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The transcriptome 
signature analysis 
of the epithelial‑mesenchymal 
transition and immune 
cell infiltration in colon 
adenocarcinoma
Yusri Dwi Heryanto 1* & Seiya Imoto 1,2

The epithelial‑mesenchymal transition (EMT) process is tightly connected to tumors’ immune 
microenvironment. In colon adenocarcinoma (COAD), both the EMT and immune cell infiltration 
contribute to tumor progression; however, several questions regarding the mechanisms governing 
the interaction between EMT and the immune response remain unanswered. Our study aims to 
investigate the cross‑talk between these two processes in cases of COAD and identify the key 
regulators involved. We utilized the EMT and immune signatures of samples from the COAD‑TCGA 
database to identify three subtypes of COAD: high mesenchymal, medium mesenchymal, and 
low mesenchymal. We observed that EMT was associated with increased tumor immune response 
and infiltration mediated by pro‑inflammatory cytokines. However, EMT was also linked to 
immunosuppressive activity that involved regulatory T cells, dendritic cells, and the upregulated 
expression of multiple immune checkpoints, such as PD-1, PDL-1, CTLA-4, and others. Finally, we 
employed the multivariate random forest feature importance method to identify key genes, such as 
DOK2 and MSRB3, that may play crucial roles in both EMT and the intratumoral immune response.

Colon cancer is the third most prevalent cancer globally and the second leading cause of cancer-related  deaths1. 
As in other cancers, metastasis is an important hallmark of colon  cancer2. Approximately 20–25% of colon 
cancer patients exhibit metastasis at the time of diagnosis, and 30% experience a metastatic recurrence after 
initial  treatment3. The five-year relative survival rate for colon cancer with distant metastasis is 14%4. Metastasis 
is often orchestrated by the developmental process known as the epithelial-mesenchymal transition (EMT) 
 process5. EMT is a cellular process in which stationary epithelial cancer cells lose their cell polarity and cell-
cell adhesion, transforming into motile mesenchymal-like  cells6. Other important enabling characteristics of 
colon cancer include aspects of the tumor immune microenvironment, specifically immune evasion and tumor 
 inflammation2. Inflammation can promote all stages of tumorigenesis, including initiation, promotion, and 
 metastasis7. Meanwhile, immune evasion is necessary for the cancer to  survive2. EMT-related metastasis and 
the tumor immune process are not isolated or independent processes; instead, they intersect to influence the 
progression of the tumor.

Many studies have shown the close relationship between the EMT process and the COAD immune 
 microenvironment8–10. Inflammation can induce EMT-transcription factors (e.g., SNAIL, TWIST, ZEB1) by 
supplying the tumor microenvironment (TME) with EMT-promoting bioactive molecules, such as TNF-α , 
TGF-β , IL6, IL8, CCL2, and  others11. Conversely, mesenchymal-like cancer cells can modify the TME to benefit 
tumor growth. Such tumor cells can attract immunosuppressive cells such as T regulatory (Treg) cells, M2 mac-
rophages, and myeloid-derived suppressor cells (MDSC)12–14. Previous studies have found that EMT directly or 
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indirectly contributes to  immunosuppression15. EMT and the tumor immune microenvironment are known to 
be involved in tumors’ invasiveness and treatment resistance, independently or in  collaboration11,16. Therefore, 
comprehending the mechanisms underlying the interplay between EMT and tumor immune response is essential. 
However, a comprehensive investigation of these mechanisms is still lacking. Understanding these mechanisms 
has implications for colon cancer management, including improved immunotherapies, the identification of novel 
biomarkers, and the development of enhanced patient stratification for personalized therapeutic approaches.

In this study, we sought to explore the EMT-immune relationship in COAD and identify its important regula-
tors. To achieve these aims, we utilized a computational approach called transcriptomic signature  analysis17,18 to 
map information from gene expression profiles into EMT and immune cells’ signatures. This method condensed 
information from noisy, high-dimensional transcriptomic data into relevant gene sets that are associated with 
EMT and immune responses. We then used these signature scores to classify the samples and compare the EMT 
scores to the immune cell signature scores to examine the EMT-immune relationship. Additionally, we employed 
multivariate random forest to select important genes involved in both the EMT and immune processes in COAD.

