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Causal effects of genetically
determined blood metabolites

on multiple myeloma: a Mendelian
randomization study

Jialin Ren*? & Min Wu2**

Previous studies have shown that metabolites play an important role in phenotypic regulation.
However, the causal relationship between metabolites and multiple myeloma has not been
adequately investigated. Here, we attempt to explore the causal effects of genetically determined
blood metabolites on multiple myeloma. The large-scale public blood metabolites and multiple
myeloma datasets from independently published genome-wide association studies (GWAS) were used
to explore the causal relationship between each genetically determined blood metabolite and multiple
myeloma through inverse variance weighted (IVW), weighted median, MR-Egger and mode-based
estimation methods. Sensitivity tests were performed to evaluate the stability and reliability of the
results by MR-Egger regression and leave-one-out methods. Metabolic pathway analysis was further
explored using filtered data. Statistical analyses were all performed in R. Among 452 metabolites,

ten known metabolites and three unknown metabolites had significant causal relationship with
multiple myeloma (P <0.05). Four known metabolites, 3-methyl-2-oxovalenate, oxidized bilirubin,
isovalerylcarnitine and glutamine carnitine, reached statistical significance in IVW models. Metabolic
pathways analysis identified four significant pathways. The occurrence of multiple myeloma may
have a causal relationship with these four metabolites, and there are four metabolic pathways that
are also related to the occurrence of multiple myeloma. This can provide new ideas for exploring early
screening and treatment of multiple myeloma.

Multiple myeloma (MM) is a hematological malignancy characterized by malignant proliferation of plasma cells
in the bone marrow, accompanied by the secretion of monoclonal immunoglobulins. The disease accounts for
10% of all hematologic malignancies'. Despite substantial improvements in multiple myeloma therapies in the
past 10-15 years, the 5-year relative survival rate is 55.6%? and the median overall survival (OS) has improved
to over 8years’. But in 15-20% of patients the aggressive course of MM leads to death within the first 3 years
from diagnosis®. Traditional chemotherapy is highly resistant and relapsed, and the advent of newer drugs has
prolonged survival, but overall multiple myeloma remains incurable’. Therefore, it is important to investigate
new targets for screening, prevention and treatment of multiple myeloma.

Metabolites in the blood can, to some extent, reflect an individual’s genetic makeup and can therefore be used
to predict or influence the onset and progression of disease®. Common genetic metabotypes play a role as dis-
criminatory cofactors in the aetiology of common multifactorial diseases. Interacting with environmental factors
such as diet or lifestyle, these metabotypes may influence an individual’s susceptibility to certain phenotypes’.
Genetic variants in metabolism-related genes that lead to specific and distinct metabolic phenotypes, which we
call ’genetically determined metabotypes™®. Currently, genome-wide association studies (GWAS) have identified
a number of metabolite-associated loci in adult human blood and/or urine samples that have been shown to be
associated with the development and prognosis of cardiovascular®!’, endocrine'!, gastrointestinal'?, respiratory'®
and oncological'* diseases. But few studies have focused on the relationship between blood metabolites and mul-
tiple myeloma. Mendelian randomization (MR) is a powerful method of epidemiologic research that essentially
uses genetic variation as an instrumental variables (IVs) to identify causal relationships between risk factors and
disease'®. Genome-wide association studies (nGWAS) are a metabolomics-based approach to understanding
disease-associated genetic variation by identifying genetic trait loci for metabolites'®. Using this approach to
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investigate the causal relationship between blood metabolites and multiple myeloma may provide insight into
multiple myeloma and new ideas for early detection and treatment of multiple myeloma.

In summary, this study combines metabolomics and genomics, through Mendelian randomization analysis,
using large-scale mGWAS data as the exposure file and multiple myeloma GWAS data as the outcome file, to
investigate the causal relationship between blood metabolites and multiple myeloma. This study also screens
for relevant blood metabolites, and provides new ideas for early detection and treatment of multiple myeloma.

