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Two‑stage multi‑objective 
optimization for ICU bed 
allocation under multiple sources 
of uncertainty
Fang Wan 1*, Julien Fondrevelle 1, Tao Wang 1 & Antoine Duclos 2,3

Due to the impact of COVID-19, a significant influx of emergency patients inundated the intensive care 
unit (ICU), and as a result, the treatment of elective patients was postponed or even cancelled. This 
paper studies ICU bed allocation for three categories of patients (emergency, elective, and current ICU 
patients). A two-stage model and an improved Non-dominated Sorting Genetic Algorithm II (NSGA-II) 
are used to obtain ICU bed allocation. In the first stage, bed allocation is examined under uncertainties 
regarding the number of emergency patients and their length of stay (LOS). In the second stage, in 
addition to including the emergency patients with uncertainties in the first stage, it also considers 
uncertainty in the LOS of elective and current ICU patients. The two-stage model aims to minimize the 
number of required ICU beds and maximize resource utilization while ensuring the admission of the 
maximum number of patients. To evaluate the effectiveness of the model and algorithm, the improved 
NSGA-II was compared with two other methods: multi-objective simulated annealing (MOSA) and 
multi-objective Tabu search (MOTS). Drawing on data from real cases at a hospital in Lyon, France, the 
NSGA-II, while catering to patient requirements, saves 9.8% and 5.1% of ICU beds compared to MOSA 
and MOTS. In five different scenarios, comparing these two algorithms, NSGA-II achieved average 
improvements of 0%, 49%, 11.4%, 9.5%, and 17.1% across the five objectives.

The Covid-19 pandemic has hit the whole world since the end of December 2019 on an unprecedented scale. Its 
unpredictability has major implications for stabilizing healthcare offers, leading the health authorities to call for 
a massive deprogramming of surgical activity in all healthcare facilities to increase care capacities, particularly 
in the ICU1. Many patients have seen their service postponed or cancelled without an expected resumption date. 
This measure could obscure the prognosis of patients, or even make them lose a potential chance2,3.

Therefore, optimizing the allocation of these resources (operating rooms, nurses, hospital beds, etc.) and 
improving the utilization of medical resources are important means to mitigate the potential gap between medi-
cal supply and demand to promote the upgrading of medical services. Table 1 presents a synthesis of previous 
works from the literature dealing with the allocation of medical resources.

The healthcare of surgical patients usually consists of operative and postoperative care. The operative uses 
the corresponding upstream resources and the postoperative uses the corresponding downstream resources4. 
Given that most upstream resources are relatively expensive and scarce, especially for the use of operating 
rooms (ORs), the mainstream of extant research focuses on the planning issues of upstream resources, while 
simply assuming ample sufficiency of downstream resources (e.g., inpatient beds)5,6. However, a shortage of 
downstream resources, such as inpatient or ICU beds, not only hinders the timely treatment of patients but also 
adversely impacts the utilization of related resources in the operating rooms. Ordu et al.7 introduced a hybrid 
forecasting-simulation–optimization model, using statistical datasets from A&E, outpatient, and inpatient ser-
vices, to predict patient demand for physicians, nurses, and beds, thereby facilitating better planning for both 
upstream and downstream resources.

Additionally, in real healthcare systems, numerous inevitable uncertainties complicate resource allocation 
and staff scheduling, e.g., the number of emergency patients, surgery durations, and inpatient length-of-stay 
(LOS)8. Problems stemming from uncertain demand are typically addressed using stochastic programming or 
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robust optimization9,10. These methods often fundamentally assume that variables adhere to a known probability 
distribution11,12. However, the underlying distribution is frequently unknown.

Furthermore, it’s often essential to consider the benefits for both hospitals and patients. Akin and Ordu13 
devised a novel patient-centered two-stage optimization approach to determine the required number of nurses 
and to schedule their shifts. To cater to the interests of multiple stakeholders, a multi-objective problem typically 
arises. For instance, potential objective functions might include minimizing patient waiting time, maximizing 
resource utilization, and maximizing the emergency reception rate14–16.