Results
Overview
Figure 1 is a schematic diagram of our methodology. We obtained the COAD dataset (consisting of normal and 
solid tumor samples) from the GDC-TCGA database. The COAD dataset consists of adenocarcinomas from the 
colon and rectosigmoid junction. Then, we conducted differential gene expression analysis on the normal and 
tumor samples and noted the differentially expressed genes (DEGs) for further investigation to identify crucial 
EMT-immune-related genes. We utilized the singscore  method19 to map the gene expression profile of each 
tumor sample according to EMT and immune signatures. Then, we conducted hierarchical clustering to group 
the samples based on their EMT and immune signature scores, followed by a correlation analysis to explore 
the relationship between mesenchymal scores and immune cell scores and between mesenchymal scores and 
immunomodulator genes. Finally, we employed the multivariate random forest variable importance method to 
identify important genes in the EMT-immune relationship. We have made our analysis source codes available 
in the public GitHub repository (https:// github. com/ yusri- dh/ COAD- immune- EMT) to facilitate the reproduc-
tion of our results.

The identification of COAD clusters based on the EMT‑immune signature scores
We used the EMT gene set and 39 immune-related gene sets to conduct gene set enrichment analysis on each 
sample, utilizing the singscore  method19. Before conducting the enrichment analysis, we computed the gene set 
overlap to ensure its  reliability20. Specifically, we calculated the Jaccard similarity between the EMT gene set and 
each of the 39 immune-related gene sets to measure the extent of gene set overlap. We found the highest overlap 
between the EMT and CSF1 response gene sets, with a Jaccard similarity of 0.031. The low Jaccard similarity 
across the gene sets utilized in this study affirms the robustness of our analysis.

Figure 1.  Schematic diagram of analysis steps.

https://github.com/yusri-dh/COAD-immune-EMT
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Through the signature score, we identified three clusters characterized by varying levels of mesenchymal 
activity: high mesenchymal, medium mesenchymal, and low mesenchymal clusters (Fig. 2a). The high mesen-
chymal cluster demonstrated greater enrichment in various immune cells, such as macrophages, T cells, T-helper 
1 (Th1) cells, T-helper 1 (Th2) cells, mast cells, NK cells, NKT cells, and others, except for T-helper 17 (Th17), 
activated CD4, activated CD8, effector memory CD4, mature dendritic cells (mDC), NK56 bright, and NK56 
dim, which were low compared to the medium and low mesenchymal groups (Fig. 2b). We noticed a gradual 
decrease in the overall infiltration of lymphocytes, macrophages, and monocytes from high mesenchymal to 
medium mesenchymal to low mesenchymal clusters. To further understand the immune processes associated 
with each mesenchymal group, we employed five key gene sets representing tumor immune states from Thors-
son et al.21. The high mesenchymal group exhibited significantly higher (CSF1 response), Interferon-γ (IFNG) 
response, and TGF-β (TGFB) response scores than the low mesenchymal group.

Survival analysis of COAD clusters
We performed a Cox regression analysis using COAD clusters as covariates to observe their effect on patients’ 
overall survival. We found no significant difference in overall survival between the high mesenchymal and low 
mesenchymal groups. Unexpectedly, the medium mesenchymal group had significantly poorer survival than the 
low mesenchymal group (hazard ratio = 0.49 , P = 0.003 ) (Fig. 3a). Because of this discrepancy, we conducted 
an additional Cox regression analysis incorporating epithelial and mesenchymal scores as covariates to delve 
deeper into the details of this discovery. Our findings indicate no significant correlation between overall survival 
and either epithelial or mesenchymal scores (Fig. 3b).