Methods

Data sources

Blood metabolite data were obtained from the Shin'’ et al’s mGWAS analysis study published in Nature Genet-
ics in 2014, the largest genome-wide association study (mGWAS) of blood metabolites to date, pooling data
from 7824 Europeans, including approximately 2.1 million single nucleotide polymorphisms, and 452 blood
metabolites (GWAS ID: met-a). Multiple myeloma data from Burrows et al. 2021 Genome-wide association
analysis data from UK Biobank, containing 372,617 samples (601 cases and 372,016 control) and 8.6 million
single nucleotide polymorphisms (GWAS ID: ieu-b-4957).

Conditions for SNP as an instrumental variable

(DInstrumental variables were highly correlated with exposure, and the strength of the SNP was assessed using
the F statistic, and if F> 10, the correlation between SNP and exposure was considered strong enough to insulate
the results of the MR analysis from weak instrumental bias'®>. @Instrumental variables were not directly cor-
related with outcome and only influenced outcome through exposure, i.e. no genetic pleiotropy was present,
which was detected by MR-Egger regression in this study. (3 The instrumental variables are not related to con-
founding. The SNPs selected for the MR method should obey Mendel’s law of genetics, i.e. parental alleles are
randomly assigned to offspring and are not influenced by acquired factors such as socio-economic factors, and
are therefore relatively independent and can theoretically be considered independent of confounding factors's.

Selection of instrumental variables

Uniform criteria were set for SNP screening: D P<5x 107® as statistically significant for inclusion in the
study; @ linkage disequilibrium analysis with reference to the genotype of the European population (EUR)
of the Thousand Genomes, which also needed to meet an LD threshold of r?<0.1 within 500 kb, retaining the
single nucleotide polymorphism with the smallest P value.

Statistical analyses for MR

Investigating the causal relationship between each blood metabolite and multiple myeloma by using the Two-
SampleMR package (version 0.5.6) in the R'. In this study, inverse variance weighting (IVW) was used® as the
primary causal association effect assessment method. IVW is a method for MR to Meta-summarize the effects
of multiple loci when analyzing multiple SNPs. IVW is used to ensure that all SNPs are valid instrumental vari-
ables and are completely independent of each other. In addition, we used the weighted median method (WME)?!,
MR-Egger regression®?, simple mode-based estimation* and weighted mode-based estimation® to test the reli-
ability and stability of the results. When the estimates of the causal association effects obtained from the above
five different MR models were similar, we could conclude that the causal association between the metabolite
and multiple myeloma was reliable and stable. If only one SNP remains, use the Wald ratio method. We also
performed multiple hypothesis testing, using P<1.10 x 10~* (after Bonferroni correction) as the threshold indi-
cating the presence of a direct causal association® and 1.10 x 10~*< P<0.05 as a potential risk predictor for mul-
tiple myeloma. Heterogeneity tests and genetic pleiotropy tests were performed for causality for all metabolites
with Py <0.05. At the same time, we calculated odds ratios as well as the power to detect a significant result
across a range of odds ratios to help interpret the results and improve reproducibility®.

Heterogeneity and sensitivity tests

Q-test for IVW and MR-Egger was used to detect potential violations of the assumption by the heterogeneity of
the association between individual IVs. The included instrumental variables will be considered not heterogene-
ous when P> 0.05. The default fixed-effects model was employed if no substantial heterogeneity (P>0.05) was
observed; otherwise, the random-effects model was utilized?®. MR-Egger was applied to estimate horizontal plei-
otropy according to its intercept, ensuring that genetic variation was independently associated with exposure and
outcome. When P> 0.05, it will be considered that there is less likely genetic pleiotropy in the causal analysis. This
study used the leave-one-out method to assess the likelihood of associations observed by individual SNP driver.

Metabolic pathway analysis
Following the MR analysis, we next used MetaboAnalyst5.0 software (https://www.metaboanalyst.ca/Metab
oAnalyst/faces/home.xhtml)* to perform metabolic pathway analysis.

Ethics approval and consent to participate
No need for ethical approval as used of anonymous open data.
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Results

Information on instrumental variables (SNP)

Of all 2.1 million SNPs from 452 metabolites, we found 880 SNPs that met the selection criteria for instrumental
variables, which was listed in Table S1. After overlapping these SNPs with multiple myeloma GWAS data, 839
SNPs were ultimately included in the follow-up analysis. These could be seen in Table S2. The flow chart of MR
study is shown in Fig. 1. The minimum F-statistic for all SNPs included in the follow-up analysis was 28.81,
indicating that the instrumental variables for metabolites were sufficiently plausible (F> 10).

