
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19130  | https://doi.org/10.1038/s41598-023-45791-z

www.nature.com/scientificreports

Quantum‑aided secure deep neural 
network inference on real quantum 
computers
Hanqiao Yu 1,4, Xuebin Ren 1,4*, Cong Zhao 1,4, Shusen Yang 1,2* & Julie McCann 3*

Deep neural networks (DNNs) are phenomenally successful machine learning methods broadly applied 
to many different disciplines. However, as complex two‑party computations, DNN inference using 
classical cryptographic methods cannot achieve unconditional security, raising concern on security 
risks of DNNs’ application to sensitive data in many domains. We overcome such a weakness by 
introducing a quantum‑aided security approach. We build a quantum scheme for unconditionally 
secure DNN inference based on quantum oblivious transfer with an untrusted third party. Leveraging 
DNN’s noise tolerance, our approach enables complex DNN inference on comparatively low‑fidelity 
quantum systems with limited quantum capacity. We validated our method using various applications 
with a five‑bit real quantum computer and a quantum simulator. Both theoretical analyses and 
experimental results demonstrate that our approach manages to operate on existing quantum 
computers and achieve unconditional security with a negligible accuracy loss. This may open up new 
possibilities of quantum security methods for deep learning.

Deep neural networks (DNNs) are machine learning models that have achieved impressive success across 
different domains such as science, medicine, humanities, and engineering,  respectively1–4. Yet using a DNN 
model in the real world is often accompanied by security risks. The process of using a trained DNN model to 
make prediction is called DNN inference. Due to the complexity of computation, DNN inference services are 
predominantly deployed on the Cloud, bringing in the possibility of malicious attacks from the Cloud service 
provider and eavesdroppers. It is challenging to achieve information security for DNN inference considering its 
nature as a highly complex two-party computation process between the data holder (inference service consumer) 
and the model owner (Cloud service provider)5–8.

Methods based on classical cryptography like secure multi-party computing and homomorphic encryption 
have been introduced to secure DNN  inference5,8–12. However, both in theory and practice, the existing methods 
are based on the restriction on the technology the attackers can use, as well as some unproved mathematical 
 propositions9,13, and the advance of new algorithms and computation methods like quantum computing could 
potentially pose security vulnerability. The security weakness leads to the risk of data and DNN model leakage, 
and may bring concerns on applying DNNs in sensitive areas. Consequently, achieving unconditionally secure 
inference is desirable, but theoretically impossible using classical  computation14.

Quantum cryptography and quantum computing technologies promote a whole new set of possibilities 
for unconditionally secure computation. Although it is demonstrated by the Mayers-Lo-Chau (MLC) no-go 
 theorem15,16, that ideal one-sided two-party secure computation is impossible under both classical and quantum 
settings, several recent works have shown that similar effects can be achieved with quantum-based strategies by 
relaxing the restriction of ideal one-sided two-party secure computation, such as vector  product17, delegated 
quantum  computing18–21, and oblivious  transfer22–25. Unlike the classical cryptographic methods, the security of 
such quantum methods are based on only fundamental physical laws rather than non-guaranteed algorithmic 
assumptions, therefore are unconditionally secure against all possible  attacks26.

In this research, we bring the idea of quantum cryptography into DNN inference, and design a quantum-aided 
method for unconditionally secure DNN inference, overcoming the constraints of classical methods. Specifically, 
in our protocol, we guarantee that the following security requirements are satisfied without any assumptions on 
not only the classical but also the quantum computation ability of any possible attackers. First, the data from the 
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data holder and the inference results are hidden from the model provider in the protocol. Second, information 
about the DNN model is hidden from the data holder except what can be logically inferred from the data and the 
inference results. Finally, no information from either party is leaked to the eavesdropper through the channels 
used in the protocol.