Mesenchymal scores were positively correlated with immune cell infiltration scores and higher 
expression of inflammatory, immunosuppressive, and MHC class 2 immunomodulators
Correlation analysis revealed that the mesenchymal states exhibited positive correlations with nearly all signature 
scores related to immune cells and processes (31 out of 39). However, the anti-tumor cells’ activated CD4 and 
activated CD8 signatures displayed negative correlations with mesenchymal states (Fig. 4). The central memory 
CD8, DC, and mast cells displayed the strongest positive correlation with the mesenchymal scores. Interestingly, 
we also noticed that the immunotolerant immature DC (iDC) had a stronger positive correlation ( R = 0.87 ) 
with EMT than mature-activated DC (mDC) ( R = 0.24 ). Supplementary Table S2 lists all the results of the 
mesenchymal-immune signature correlation analysis.

Next, we computed the strength of the associations between immunomodulators and EMT states. Fig. 4b–d 
shows all moderate to strong significant correlations (correlation coefficient, R > 3 ; adjusted P < 0.05 ) between 
immunomodulators and mesenchymal scores. We found that mesenchymal scores were significantly positively 
correlated with most immunostimulatory genes. Among the stimulatory immunomodulators, TNFSF4, ITGB2, 
and SELP showed the highest correlation with mesenchymal scores. Additionally, the receptors of TNFSF4, 
TNFRSF4, and the binding partner of ITGB2, ICAM1, had a medium-strong correlation with mesenchymal 
score ( R = 0.44 and R = 0.65 , respectively). Similar to the analysis of stimulatory immunomodulators, the 
mesenchymal scores exhibited moderate to strong positive correlations (adjusted-P < 0.05 , R > 0.3 ) with all 
immunoinhibitory genes except for VEGFA and VEGFB. Among antigen-presentation genes, only MHC class 
2 showed a significant moderate-to-strong correlation. In contrast, MHC class 1 genes, such as HLA-A, HLA-B, 
HLA-C, MICA, and MICB showed weak or nonsignificant correlations. For detailed results of the correlation 
analysis between mesenchymal scores and immunomodulators, refer to Supplementary Table S3.

Differential analysis of genes and identification of important genes using MRF
We identified 4075 DEGs between the normal and tumor samples (Supplementary Table S4). Using these DEGs, 
we predicted the mesenchymal scores and the scores of five immune expression signatures from Thorsson et al.21 
(e.g., macrophages-monocytes (CSF1 response), overall lymphocyte infiltration, TGF-β (TGFB) response, IFN-
γ (IFNG) response, and wound healing) via multivariate random forest (MRF) with the Mahalanobis distance 
splitting  rule22,23. The top 10 important genes for each output are listed in Table 1. The genes that were important 
for both EMT and the immune process were of particular interest. These genes can be identified by their high 
mean importance or multiplicative scores. DOK2, IFI44, and WAS returned the highest mean importance scores. 
Meanwhile, DOK2, WAS, and SASH3 had the top three score multiplication products. The complete list of genes 
and their importance scores is presented in Supplementary Table S5.

Discussion
EMT has been shown to play a critical role in tumor development and  metastasis5. The interplay between EMT 
and the immune microenvironment in cancer is complex and has been investigated in numerous  studies11,24. As 
inflammation can induce  EMT11, we expected to find positive correlations between inflammation markers (such 
as cytokines and immune cell infiltration) and the colon cancer mesenchymal state. However, as EMT can also 
modulate the tumor immune microenvironment in colon cancer, we also sought to investigate which routes could 
contribute to immune escape. As expected, the tumor samples in the high mesenchymal group were characterized 
by inflammatory TME, with increasing infiltration of both innate (e.g., macrophages, neutrophils, mast cells, 
and NK cells) and adaptive immune cells (e.g., T cells, cytotoxic T cells, Th1, Th2, and activated B cells). The 
correlation analysis also showed that most of the immune cell and immunostimulatory cytokines were positively 
correlated with the mesenchymal score in COAD. In contrast, the low mesenchymal group showed low immune 
cell infiltration. From the Thorsson gene set, we observed that the high mesenchymal group tended to have higher 
CSF1 response, Interferon-γ (IFNG) response, and TGF-β (TGFB) response scores. Notably, the inflammatory 
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Figure 2.  Three clusters of colon cancers have different characteristics of immune cell infiltration. (a) The 
COAD samples were clustered into three groups, namely the low mesenchymal, medium mesenchymal, 
and high mesenchymal groups, based on their EMT and immune-related gene sets. The heatmap shows the 
singscore values; each column represents a sample, and each row represents a molecular signature. Positive 
values indicate gene set enrichment, while negative values indicate inverse enrichment. (b) The Student’s t-test 
comparison of signature scores between each group, with P-values adjusted by the Bonferroni correction. ns: 
adj-P > 0.05 , *: adj-P ≤ 0.05 , **: adj-P ≤ 0.01 , ***: adj-P ≤ 0.001 , ****: adj-P ≤ 0.0001.
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mediator TGF-β is a principal driver of EMT in  cancers8. Meanwhile, CSF1 and IFNG play important roles in 
the  breast25 and pancreas  cancer26 EMT processes, respectively.

