, the denoised signal has better smoothness, stronger stability, 
and a more regular geometric structure.

It can be seen from Fig. 14 that the phase diagrams of the four types of ship radiated noise before denoising 
are chaotic, and the fractal characteristics of their attractors are difficult to observe. Compared with other noise 
reduction methods, the geometric structure of the phase diagram after noise reduction with TQWT-ASVD is 
more regular and smooth, the four kinds of ship radiated noise after noise reduction have been well eliminated.

From Table 2, the noise reduction effect of the TQWT-ASVD method for the measured chaotic signal is gen-
erally better than the FEM-SVD, TQWT, CEEMDAN-WT, and MEEMD-LMS methods. The four underwater 
radiated signal sequences after noise reduction by this method have smaller normalized permutation entropy 
and fuzzy entropy, which reflects the effectiveness of this method.

According to the analysis results in Fig. 14 and Table 2, the TQWT-ASVD method proposed in this paper is 
generally superior to SVD, TQWT, CEEMDAN-WT, and MEEMD-LMS methods in noise reduction of measured 
chaotic signals. Using a qualitative and quantitative comparison of the ship’s radiated noise, the results show that 
TQWT-ASVD can effectively applied in ocean environmental noise radiated noise of the ship.

Conclusion
In this paper, a chaotic signal denoising method combining TQWT and adaptive singular value decomposi-
tion (ASVD) is proposed. In the theoretical statement and experimental analysis, the following conclusions are 
obtained:

(1)	 Different from discriminating signal and noise subbands based on correlation coefficient, this method adap-
tively discriminates noise subbands and signal subbands of chaotic signals according to energy threshold 
based on the different energy ratios of signal components and noise components after TQWT decomposi-
tion. The results of the TQWT decomposition of model unknown signals provide a more advantageous 
method for distinguishing different types of subbands.

(2)	 The subband judged to be dominated by noise still contains some weak real signals. The SVD method with 
the variance of singular value subset is used to filter the noise subband, which preserves more detailed 
signals, improves the noise reduction effect, and realizes the initial noise reduction of chaotic signals. The 
subband determined to be dominated by the real signal still contains some weak noise signals. TQWT 
reconstruction is carried out on the filtered noise subband and signal subband, and the improved SVD is 
used to carry out secondary noise reduction on the reconstructed chaotic signal, further filtering out the 
noise in the chaotic sequence, keeping the geometric structure of the chaotic signal clear and making the 
denoised signal smoother.

(3)	 Noise reduction experiments were conducted on Chua’s chaotic sequence known to the model and under-
water radiated noise signals unknown to the model. The experimental results show that The main and objec-
tive evaluation of the proposed method is superior to the TQWT method, SVD method, CEEMDAN-WT 
method, and MEEMD-LMS method, which proves the effectiveness of the proposed method.

(4)	 The advantage of the TQWT method is that it can flexibly adjust parameters to achieve the best decomposi-
tion effect, and it can be applied to the denoising of more complex observed chaotic noise such as chaotic 
circuits, ECG signals, and EMG signals. In the follow-up research, the selection of optimal parameters for 

(a) (b)

Figure 13.   Analysis of signal denoised by different algorithms: (a) The PE of denoising results; (b) The FE of 
denoising results (1: FEM-SVD; 2: TQWT; 3: CEEMDAN-WT; 4: MEEMD-LMS; 5: TQWT-ASVD).
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TQWT decomposition of the observed chaotic signals and the definition of the mutation point location of 
the SVD subset can be discussed in more detail, which provides a basis for the analysis of chaotic systems.

(Ⅰ) Noise reduction effects of five noise reduction 
methods on cargo ship

(Ⅱ) Noise reduction effects of five noise reduction 
methods on cruise ship

(Ⅲ) Noise reduction effects of five noise reduction 
methods on ferryboat

(Ⅳ) Noise reduction effects of five noise reduction 
methods on small ship

Figure 14.   Phase diagrams after by noise reduction by five methods on four types ship-radiated signal, in 
the four subgraphs I, II, III, IV, (a) Original phase diagram of ship-radiated signal; (b) Phase diagrams after 
FEM-SVD denoising; (c) Phase diagrams after TQWT denoising; (d) Phase diagrams after CEEMDAN-WT 
denoising; (e) Phase diagram after MEEMD-WT denoising; (f) Phase diagram after TQWT-ASVD denoising;
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Data availability
The selection of experimental data comes from the National Park Service. Vessel Sounds in the Sounds Recorded 
in Glacier Bay Plate (https://​www.​nps.​gov/​glba/​learn/​nature/​sound​clips.​htm). All data generated or analyzed 
during this study are included in this published article.
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