The basic idea is to first achieve a noisy version of secure quantum oblivious transfer (QOT), an universal 
primitive that can be used to compose arbitrary secure two-party  computations27, with the help of an untrusted 
third party. Based on that, we can thereby compose unconditionally secure DNN inference. However, several 
challenges need to be resolved to make this practical. First, the oblivious transfer-based secure computing 
methods mostly rely on high-fidelity computing, that significantly hinders complex computations. In addition, 
a great number of oblivious transfer operations are required in general secure computations, but the quantum 
capacity of real quantum computers is seriously limited. In this Article, we design a coding and computing 
protocol for DNN inference that overcomes such limits in today’s quantum computers. Based on the intrinsic 
noise tolerance of  DNNs28,29, a scheme is introduced into the DNN model training that enables DNN model to 
tolerate a high computation error rate during the inference. Thus, we relax the fidelity requirement of the QOT 
protocol, and consequently make our QOT protocol and secure DNN inference feasible on comparatively low-
fidelity quantum computers with modest quantum capacity.

Here we introduce the system design for secure DNN inference based on QOT. The security of our method 
against classical and quantum adversaries is theoretically guaranteed as long as sufficient quantum capacity is 
available. The overall framework of the proposed design is shown in Fig. 1. A DNN, just like other artificial 
neural networks, consists of several layers of neurons, and the neurons are interconnected layer by  layer30,31. 
This architecture can be modelled with a cascade of affine transformations followed by nonlinear activation 
functions. In our approach, the deep neural network is first split into several basic blocks such as vector addition 
and matrix multiplication. The blocks’ inputs and parameters are provided by the data holder and the model 
provider, respectively.

The blocks are evaluated with a stochastic protocol based on QOT to prevent unnecessary information 
revelation to either the data holder or the model provider. We design an algorithm and the corresponding coding 
to evaluate the basic blocks for DNN inference with an oblivious transfer primitive, and the quantum protocol to 
implement the oblivious transfer, which requires low quantum capacity and is suitable for fairly noisy quantum 
channels.

Finally, we demonstrate the effectiveness of the proposed approach for basic operators and DNN inference 
tasks through extensive experiments on the IBMQ quantum  computer32. We also validate our method’s 
effectiveness on large DNNs using quantum simulators with several DNN models for different tasks, including 
general image and medical image classifications. We show that our approach enables secure inference for 
mainstream DNN models and common machine learning tasks.

Figure 1.  Securing DNN inference with (a) QOT and (b) classical two-party secure computing. In the secure 
inference with QOT, the data holder (Alice) and the model provider (Bob) collaborate by measuring the 
entangled pairs from the third party (Trent) and exchanging the index of some of their measurements, while in 
the classical case Alice sends encrypted data to Bob.
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Results
Quantum protocol for oblivious transfer
For DNN inference in an unconditionally secure manner in real world, a practical secure quantum cryptographic 
primitive has to be established first. Here we propose a quantum oblivious transfer (QOT) protocol that is 
applicable to commercially available quantum infrastructures with limited fidelity and quantum capacity, and 
provide a theoretical security guarantee. Figure 2a shows the schematic diagram of one-out-of-two oblivious 
transfer, a certain type of oblivious transfer, where a sender (say Alice) prepares and transfers two one-bit 
messages b0 and b1 to a receiver (say Bob). Bob can choose to learn either one of the two messages, bs, s ∈ {0, 1} , 
but learns nothing about the remaining one b1−s . Obviously, Alice can also prepare two Bernoulli distributions 
B0 and B1 , and send the samplings of these two distributions as messages.

The MLC no-go theorem implies that the ideal one-sided two-party oblivious transfer is impossible to be 
unconditionally secure, with either classical or quantum  methods14,16,33. Hence, we adopt a three-party model 
where any party can be dishonest, but the third party cannot collude with the communicating parties. We will 
elucidate why this assumption does not violate the requirements of unconditional security. To achieve the concept 
of oblivious transfer, we refer to this third party as Trent.

In our method, Trent serves as a quantum state generator not directly involved in the computation. We first 
assume that Trent can operate the Hadamard gate H , Toffoli gate CCNOT , and Pauli X gate X , while Alice and 
Bob can measure the quantum state. During computing, we suppose that Trent can be fully dishonest but not 
collude with any of the other participants, which is a feasible setting, because the dishonesty of Trent’s can be 
detected by Alice and Bob with certain pre-agreed ways (see Supplementary Information S1). Trent only use 
public and unconditionally secure channels and therefore such checking will not affect the security. Note that 
all unidirectional communications of classical information are implemented in a strictly confidential manner 
that were strictly confirmed to be feasible with Quantum Key  Distribution26.