Special attention should be given to TGF-β within the Thorsson gene signature. This regulatory factor pivotally 
shaped the functionality of both adaptive and innate immune cells, including cytotoxic T cells, Th1 and Th2 cells, 
NK cells, macrophages, and dendritic  cells27. In cancer, TGF-β exerts anti-inflammatory effects by facilitating the 
transition of M1 to M2  macrophages28, impeding dendritic cell  maturation29, suppressing Th1 and cytotoxic T 
cell  responses30, promoting Treg cell  induction31,32, and inhibiting NK cell  activity33. As an EMT driver, TGF-β 
contributes to the activation of both Smad and non-Smad pathways and is mediated by the master regulators of 
EMT, such as the Snail, Zeb, and Twist  proteins34. Given its crucial roles in both the cancer immune response and 
EMT processes, TGF-β is a vital link bridging the gap between EMT and the tumor immune  microenvironment8. 
Therefore, any alterations to TGF-β will likely affect both the cancer EMT process and the immune response.

Our survival analysis revealed no significant distinction in overall survival between the high mesenchymal 
group and the low mesenchymal group. Unexpectedly, the medium mesenchymal group exhibited less favorable 
survival outcomes than the low mesenchymal group. Given these non-linear findings, we conducted an additional 
Cox regression survival analysis using mesenchymal and epithelial scores to refine our findings. We found no 
significant correlation between overall status and either mesenchymal or epithelial scores. This result contradicts 
previous  reports35,36. However, our results align with Tan et al.’s study, which found no correlation between EMT 
status and overall status for colorectal cancer  patients37. This could be because EMT status is correlated not only 
with pro-tumor conditions (TReg, MDSC, CD274) but also with anti-tumor cells (NK cells and M1 cells), as our 
results show. Recent studies showed that EMT can increase cancer’s vulnerability to NK cell  cytotoxicity38, and 
there is a positive correlation between M1 macrophages and  EMT39. Thus, it is unlikely that EMT status is the 
sole prognostic factor for survival, as the cellular composition, dedifferentiation grade, and histological subtype 
may also contribute. For example, Angelova et al. demonstrated that immunophenotypes and antigenomic com-
position can act as prognostic factors in colon  cancer40, and Ueno et al. proposed a prognostic index for colon 
cancer based on the dedifferentiation grade combined with the histological marker of  EMT41.