MR analyses results

Of the 452 metabolites, thirteen metabolites were causally associated with multiple myeloma at a significant
level (P<0.05), including ten known metabolites and three unknown metabolites, as detailed in Fig. 2. After Bon-
ferroni correction (P<1.10 x 10™*), no metabolites were found that still had a significant effect.

Of the ten known metabolites, five may be associated with an increased risk of multiple myeloma: glutamine
carnitine, isovalerylcarnitine, cysteine-glutathione disulfide, leucine and pelargonate; five may be associated with
a decreased risk of multiple myeloma: 3-methyl-2-oxovalerate, oxidized bilirubin, 2-methylbutyroylcarnitine,
indolelactate and lysine.

Heterogeneity and sensitivity analysis
Four metabolites that reached statistical significance in IVW models were tested for heterogeneity and gene plei-
otropy. P-values for heterogeneity and gene pleiotropy were greater than 0.05, indicating that none of the metabo-
lites had heterogeneity or gene pleiotropy. The relevant results are shown in Table 1.

Scatter plots of MR analysis results for the four metabolites are shown in Fig. 3.

The sensitivity analysis of the above four metabolites by the leave-one-out method was robust, with no single
nucleotide polymorphisms in any of the metabolites significantly affecting the results. Forest plots of the leave-
one-out results for the metabolites are shown in Fig. 4.

Metabolic pathway analysis

The ten metabolites screened were subjected to metabolic pathway analysis using MetaboAnalyst5.0 software
and the results are shown in Fig. 5A. The metabolites were further subjected to KEGG pathway enrichment
analysis and the results are shown in Fig. 5B, C. The metabolic pathway analysis showed that there were six
metabolic pathways affecting multiple myeloma in the serum, four of which had statistically significant differ-
ences (P<0.05), as shown in Table 2.

Discussion

Of the 452 blood metabolites involved in this study, ten are potential predictors of multiple myeloma risk. Five
metabolites were included that may be associated with an increased risk of developing multiple myeloma, namely
glutamine carnitine, isovalerylcarnitine, cysteine-glutathione disulfide, leucine and pelargonate. The other
five may be associated with a decreased risk of multiple myeloma: 3-methyl-2-oxovalerate, oxidized bilirubin,
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Metabolite Method nSNP OR(95%Cl) P value Power
Glutaroyl carnitine Inverse variance weighted 11 —— 1.42(1.10, 1.83) 0.006 0.94
3-methyl-2-oxovalerate Inverse variance weighted 15 e 0.62(0.42,0.92) 0.018 0.86
Isovalerylcarnitine Inverse variance weighted 7 —— 1.47(1.11,1.94) 0.008 0.86
oxidized bilirubin Inverse variance weighted 20 g} 0.83(0.72,0.97) 0.016 0.17
2-methylbutyroylcarnitine Wald ratio 1 o——— 0.27(0.08, 0.94) 0.040 022
Cysteine-glutathione disuffide Wald ratio 1 f—e— 1.49(1.01,2.21) 0.044 0.47
Indolelactate Wald ratio 1 o— 0.32(0.11,0.93) 0.036 0.29
Leucine Wald ratio 1 ~— 2.51(2.48,8.62) 0.014 0.69
Lysine Wald ratio 1 — 0.04(0.00, 0.38) 0.005 0.36
Pelargonate Wald ratio 1 —— 2.40(1.84,3.69) 0.010 0.60
X-11440 Inverse variance weighted 7 gl 0.89(0.79, 1.00) 0.049 0.42
X-02249 Wald ratio 1 e— 0.40(0.21,0.79) 0.008 0.28
X-11799 Wald ratio 1 e 1.23(1.03, 1.46) 0.020 0.18

Figure 2. Forest plot for the causality of blood metabolites on multiple myeloma. CI confidence interval, OR
odds ratio, nSNP number of single nucleotide polymorphism.