The entire process can be divided into three stages: state preparation, validation and transfer. For the state 
preparation stage, Trent prepares a sequence of entangled quantum states and sends the entangled pairs to Alice 
and Bob. First, Trent generates a sequence of identical states {|ψab�} in the state space for four qubits H , such 
that each state satisfies

where a 4-qubit quantum state is written as summation of tensor products of pairs of two-qubit quantum states. 
The first part is represented using the corresponding binary values (e.g., |1� ⊗ |1� is written as |3� ), while the 
second part is depicted using conventional notation (e.g., |1� ⊗ |1� is written as |1, 1� ). The quantum circuit to 
generate such a state is shown in Fig. 3b. Each state is split into two sub-states

(1)|ψab� =
1

∑

b0=0

1
∑

b1=0

1
∑

s=0

|2b1 + b0� ⊗ |s, bs�,

Figure 2.  The architecture of quantum-aided secure DNN inference. (a) The basic component of quantum-
aided secure DNN inference is QOT. (b) The basic operator is securely evaluated with QOT, and the affine 
transformation is composed with the basic operators. (c) The neural network is implemented with affine 
transformations as the basic blocks. (d) Complex DNNs are split into classical layers and quantum layers. Layers 
considered to be sensitive (e.g., the layer directly outputs the result) are implemented with QOT to avoid privacy 
leakage.
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where |ψa� ∈ Ha , |ψb� ∈ Hb , and Ha , Hb are two-dimensional subspaces of H = Ha ⊗Hb . Then, Trent 
sends the entangled states |ψa� , |ψb� to Alice and Bob, respectively, and repeats this process for n times until both 
Alice and Bob separately get a sequence of quantum states. In this stage, the decoy bits  technique34 is applied to 
prevent eavesdropping by outside attackers, which is achieved by inserting decoy particles randomly selected in 
|0� , |1� , |+� , and |−� into the particles prepared for sending to Alice and Bob. Trent will then publish the insertion 
location and the measurement bases of the decoy particles. If an eavesdropper try to measure the states sent by 
Trent, some of the decoy particles will not be at the eigenstates of the measurement bases, and this will change 
the states of the decoy particles. Then Alice and Bob will find that the states of the decoy particles do not match 
the expected results, and the eavesdropper will be detected. After that, the decoy particles are discarded for the 
next stage.

For the validation stage, Alice and Bob receive the corresponding states and randomly choose some of the 
states for validation. Alice and Bob measure the bits of |ψab� chosen for validation with thewith the Pauli Z matrix 
( |1� �1| − |0� �0| ). Note that the four bits should follow the one-out-of-two oblivious transfer relationship among 
b0 , b1 , s, and bs . Alice and Bob share the indices of states for validation, and exchange the measurement results 
of the states they both selected for validation. If the portion of results following the one-out-of-two oblivious 
transfer relationship is less than a pre-agreed threshold based on the channel noise, Alice and Bob would find 
the protocol to be unreliable and abort the protocol. Otherwise, Alice and Bob will preserve a sub-sequence of 
the quantum states that none of them selected for validation, for the next stage. We denote such sub-sequences 
Alice and Bob kept as Sa =

{

|ψa�i
}n

i=0
 and Sb =

{

|ψb�i
}n

i=0
 , respectively.

The final stage is transfer, where Bob measures the quantum states in Sb and saves the indices of states whose 
first bit is s, s ∈ {0, 1} . The index set of states chosen by Bob is denoted as Ib . If Ib is empty, Bob claims the 
process has failed and all parties start over from the state preparation stage. Otherwise, Bob sends Ib to Alice. 
Alice measures the states in Sa at the indices in Ib , and stores the indices where the measurement result is equal 
to 2b1 + b0 as Ia . Finally, Alice randomly chooses an index ia in Ia and sends it to Bob. The second bit of Bob’s 
measurement at position ia is the output of the QOT process. The overall process is depicted in Fig. 2b and 
introduced in more detail in the Supplementary Information S1.

The output bit is the QOT output for the following reason. Denoting the measurements of ia-th sub-states 
as Mia

a1 , M
ia
a2 , M

ia
b1 , and Mia

b2 , respectively, we have Mia
b1 = s and 2Mia

a1 +Mia
a2 = 2b1 + b0 . According to Eq. (1), 

we have Mia
b2 = bs.