Next, we wanted to know which pathways were involved in EMT-related-immune evasion, as EMT can 
modulate the tumor immune microenvironment in colon cancer. We found that the infiltration of immunosup-
pressive cells, such as DC,  MDSC42,43,  Treg44, and mast  cells45, was very strongly correlated ( R > 0.7 ) with the 
mesenchymal score. In the case of DC, iDC had a stronger positive correlation with EMT than mature-activated 
DC (mDC). Immature DC promoted the immunotolerance of cancer, whereas mature DC effectively promoted 
an immune response against  cancer46. The mesenchymal score was negatively correlated with anti-tumor acti-
vated CD4 and activated CD8 T cells, indicating that the T cell activation process is altered in tumors with high 
mesenchymal scores. EMT can inhibit T cell activation by altering antigen  presentation47–49, expressing immu-
noinhibitory  molecules26, or recruiting Treg  cells12,50. Our results also indicate that immunosuppressive modula-
tors (such as CD274 (PD-L1), PDCD1 (PD-1), CTLA4, HAVCR2 (TIM-3), and ENTPD1) play important roles 
in EMT-associated immune evasion. Our findings support other studies that reported the correlation between 
immune checkpoints and EMT in various  cancers51–54. Another immune escape mechanism involves altering 
the antigen presentation process. An effective anti-tumor immune response requires antigen presentation, in 
which MHC class 1 molecules, such as HLA-A, HLA-B, and HLA-C, present antigenic peptides from tumor cells 
or DC to CD8 T cells. After antigen presentation, CD8 T cells are activated and kill the tumor  cells55. However, 
we found only low or nonsignificant correlations between MHC class 1 expression and mesenchymal scores. 
The transformation of colon cancer cells into mesenchymal phenotypes does not seem to lead to the induction 
of antigen presentation through MHC class 1. Reduced MHC class 1 antigen presentation by mesenchymal-like 
cancer cells has also been observed in lung  cancers47, prostate  cancers48, and  melanoma49. The immunosuppres-
sive environment is crucial for mesenchymal-like colon cancer cells to evade immunosurveillance and facilitate 
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Figure 3.  The Cox regression survival analysis of COAD cluster and epithelial-mesenchymal score. (a) While 
no significant distinction exists between patients’ overall status in the high mesenchymal and low mesenchymal 
groups, the medium mesenchymal group exhibited a significantly poorer survival rate than the low 
mesenchymal group (hazard ratio = 0.49 , P = 0.003 ). (b) We found no significant correlation between overall 
status and either the epithelial score or the mesenchymal score.
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metastasis from the colon to other sites. Understanding how EMT influences immune evasion can inform the 
design and optimization of immunotherapies, potentially making them more effective against a broader range of 
cancer types. In addition, combining treatments that target both EMT-associated processes and immune evasion 
mechanisms could offer synergistic effects, potentially enhancing overall treatment efficacy.

The last part of our analysis was to select a relevant subset of genes involved in EMT-immune interactions. 
To achieve this, we used random forest variable importance  measures56. To account for multiple outcomes and 
interdependencies among the outputs, we used the multivariate random forest approach with the Mahalanobis 
splitting  rule22,23. Based on the multiplicative scores, DOK2 was identified as the most important gene for EMT 
and five intratumoral immune signatures. Docking Protein 2 (DOK2) is a member of the DOK family and a 
substrate for many important tyrosine kinases, such as epidermal growth factor receptor, platelet-derived growth 
factor receptor, and Her-257–60. DOK2 had the highest importance score in the CSF1 response and lymphocyte 

Figure 4.  Pearson’s correlation analysis of mesenchymal-immune signature scores and mesenchymal score-
immunomodulator gene expression. (a) The significant correlations (adj P < 0.05 ) between mesenchymal 
score and other immune signature scores. (b–d) The moderate and strong significant correlations (adj 
P < 0.05; |R| > 0.3 ) between mesenchymal scores and immunomodulators. The immunomodulators consist of 
(b) immunostimulatory genes, (c) immunoinhibitory genes, and (d) antigen presentation genes.
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infiltration. Some studies report that DOK2 has crucial functions in immune responses, such as negative regula-
tion of T cell receptor  signaling61, NK cell  activation62, and myeloid cell  proliferation63. According to our findings, 
DOK2 was also considered an important predictor of the tumor TGF-β response in COAD. We hypothesized 
that DOK2 and TGF-β collaboratively affect the EMT process. Another gene of interest is MSRB3. We found 
that MSRB3 was the most important predictor of EMT in COAD. MSRB3 or methionine sulfoxide reductase 
B3 catalyzes the reduction of methionine sulfoxide to  methionine64. Recent reports show that MSRB3 governed 
EMT and cell stemness via ZEB165. We also showed that MSRB3 is the most important predictor of the TGF-β 
response. DOK2 and MSRB3’s roles in the colon cancer immune microenvironment and the EMT process require 
further investigation, making them interesting subjects for future studies.