Metabolite MR method P Heterogeneity | Horizontal pleiotropy

vw 0.006 | 0.4842

MR Egger 0.885 | 0.4759 0.3619
Glutaroyl carnitine Simple mode 0.325

WME 0.082

Weighted mode | 0.230

Ivw 0.018 | 0.9996

MR Egger 0.293 | 0.9999 0.3952
3-methyl-2-oxovalerate | Simple mode 0.093

WME 0.025

Weighted mode | 0.095

vw 0.008 | 0.9652

MR Egger 0.966 | 0.9458 0.6581
Isovalerylcarnitine Simple mode 0.060

WME 0.045

Weighted mode | 0.074

vw 0.016 | 0.5943

MR Egger 0.288 | 0.3979 0.8444
Oxidized bilirubin Simple mode 0.146

WME 0.054

Weighted mode | 0.034

Table 1. Results of 5 MR models of known metabolites that reached statistical significance in IVW models
and the heterogeneity and pleiotropy tests. MR Mendelian randomization, IVW inverse variance weighting,
WME weighted median method.

2-methylbutyroylcarnitine, indolelactate and lysine. Four of these metabolites, glutamine carnitine, 3-methyl-
2-oxovalerate, isovalerylcarnitine and bilirubin oxide, reached statistical significance in IVW models.

The present study identified bilirubin oxide as a potential protective substance to reduce the risk of multiple
myeloma. Li Volti et al.”® found that hematological malignancies exhibit an altered homeostasis of the redox
balance, which can lead to the activation of various survival pathways that, in turn, lead to disease progression
and chemoresistance. The heme oxygenase-1 (HO-1) pathway is thought to play an important role among these
pathways. HO catalyzes enzymatic breakdown of heme, releasing carbon monoxide (CO), ferrous iron (Fe**)
and bilirubin oxide. As a degradation product of heme, bilirubin oxide inhibits the degradation of heme and thus
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Figure 3. Scatter plots of the 5MR models for four metabolites with potential causal relationship with MM. (A)
Glutamine carnitine, (B) 3-methyl-2-oxovalenate, (C) isovalerylcarnitine, (D) oxidized bilirubin. MR Mendelian
randomization, SNP single nucleotide polymorphism.
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Figure 4. Leave-one-out forest map of four metabolites. (A) Glutamine carnitine, (B) 3-methyl-2-oxovalenate,
(C) isovalerylcarnitine, (D) oxidized bilirubin. MR Mendelian randomization.

Scientific Reports|  (2023) 13:18818 |

https://doi.org/10.1038/s41598-023-45801-0

nature portfolio



www.nature.com/scientificreports/

30 35
|

Hoglofp)
25
|

Metabolite Sets Enrichment Overview

— - —
s

S I:l
4002

8e-02
Lysine degradation

510 0

o.01

0.02 0.03 0.04 o

o 20 40 60 80

Pathway Impact
Enrichment Ratio

Overview of Enriched Metabolite Sets (Top 25)

Enrichment Ratio

" -loglo0 (p-value)

Figure 5. Metabolic pathway analysis and KEGG pathway enrichment analysis of ten metabolites by
MetaboAnalyst5.0.

Trait | Metabolic pathway Involved metabolites Pvalue | Database
MM Valine, leucine and isoleucine biosynthesis | 3-Methyl-2-oxovaleric acid; leucine | 1.42E-4 | KEGG, SMP
MM Valine, leucine and isoleucine degradation | 3-Methyl-2-oxovaleric acid; leucine | 3.84E-3 | KEGG, SMP
MM Aminoacyl-tRNA biosynthesis Lysine; leucine 5.51E-3 | KEGG

MM Biotin metabolism Lysine 2.58E-2 | KEGG

Table 2. Four metabolic pathways with statistically significant differences (P<0.05).

the heme oxygenase-1 (HO-1) pathway. Raninga et al.?’ also found that concurrent inhibition of HO-1 would
improve therapeutic outcomes in MM patients.