(2)|ψab� = |ψa� ⊗ |ψb� ,

Figure 3.  Overview of affine transformation based on QOT. (a) The flow chart of 2-dimensional affine 
transformation. First, Alice prepares input �x and Bob prepares A and �b . Then the matrices are scaled so that the 
norms of matrices are lower than 1, and are sampled as input binary matrices. The secure affine transformation 
is conducted through encoding and encoded operations based on QOT. (b) The diagram of encoded AND 
gate implementation based on QOT. Trent sends entangled pairs. Alice and Bob perform the encoded AND by 
transmitting the indices. (c) The quantum circuit for Trent to prepare entangled pairs.
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We claim that QOT is unconditionally secure, because neither Alice nor Bob can interfere with Trent’s state 
generations, making attacks from Alice or Bob impossible. Meanwhile, as the measurement results of Bob’s or 
Alice’s alone contain no secret information, Trent gets no information by attacking Alice or Bob. The formal 
security proof is demonstrated in Methods.

Note that, since neither our protocol itself nor its security proof depends on the low error rate assumption, 
QOT can tolerate high error rates (noise levels) in quantum computing and quantum communication. 
Particularly, our protocol passes the error in quantum computing and quantum channels to the next step for 
DNNs to deal with. Therefore, the overall noise tolerance level only depends on the noise tolerance of DNNs, 
which can be set by manually introducing noises during DNN training. This is explicitly discussed in Methods.

Implementing deep neural networks with quantum‑aided blocks
To compose a DNN model with the QOT primitive, the basic blocks of DNN models have to be implemented 
first. As shown in Fig. 2b, the basic DNN blocks are affine transformations naturally composed of vector inner 
product and vector addition

where A =
(

�aT1 , �aT2 , . . . , �aTm
)

 . Theoretically, a QOT protocol enables us to conduct certain kinds of secure two-
party computation with a noisy channel. Here we show how to implement secure vector inner product with our 
QOT protocol, and the implementation of secure vector addition is shown in Methods. The process contains 
encoding, secure computation, and decoding. All unidirectional communications are assumed to be strictly 
confidentially.

Say Alice holds a vector �u = (u1, u2, . . . , um) such that ui > 0,
∑

ui < 1, i = 1, 2, . . . ,m , and Bob holds 
�v = (v1, v2, . . . , vm) such that vi > 0,

∑

vi = γ < 1 . Each of the vectors corresponds to a categorical distribution 
of a one-hot binary vector. For example, we have an m-dimensional binary vector �Bu = (0, 0, . . . , 1, . . . , 0) , 
P(Buk = 0) = uk , k = 1, 2, . . . ,m . Similarly we have �Bv = (0, 0, . . . , 1, . . . , 0) , P(Bvk = 0) = vk , k = 1, 2, . . . ,m 
and P

(�Bv = �0
)

= 1− γ.
Treating the computation of �u · �v as an example, for encoding, Alice first samples a binary vector �ba according 

to �u and so does Bob. Alice encodes the binary vector with a random binary one-time pad �k,

Then Alice prepares a sequence of encoded AND gates with QOT (OT1,OT2, . . .) to compare Alice’s encoded 
binary vector with Bob’s, where OTn represents a oblivious transfer operation that returns the corresponding 
value. Each encoded AND takes encoded bits as input and outputs the encoded results, which follows

For secure computation, Bob evaluates the sequence of the oblivious transfer gates with his own binary vector 
�bb and gets

Bob’s output is obtained with an exclusive-or computation 
⊕

 (exclusive or) on �c . Similarly, Alice computes the 
decoding key with 

⊕

 on �k . Bob’s and Alice’s results are respectively given as

The final output of secure computation is given by

For decoding, the final multiplication result is obtained either by Alice sending k to Bob or by Bob sending c to 
Alice. The inner product, as the final computation object, �u · �v is given by the probability below.

implying that we can sample the binary value of the vector inner product with this process. A single binary 
evaluation is called a shot, and a more accurate result can be obtained by repeating the process above for more 
shots. More details about the implementation of other operators for DNNs are demonstrated in Methods. An 
outline of a two-dimensional affine transformation based on QOT is shown in Fig. 3.