Our study could uncover the complex interaction between EMT and the immune process in COAD. A 
deeper understanding of this interaction can assist researchers in exploring new therapeutic options to enhance 
colon cancer treatment, particularly by addressing tumor inflammation and metastasis. Furthermore, unrave-
ling the molecular mechanisms responsible for the immunomodulation induced by EMT could reveal new 
immunomodulatory markers. When combined with the EMT status of tumors, these markers could serve as 
predictive indicators for both tumor progression and immunotherapies’ effectiveness. Additionally, EMT is a 
dynamic process, and its effect on immune evasion can vary in different types of cancer and even within different 
patients. Understanding this variability can help stratify patients based on their specific EMT and immune eva-
sion profiles. Such insights would be a significant stride in oncology, offering valuable information for tailored 
treatment approaches.

Methods
Data acquisition and preparation
We obtained the mRNA expression profiles of COAD (raw counts and transcripts per million (TPM) units) 
from the GDC-TCGA harmonized database using the Bioconductor package  TCGAbiolinks66. The database was 
accessed on January 10, 2023. The dataset included 481 COAD primary tumor samples and 41 normal tissue 
samples. We filtered out genes with less than five counts across more than 50% of the samples. We also discarded 
the genes with identical names to enforce unique mapping. Then, we applied a log(1+ x) transformation to the 
gene expression data in TPM units for transcriptome signature scoring.

Differential expression analysis (DEA) of the genes
We conducted a differential gene expression analysis using the workflow outlined by Silva et al.67. This workflow 
involved using the TCGAbiolinks package to preprocess the data and perform differential expression analysis 
(DEA). The data preprocessing consisted of three main steps. First, we utilized the TCGAanalyze_Preprocessing 
function to perform Array Array Intensity correlation and detect outliers. Second, the TCGAanalyze_Normali-
zation function was employed to normalize the mRNA transcripts. The normalization steps in this function 
consist of within-lane normalization to adjust for the GC-content effect (or other gene-level effects) on read 
counts and between-lane normalization to adjust for distributional differences between lanes (e.g., the sequenc-
ing depth). Finally, we applied the TCGAanalyze_Filtering function to filter out genes with low signals across 
the samples. After these preprocessing steps, we used the TCGAanalyze_DEA function to identify the DEGs in 
the normal and tumor samples. We defined the genes with an absolute log fold change of ≥ 1 and FDR of ≤ 0.01 
as significant DEGs.

Transcriptomic signature scoring and sample clustering
For this study, we used cancer-specific transcriptomic EMT signatures from Tan et al.37 for both the epithelial 
and mesenchymal phenotypes of cancer cells. We combined gene sets from Angelova et al.40, Aran et al.68, and 
Thorsson et al.21 to represent immune cells and the immune process in the tumor microenvironment. Angelova 
et al. developed gene sets that represent various tumor-infiltrating immune cells in colon  cancer40, while Aran 
et al. provided the M1 and M2 macrophage gene  sets68. Thorsson et al. compiled immune expression signatures 
from multiple sources and identified five key gene sets for tumor immune states, including lymphocyte infil-
tration, macrophages and monocytes (the CSF1 response), the Interferon-γ (IFNG) response, wound healing, 
and the TGF-β (TGFB)  response21. Jaccard similarity was employed to calculate the intersection of gene sets, as 
described in Maleki et al.20.

Table 1.  The top 10 genes for each output importance score.