Considering the multiple uncertainties in ICU bed allocation and aiming to simultaneously reduce patient 
waiting time, increase patient admission rate, and improve bed occupancy rate, this study introduces a two-stage 
bed allocation model for three categories of patients. This model holistically balances these objectives. Among 
these categories: An “elective patient” is someone scheduled for surgery or treatment in advance and is not in 
an emergency situation. An “emergency patient” requires immediate medical care due to a sudden and critical 
condition. A “current ICU patient” refers to someone already receiving treatment in the ICU24,25. Given the 
proven efficacy of the genetic algorithm in solving medical resource allocation problems26–28, this paper employs 
the improved NSGA-II to address the issue.

This paper offers three main contributions:
First, it studies the ICU bed allocation problem for three categories of patients, taking into account various 

uncertainty factors associated with these groups.
Second, a two-stage multi-objective model is proposed with the objectives of minimizing the number of 

required ICU beds, maximizing resource utilization, and admitting the maximum number of patients.
Lastly, to evaluate the effectiveness of the model and algorithm, a variety of scenarios are presented, and 

comparisons are made with other methods.
The remainder of this paper is structured as follows. "The two-stage model formulation" section shows the 

problem description and formulation. In "Solution approach for the two-stage model" section, improved NSGA-II 
and solution approach are introduced. "Case study" section studies a real hospital case, and "Comparison experi-
ments" section presents the numerical results, proving the superiority of the model and algorithm. “Conclusion” 
section concludes the paper and outlines future research directions.

The two‑stage model formulation
The problem of ICU bed allocation is a complex issue that involves multiple sources of uncertainty. To effectively 
address this complexity, the problem has been decomposed into two different stages. In the first stage, ICU beds 
are allocated to emergency patients, elective patients, and current ICU patients, given the uncertainties regarding 
the number and LOS of emergency patients. The second stage based on the results of the first phase, addressing 

Table 1.   Literature review related to the allocation of medical resources.

Ref. Backgrounds Uncertain factors Objectives Method

Zhang et al.17 Solve the problem of bed arrangement 
in eye hospital Patient number, LOS Waiting time Markov process, linear programming

Liu et al.15 Determine the surgery sequence and 
doctors for elective patients Surgery duration Operating time, resource utilization Genetic algorithm

Peng et al.14
Allocate operating rooms, surgery 
dates and ICU beds for elective 
patients

LOS, surgery duration, patient number Resource utilization, costs Robust optimization, column genera-
tion

Shen and Deng18 Arrange 5 types of ophthalmic patients 
to be hospitalized – Bed turnover, patient satisfaction Particle swarm optimization

Davis and Fard12 Determine bed occupancy for 4 types 
of patient beds in COVID-19 situation Patient number, LOS Bed utilization Statistical model

Tsai et al.16
Determine surgery start time and 
sequence for elective and emergency 
patients

Patient number, surgery duration, Overtime cost Simulation optimization, Laplace 
transform

Bekker et al.11 Predict the number of occupied ICU 
and clinical beds due to COVID-19 Patient number, LOS Tardiness costs Statistical model, queuing model

Wang et al.19 Arrange surgery and ICU beds for 
elective patients LOS, surgery duration Bed utilization Fuzzy model, Genetic Algorithm

Li et al.8 Schedule the operation rooms for 
emergency and elective surgeries Surgery duration Surgery profit Grey wolf algorithm, robust optimiza-

tion

Maghzi et al.20 Allocate operating rooms and medical 
equipment to specific patients Patient preparation, surgery duration Cost, surgery number Fuzzy model, NSGA-II

Fattahi et al.21
Allocate equipment resources and 
service resources to patients during 
COVID-19

Patient number Patient admission, resource utilization Stochastic programming

Chang et al.22
Design casualty collection points 
and allocate medical resources for 
earthquakes

Arrivals time; service times Delivery time, triage waiting time Rapid-screening and particle algo-
rithm

Wang et al.23
Research operating room scheduling 
under non-operating room anesthesia 
mechanism

Emergency patient arriving OR utilization, cost Heuristic algorithm
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uncertainties not only related to emergency patients but also incorporating uncertainties associated with elective 
patients and current patients.