Another metabolite that may reduce the risk of multiple myeloma is 3-methyl-2-oxovalerate, a branched-chain
alpha-keto acid (BCKA) produced by the catabolism of isoleucine, which has been reported to be associated
with type 2 diabetes and insulin resistance®. In a study on the catabolic pathway of branched-chain amino acids,
3-methyl-2-oxovalerate was the strongest predictor of IFG among the identified intermediate metabolites, inde-
pendent of glucose®'. Abnormal amino acid metabolism is one of the important features of MM. The important
metabolic pathway of amino acids participates in protein synthesis as basic raw materials®. It has been shown
that the metabolism of branched-chain amino acids influences the prognosis of multiple myeloma®’. When
catabolism of branched-chain amino acids is impaired, blood levels of 3-methyl-2-oxovalerate are reduced,
potentially increasing the risk of multiple myeloma.

Glutamine carnitine and isovalerylcarnitine are both acylcarnitines®. Carnitine and acylcarnitine are key
substances in cellular energy metabolism and can be synthesized from amino acids in the human kidney and liver.
Their physiological roles include acting as sole carriers of long-chain fatty acids, transporting long-chain fatty
acid classes into the mitochondria for beta-oxidation, and regulating the intracellular balance between free and
acyl coenzyme A. Characteristic changes in one or more acylcarnitines indicate abnormal beta-oxidation of fatty
acids and abnormal metabolism of branched-chain amino acids®. It has been shown that carnitine abnormalities
are associated with metabolic diseases such as isoleucine and leucine metabolism disorders, isovaleric acidemia
and type 2 diabetes®. It has also been suggested that carnitine can stimulate neuroprotective factors”. In the
past study, isovalerylcarnitine has been proved to be able to activate the calpain system, producing an early and
marked increase in apoptosis and cell killing®®. MM cells were found to be dependent on glucose and glutamine
metabolism in the first metabolic analysis of MM cells*. Higher levels of isoleucine and lower levels of glutamine
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and some lipids have been observed in myeloma patients at diagnosis, but not after remission*’. Bajpai et al.*!
were able to show that targeting the glutamine metabolism sensitizes MM cells to the bcl-2 inhibitor venetoclax.
Studies of cellular metabolism have identified LDHA and HIF1a as novel targets for drug resistance in MM under
hypoxic conditions in the bone marrow. Inhibition of LDHA and HIF1A can restore sensitivity to therapeutic
drugs such as bortezomib. This suggests a correlation between branched-chain amino acid metabolism and the
development of multiple myeloma, which is confirmed by metabolic pathway analysis.

This study is innovative in many ways: firstly, it combines metabolomics and genomics to investigate the causal
relationship between blood metabolites as exposure factors and multiple myeloma using a Mendelian randomiza-
tion approach, which has important clinical research value; secondly, this study uses multiple MR models and
sets strict quality control conditions to make the results reliable and stable; finally, the large number of exposure
factors involved in this study were metabolites in the blood, thus the analytical workload was huge and posed ana-
lytical challenges. There are also some limitations to this study. One limitation of our study is that the GWAS data
we used were all from European populations, so generalization to other populations may be limited; secondly,
although we identified a number of metabolites that were causally associated with multiple myeloma in our study,
some of these were unknown metabolites and could not be studied for further analysis. Additionally, while MR
analysis provides valuable insights into etiology, we must consider that blood metabolites can be influenced by
various factors such as diet, host genetics, and the gut microbiome*. We can just conclude that blood metabo-
lites are associated with multiple myeloma, but causation is not necessarily direct, thus it is important to note
that our findings should be validated through rigorous RCTs and basic research before application in the clinic.

In summary, this study used a Mendelian randomization approach to explore the possible causal link between
blood metabolites and multiple myeloma. Although no direct causal relationship was found, a number of poten-
tial risk predictors for multiple myeloma were identified, which has the potential to provide new insights into the
influence of genetic-exposure interactions in the disease process of multiple myeloma. Furthermore, the analysis
of both potential risk factors and associated metabolic pathways suggests that the metabolism of branched-chain
amino acids may provide a new reference for the early screening and treatment of multiple myeloma.

Data availability
The data and material that support the findings of this study are available in the IEU OpenGWAS, https://gwas.
mrcieu.ac.uk/datasets/.
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