Signature outputs Top 10 important genes

Mesenchymal MSRB3, CCDC80, MIR100HG, GLI3, SULF1, COL8A1, DDR2, DOK2, BNC2, LINC01094

Lymphocyte infiltration DOK2, SASH3, WAS, CD27, CD37, IL10RA, MAP4K1, CD79A, HCLS1, APBB1IP

CSF1 response DOK2, SASH3, IL10RA, WAS, HCLS1, MS4A4A, APBB1IP, LINC01094, CD37, CD163

IFNG response IFI44, RSAD2, DOK2, WAS, DDX60, HCLS1, IL10RA, SASH3, LINC01094, FCGR3A

TGFB response MSRB3, GLI3, CCDC80, SULF1, COL8A1, DOK2, DDR2, COL3A1, WAS, MIR100HG

Wound healing MSRB3, MIR100HG, BNC2, CD37, DOK2, IFI44, GLI3, MS4A4A, DDR2, LINC01094

Mean importance DOK2, IFI44, WAS, MSRB3, SASH3, IL10RA, HCLS1, CD37, GLI3, CCDC80

Multiplicative score DOK2, WAS, SASH3, IL10RA, HCLS1, CD37, MS4A4A, LINC01094, APBB1IP, CD163
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Using the log(1+ TPM) gene expression data for the tumor samples, we applied singscore methods to acquire 
signature scores for the EMT and immune cells. Then, we employed hierarchical clustering with Ward’s mini-
mum variance method to categorize the samples into subgroups based on the EMT-immune signature scores. 
To determine the optimal number of clusters, we used the R package NbClust, which consists of 30 indices for 
assessing cluster numbers.

Survival analysis
We used univariate Cox regression analysis to analyze the effects of the COAD clusters and epithelial-mesen-
chymal scores on COAD patients’ overall survival. A P-value of < 0.05 was considered significant. All survival 
analyses were performed with the survival and survminer R packages.

Statistical analysis
To compare the signature score means among different groups, we conducted t-tests between the high mesen-
chymal and medium mesenchymal groups, the high mesenchymal and low mesenchymal groups, and the low 
mesenchymal and medium mesenchymal groups. We applied the Bonferroni correction to adjust the P-value 
and considered mean differences significant if the adjusted P-value was < 0.05.

We standardized each of the signature scores to have zero mean or unit variance. Then, we computed Pearson’s 
correlation coefficient between the standardized mesenchymal signature score and the immune cell infiltration/
process signature scores.

We also investigated the relationships between mesenchymal signature scores and immunomodulator genes 
from Thorsson et al.’s previous study (Supplementary Table S1)21. The immunomodulators comprised immu-
nostimulatory, immunoinhibitory, and antigen-presentation (major histocompatibility complex [MHC] class 1 
and class 2) genes. We transformed the gene expression data (TPM units) with the log(1+ x) transformation and 
standardized it to have zero mean or unit variance. Then, we performed Pearson’s correlation analysis between 
the transformed gene data and standardized mesenchymal scores. We used the Bonferroni correction to adjust 
the P-value and considered correlations significant if the adjusted P-value was < 0.05.

Multivariate random forest variable importance
We wanted to find the important genes associated with EMT and intratumoral immune states. To achieve this 
goal, we used MRF with the Mahalanobis distance splitting  rule22, which was implemented in the R package 
 randomForestSRC23. We trained MRFs with DEGs from previous analyses as inputs to predict the mesenchymal 
scores and five immune expression signature scores from Thorsson et al.21. The five immune signatures were 
lymphocyte infiltration, CSF1 response, IFN-γ response, TGF-β response, and the wound healing process. The 
expression of DEGs was transformed with a log(1+ x) transformation and standardized to have zero mean 
or unit variance. The variable importance for each output was determined with the permutation importance 
 method56. We calculated the mean importance score and multiplicative score for each gene. The mean importance 
score was the average of all output importance scores, indicating the effect of a variable or gene on predicting one 
or more outputs. The multiplicative score was the product of each importance score and represented the gene’s 
influence in predicting all outputs simultaneously.

Data availability
We downloaded the publicly available COAD dataset from The National Cancer Institute (NCI) Genomic Data 
Commons (GDC) TCGA https:// gdc. cancer. gov/ access- data/ gdc- data- portal with the TCGAbiolinks package.
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