Allocation model of the first stage
In the first stage, there are three primary optimization objectives. The first aims to maximize the bed occupancy 
rate, the second seeks to minimize the delay index for elective patients, and the third emphasizes maximizing 
the admission rate for emergency patients. The parameters, variables, and mathematical formulas for the first 
stage are described below:

Indices and sets:
T : Set of planning horizon indexed by t ,
el : Set of elective patients indexed by i,
N : Set of current ICU patients indexed by n,
Parameter:
Q : Number of available ICU beds in hospital,
Expi : Expected admission date of elective patient i,
LOSeli : LOS of elective patient i,
Lossi : Loss of chance if postponed for elective patient i,
Remn : Remaining LOS of current ICU patient n,
Mpt : Maximum number of emergency patients on the day t ,
�t : Parameter of Poisson distribution on the day t ,
Variables:
emt : Number of emergency patients arriving on the day t  , indexed by j.
Cut : All ICU inpatients on the day t ,
LOSemjt : LOS of the emergency patient j on the day t ,
Decision variables:

Mathematical model:

Xit =

{

1, Elective patient i is admitted on the day t
0, otherwise

(1)max f11 =

(

T
∑

t=1

Oct

Q

)

/T

(2)min f12 =

T
∑

t=1

el
∑

i=1

(

Lossi × (t − Expi)× xit
)

/

T
∑

t=1

el
∑

i=1

xit

(3)max f13 =

T
∑

t=1

emt

Mpt

(4)Cut =

el
∑

i=1

t
∑

k=t−LOSeli+1

xik +

t
∑

k=t−LOSemjk+1

emk
∑

j=1

emjk +
∑

Remn≥t

cun, ∀ t

(5)Oct =

el
∑

i=1

xit + emt + Cut , ∀ t

(6)
el
∑

i=1

xit + Cut ≤ Q, ∀ t

(7)
T
∑

t=1

xit ≤ 1, ∀ t

(8)emt ∼ P(�t), ∀ t

(9)emt ≤ Mpt = max P(�t), ∀ t

(10)emt ∈ N , ∀ t

(11)Cut ∈ N , ∀ t
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Equations (1–3) define the three optimization objectives of the first stage. Equation (4) represents the patients 
who are still occupying the beds on the day t  . Equation (5) calculates the total number of patients in the ICU on 
the day t  . Equation (6) indicates that the number of elective patients and current ICU patients does not exceed Q . 
Because the number of emergency patients is uncertain, the total number of three types of patients may exceed 
Q . Equation (7) indicates that elective patients will only be served once. Equation (8) supposes that emergency 
patients follow Poisson distribution29,30. Equation (9) indicates that the number of emergency patients admit-
ted does not exceed the maximum number in the Poisson distribution. Equations (10–12) represent the range 
of variables, the number of emergency patients, the number of inpatients and the LOS of patients are integers.

Allocation model of the second stage
In the second stage, further sources of uncertainty, particularly the LOS for elective and current ICU patients, 
are taken into account. This variation in LOS can arise as some patients might necessitate a prolonged stay due to 
disease progression or clinical complications. This stage emphasizes two objectives. Firstly, it seeks to minimize 
deviations from the initial bed arrangement established in the first stage, ensuring stability and consistency in 
ICU bed allocation. Secondly, the aim is to reduce the number of additional beds needed while guaranteeing 
accommodation for all patients. The parameters, variables, and mathematical formulas for this stage are detailed 
below:

Variables:
Ri : The random number that the elective patient i extends LOS,
Rn : The random number that the current ICU patient n extends LOS,
emt : Number of emergency patients arriving on day t  , indexed by j,
Cut : All ICU inpatients on the day t ,
LOSemjt : LOS of the emergency patient j on the day t ,
NLOSeli : LOS of elective patient i in the second stage,
NRemn : Remaining LOS of current ICU patient n in the second stage,
S1= {Bedarr11, ...,Bedarr1T } : Bed allocation for three categories of patients during T Days in the first stage,
Q1= {q11, ..., q1T } : The required number of ICU beds every day to meet the needs of three categories of 

patients in the first stage,
S2= {Bedarr21, ...,Bedarr2T } : Bed allocation for three categories of patients during T Days in the second stage,
Q2= {q21, ..., q2T } : The required number of ICU beds every day to meet the needs of three categories of 

patients in the first stage.
Mathematical model:

(12)LOSemjt ∈ N , ∀ j, ∀ t

(13)max f21 =

T
∑

t=1

(Bedarr1t ∩ Bedarr2t)

(14)min f22 = max(q21 − q11, ..., q2T − q1T )

(15)

(

T
∑

t=1

Oct

Q

)

/T ≥ f11

(16)
T
∑

t=1

el
∑

i=1

(

Lossi × (t − Expi)× xit
)

/

T
∑

t=1

el
∑

i=1

xit ≤ f12

(17)
T
∑

t=1

emt

Mpt
≥ f13

(18)Cut =

el
∑

i=1

t
∑

k=t−NLOSeli+1

xik +

t
∑

k=t−LOSemjk+1

emk
∑

j=1

emjk +
∑

NRemn≥t

cun, ∀ t

(19)Oct =

el
∑

i=1

xit + emt + Cut , ∀ t

(20)
el
∑

i=1

xit + Cut ≤ Q, ∀ t
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Equations (13–14) delineate the two optimization objectives for the second stage. Specifically, Eq. (13) maxi-
mizes the congruence between the daily bed arrangements across two stages. A high degree of similarity implies 
that even with changes in a patient’s LOS, the bed arrangement remains largely consistent, bolstering the stability 
of hospital scheduling. Equation (14) aims to minimize the need for additional ICU beds when patients extend 
their LOS. Equations (15–17) ensure that the new solution maintains the objectives set in the first stage. Equa-
tions (18–23) echo the constraints from the first stage. Equations (24–27) indicate scenarios where patients in 
the second stage extend their LOS, with the resultant extended LOS being rounded up to the nearest integer. 
Lastly, Eqs. (28–33) represent the range of variables, the number of patients and the extended LOS of patients 
are integers.

Solution approach for the two‑stage model
Data features of patients
The data features of the three types of patients are different. The following is an introduction to the features of 
these patients.

The features of emergency patients
The number of emergency patients per day is uncertain. The Poisson distribution, which describes the number 
of random events in a given unit of time (or space) as detailed by Nygren et al.31, can be utilized to represent 
this variability. Accordingly, the Poisson distribution is employed to formulate the probability distribution of 
emergency patient arrivals, as denoted in Eq. (34), where P(X = k) represents the probability when the number 
of emergency patients is k , and � is the parameter of the Poisson distribution. The data features of emergency 
patients include the number of emergency patients and corresponding probability and random LOS, as shown 
in Fig. 1. For example, on day 1, the probability of 1 emergency patient is 5%, and the LOS is 1. The probability 
of 2 emergency patients is 13%, and their LOS is 1 and 3, respectively.

(21)
T
∑

t=1

xit ≤ 1, ∀ i

(22)emt ∼ P(�t), ∀ t

(23)emt ≤ Mpt = max P(�t), ∀ t

(24)LOSeli × (1+ Ri) ≤ NLOSeli , ∀i

(25)NLOSeli ≤ LOSeli × (1+ Ri)+ 1, ∀i

(26)Remn × (1+ Rn) ≤ NRemn, ∀n

(27)NRemn ≤ Remn × (1+ Rn)+ 1, ∀n

(28)emt ∈ N , ∀ t

(29)Cut ∈ N , ∀ t

(30)Ri , Rn ∈ Q, ∀i, ∀n

(31)LOSemjt ∈ N , ∀j, ∀t

(32)NLOSeli ∈ N , ∀i

(33)NRemn ∈ N , ∀n
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Figure 1.   Data features of emergency patients.
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The features of elective patients
The data features of elective patients include the ID number, expected admission date, LOS, and “Loss of Chance 
if Postponed”. The latter refers to the potential detriment due to the real admission date being later than initially 
expected. A few literatures address this parameter32,33. In our research, the “Loss of Chance if Postponed” is cat-
egorized as mild (0.1), moderate (0.5), or severe (0.9). A value of 0.9 suggests that a delay in the patient’s admis-
sion would result in significant repercussions, thus warranting prioritization of the patient’s request. Conversely, 
a value of 0.1 suggests that postponement might be reasonable in the face of ICU bed shortages.

“Delay index” is used to measure the total loss caused by delay, which is equal to “delay days” × “Loss of chance 
if postponed”. As shown in Fig. 2, elective patient 1 expects to be admitted to ICU on day 1, but his admission is 
accepted on day 3, so his delay index is (3–1) × 0.5.