(3)A�x + �b = (�a1 · �x, �a2 · �x, . . . , �am · �x)+ �b

(4)Enc�k
(

�bu
)

= (Bu1 ⊕ k1,Bu2 ⊕ k2, . . . ,Bum ⊕ km).

(5)OTi(0) = 0⊕ ki , OTi(1) = Bui ⊕ ki .

(6)
�c = (OT1(Bv1),OT2(Bv2), . . . ,OTm(Bvm))

= ((Bu1 ∧ Bv1)⊕ k1, (Bu2 ∧ Bv2)⊕ k2, . . . , (Bum ∧ Bvm)⊕ km).

(7)c =
m
⊕

i=1

ci , k =
m
⊕

i=1

ki .

(8)

k ⊕ c = k ⊕
m
⊕

i=1

(Bui ∧ Bvi)⊕ ki

= k ⊕
m
⊕

i=1

Bui ∧ Bvi ⊕
n

⊕

i=1

ki =
m
⊕

i=1

Bui ∧ Bvi .

(9)P(k ⊕ c = 1) = P

(

m
⊕

i=1

Bui ∧ Bvi = 1

)

= �u · �v,
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According to the discussion above, we have the basic building blocks for secure deep learning via QOT. 
These provide us with an operator set for DNNs, and the next step is to set up a neural network with such 
operators. The general architecture of quantum-aided DNNs is shown in Fig. 2, which is divided into the operator 
and network layers. Figure 2a,b show the operator layer of quantum-aided DNNs. First, QOT and quantum 
secure communication make up the basic operator set, including secure inner product and secure addition. By 
composing the basic operators, we have an operator set consisting of affine transformations. Figure 2c,d show 
the network layer of quantum-aided DNNs. A DNN can be comprised of affine transformation blocks. Some 
layers can remain to be evaluated with classical computing for speeding up, and the rest are evaluated with the 
quantum protocol to ensure security.

Simulation and experiment results
We implemented the QOT gate on both real quantum computers on the Cloud and noisy classical quantum 
simulators. In this Article we used a quantum computer from the IBM Quantum Experience  Program35 to 
validate QOT’s core characteristics, including the introduced noise. The error rate for a single QOT operation 
is 0.179, and more details are given in Methods. Additionally, the error rate can be further reduced with an 
application-specific quantum computer like a photon computer.

Firstly the computation error of basic blocks was evaluated. Figure 4a illustrates the products of three-
dimensional vector multiplication using simulated quantum systems with different CNOT error levels, where 
the ideal product is 0.3. It is obvious that the products disperse as the CNOT error increases, and converge to the 
ideal product when the shot number increases. To achieve an acceptable product error, we take 2000 shots of 
evaluations for each DNN inference to balance the resource usage and accuracy. The error rate also limits the scale 
of affine transformations. Although the product error can be corrected by adjusting parameter � (see Methods), 
a higher error rate does introduce higher noise to the result. Specifically, we applied an affine transformation 
with five-dimensional inputs as the basic secure operator in the experiment.

For real quantum computer validations, we used a fully connected neural network for the binary MNIST 
classification  task36, where the model was trained on 12,000 handwritten 0 and 1 digits and validated on 2000 
digits. Our model comprised an input layer with 784 ( 28× 28 ) neurons, three hidden layers with 512, 128 
and five neurons respectively, and a 5× 2 fully connected output layer. The output layer was implemented 
with the quantum protocol. The model was trained with classical backpropagation and tested (inference) with 
quantum-aided evaluation. According to Fig. 4c, the classical-quantum hybrid model identifies the digits without 
a noticeable classification accuracy loss.

We also conducted extensive simulations with the Qiskit linear-algebra-based simulator to demonstrate our 
protocol’s applicability to larger DNNs with special-purpose quantum infrastructures. The noise was imported so 
that the final oblivious transfer error rate was 5× 10−3 , under which the input width of the neural network can 
be up to 100. We used a modified  AlexNet37 to classify the CIFAR-10  dataset38 in simulations, which is a common 
image classification benchmarking setting. The modified AlexNet consists of five convolutional layers and three 
fully connected layers with widths 100, 84, and 10, respectively. The last two layers were implemented with the 
quantum protocol. The classical-quantum hybrid model was trained for 10 epochs when the accuracy converged. 
The accuracy of the quantum and classical models is compared in Fig. 4d and the result is also summarized in 
Table 1, implying that the quantum-aided model brings little accuracy loss (less than 2%).

To further validate our approach on real-world sensitive data, we conducted simulations on the common 
dataset for medical image classification,  MedNIST2. The noise was imported so that the CNOT error rate 
was 5× 10−2 , comparable to that of the available quantum  infrastructure39. A modified AlexNet with two 
convolutional layers and four fully connected layers with widths 120, 84, 12 and 6, respectively was adopted as 
the classifier. The last two layers were implemented with the quantum-aided protocol. The model was trained 
for 10 epochs. The classification results and accuracy curve are illustrated in Fig. 4b,e, demonstrating that our 
method has comparable performance with the classical DNN model on real medical images. Experimental 
results above are summarized in Table 1, showing that the loss brought by our quantum protocol is insignificant 
( ≤ 1.58% ) in these tasks.

Discussion
In summary, we propose a methodology for secure DNN inference augmented by quantum technology, utilizing 
commercially available quantum computing infrastructures. Our approach introduces a classical-quantum hybrid 
architecture to implement DNNs while ensuring secure inference. Notably, we present a Quantum Oblivious 
Transfer (QOT) protocol that has been proven to be unconditionally secure, forming the basis for a fundamental 
set of operators supporting secure DNN inference.

In principle, our work demonstrates the advantages of quantum information technologies in achieving 
unconditional security for DNN inference, primarily by involving an untrusted third party. However, it’s 

Table 1.  The accuracy of quantum-aided DNNs compared with classical DNNs.

Classification datasets Classical DNN (%) Quantum-aided DNN (%)

Binary MNIST 99.85 99.68

CIFAR-10 54.20 52.62

MedNIST 99.17 99.51
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important to note that the fidelity of quantum computing and quantum channels can impact the efficiency of 
our method. This challenge may be particularly pertinent when applying our approach to large DNN models 
using commercially available quantum  infrastructures31.

Future research and development efforts will enable the extension of our methodology to handle larger 
and more complex DNNs with additional layers and diverse operators. Ultimately, our work represents an 
exciting initial step towards achieving unconditionally secure deep learning, offering promising prospects for 
the intersection of quantum technology and machine learning security.

Methods
Implementation of quantum oblivious transfer
We implemented our quantum circuit with the Qiskit framework and the ibmq_santiago cloud quantum 
computer provided by IBM Quantum Experience. The ibmq_santiago has five qubits, which is sufficient 
for our protocol which requires four qubits, and the average error rate of CNOT gate is 6.746× 10−3 . The Toffoli 
gate used in the quantum circuit was implemented with the single-bit quantum gates and the CNOT gates. 
The decomposition of the proposed QOT circuit is shown in Fig. 5. For both real quantum computer and 
quantum simulator, the quantum circuit was built and executed with the Qiskit Python quantum programming 
 framework40.

Security of quantum oblivious transfer
In this part, we demonstrate that the proposed Quantum Oblivious Transfer (QOT) protocol remains secure 
against any malicious adversaries, as long as Trent does not engage in collusion with any party. We begin by 
assuming the confidentiality of quantum channels among all parties, employing established techniques such as 
decoying and privacy amplification for securing quantum channel  establishment34. These security measures can 
be implemented through the use of quantum decoy particles or via quantum teleportation across a confidential 
classical  channel34,41. Notably, we emphasize that classical communication between Alice and Bob is kept 

Figure 4.  The experiment results on real quantum computer and simulator. (a) The computation results 
for QOT-based vector product. (b) Classification results of medical images in MedNIST dataset. (c–e) The 
classification accuracy curves on MNIST, CIFAR-10 and MedNIST, respectively.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19130  | https://doi.org/10.1038/s41598-023-45791-z

www.nature.com/scientificreports/

confidential. As a result, any physical channel connecting arbitrary parties does not lead to information leakage, 
rendering the need for further discussion on external attacks unnecessary.

Moreover, as eavesdropping cannot yield any more valuable information, collusion between participants and 
an eavesdropper is tantamount to an attack by a single participant.

Regarding attacks from participants, we first consider Trent’s attempt to pilfer information. Trent may act 
dishonestly and deviate from the protocol by preparing states entangled with Trent’s personal state |f (b1, b0, s)�:

In this case, Trent might gain access to Alice’s or Bob’s measurement results. However, Trent can only ascertain the 
exact values of b0 , b1 , or s if and only if Trent possesses knowledge of indices Ia ( Ib ). Nevertheless, the transmission 
of states in the QOT protocol is presumed to occur via strictly confidential channels, such as a one-time pad with 
quantum key distribution. Consequently, Trent can glean no information about Alice’s or Bob’s private data, but 
only a sequence of random bits resulting from Trent’s entanglement attack.

Next, we consider the possibility of an attack from either Alice or Bob attempting to intercept quantum 
communication between the other party and Trent. However, this scenario is equivalent to an external attack, 
which has already been demonstrated to be infeasible above. The sole information available is derived from Ib or 
ia . Importantly, for c ∈ {0, 1} , the conditional probabilities P(s = c|Ib) and P(bs−1 = c|Ib, ia) consistently hold at 
1
2
 , ensuring that no unnecessary information leaks from Ib or ia.

Secure evaluation for basic blocks of DNNs
The secure evaluation of matrix multiplication is introduced in Results. Here we introduce the secure evaluation 
for vector addition.

The process is similar to secure vector multiplication. Suppose that Alice holds an m-dimensional vector �u 
such that ui > 0,

∑

ui = γ < 1 , and similarly Bob holds �v with the same property. In the encoding stage, Alice 
samples a binary vector �ba according to �u and so does Bob in the same way of secure vector multiplication. Bob’s 
vector is encoded with a binary one-time pad �kb that is only known to Bob,

Alice also holds a secret one-time pad �ka , then prepares a sequence of encoded OR gates to simulate the addition 
with QOT (OT1,OT2, . . . ,OTm) . Each encoded OR gate follows

(10)
1

∑

b0=0

1
∑

b1=0

1
∑

s=0

|b1, b0, s, bs� ⊗ |f (b1, b0, s)�.

(11)Enc �kb
(�Bb

)

= (Bb1 ⊕ kb1,Bb2 ⊕ kb2, . . . ,Bbm ⊕ kbm).

Figure 5.  The implementation of the quantum oblivious transfer circuit.
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In the secure computing stage, Bob evaluates the sequence of the oblivious transfer gates with his own binary 
vector and gets

In the final decoding stage, Alice could either send the key �ka to Bob to reveal the computation result, or keep 
the output encoded as the input for the next secure operator.

As mentioned above, in both addition and multiplication setting, the vectors are required to be non-negative, 
and the L1-norm of the vector should not exceed γ , which is not mathematically complete for building a general 
neural network. However, a common neural network can be built with limited operators without losing accuracy 
using weight clamping and  scaling42, which is applied in this Article.

The impact of QOT noise for inference
Here the impact of noise in QOT for inference is analyzed. As long as the oblivious transfer error rate ǫ satisfies 
2mǫ ≪ 1 , the final approximate result follows (see Supplementary Information S1)

where � is the computation error rate, which follows

Thus, the corrected final result follows

Usually, such a probabilistic approximation can bring substantial noise to computation. However, due to the 
noise tolerance of DNNs, the computation errors incur little to no degradation of accuracy as long as the noise 
caused by computation errors is below a threshold. Assuming that the maximum noise tolerance of the DNN 
layer after the quantum-aided block is given in the form of max variance σmax of the noise, the upper bound of 
the computation error rate is (see Supplementary Information S1)

During the training of the DNN model, first, a noise tolerance requirement is estimated according to Eq. (17). 
Then the corresponding Gaussian noise is added to the quantum-aided blocks of the DNN model to enhance the 
noise tolerance of  DNNs43. The trained DNN model is tolerant to noise lower than the additional noise, which 
guarantees that the DNN model can handle the noise brought by quantum errors with a lower level in terms of 
standard deviation of noise.

Data availability
All data used in this work are publicly available through online sources as follows: the MNIST  dataset36 (https:// 
www. kaggle. com/ datas ets/ hojja tk/ mnist- datas et), the CIFAR-10  dataset38 (https:// www. cs. toron to. edu/ ~kriz/ 
cifar. html) and the MedNIST  dataset2 (https:// github. com/ apola nco32 25/ Medic al- MNIST- Class ifica tion).
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