The features of current ICU patients
The data features of current ICU patients include the ID number of patients, LOS and remaining LOS, as shown 
in Fig. 3, for example, the LOS of current ICU patient 1 is 2, and his remaining LOS on day 1 is 1.

The process of NSGA‑II
This paper mainly uses NSGA-II to solve this multi-objective problem with uncertainty. The framework of 
NSGA-II is shown in Fig. 4. The main steps are described in the following subsections.

The individual generation
An individual consists of bed assignments for all days, and the bed assignments for each day are generated by 
three steps: (1) Generate bed occupation of current ICU patients; (2) Generate uncertain numbers of emergency 
patients; (3) Select elective patients. The combined total of patients should not exceed the available number of 
beds. For clarity, different coding prefixes are used: current ICU patients have a prefix of 10,000−, emergency 
patients have 20,000−, and elective patients have 1−. This coding system is illustrated in Fig. 5

Initial population generation
The initial population consists of a set of individuals, as shown in Fig. 6.

Crossover and mutation
Given that bed assignments for current ICU and emergency patients must be prioritized, crossover and mutation 
operations are only applied to elective patients. Due to the varying LOS for elective patients, bed constraints 
during their LOS must be observed during gene exchange operations.

For the crossover operation, two elective patients are randomly selected and their admission dates are 
exchanged. This operation ensures adherence to bed constraints and considers the expected admission date, as 
illustrated in Fig. 7. For the mutation operation, an elective patient is randomly chosen, their admission record 

(34)P(X = k) =
�
k

k!
e−�

, k = 0, 1, 2...
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Figure 2.   Data features of elective patients.
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is deleted, and then another patient, whose LOS is not longer than the original patient’s, is inserted. This process 
is depicted in Fig. 8.

Re‑insert procedure
Due to variations in patients’ LOS, there may be vacant ICU beds following the crossover and mutation opera-
tions. To enhance bed utilization, patients with shorter LOS and a larger loss of chance are reintroduced. This 
procedure is termed the “Re-Insertion Process”, depicted in Fig. 9.

NSGA‑II for the first stage
The procedure of NSGA-II solving the first stage model is shown in Algorithm 1.

NSGA‑II for the second stage
When the LOS for certain patients is extended, limited ICU beds might result in some patients not being admit-
ted on the day originally scheduled in the first stage. Consequently, an extended LOS requires validation to 
ensure that the optimal solutions from the first stage still meet bed constraints. If affirmed, the algorithm outputs 
the optimal solutions. If not, three alternative strategies are employed to achieve a new optimal solution. The 
procedure of NSGA-II for solving the second stage model is detailed in Algorithm 2.Algorithm 2: NSGA-II for 
the second stage

Start

Generate initial population

Crossover and mutation

Non-dominated sort

g≤gmax

End

Output Pareto optimal set

Yes

Merge and Select

Evaluate population

Re-insert procedure
There are vacant

beds?

No

Yes

Verify feasibility

No

Figure 4.   The framework of NSGA-II.
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Case study
To evaluate the performance of the models and algorithms, we examined real-world cases from a hospital in 
Lyon, France. This hospital has a total of 24 ICU beds, with a planning horizon spanning one week. We simplified 
and privately treated the raw data. During the period, there were up to 80 elective patients and 3 current ICU 
patients. The daily number of emergency patients follows a Poisson distribution34. The parameter � , according 
to the property of Poisson distribution, can be estimated by the average number of emergency patients over a 
period. These data are presented in Table 2. Additionally, the parameters for NSGA-II, derived from experimental 
tests, are detailed in Table 3. 

Result analysis of the first stage
In the first stage, the bed requirements for current ICU patients are addressed initially, followed by emergency 
patients, and finally elective patients. Table 4 presents the first-front solutions ordered by Pareto optimality. 
Columns 1, 2, and 3 display the numbers of the three types of patients admitted in these solutions. The 4th 
column represents the first objective: the bed occupancy rate. The 5th column details the second objective: the 
delay index. The 6th column highlights the third objective: the emergency admission rate. For instance, if the 
Poisson distribution predicts a maximum of 12 emergency patients on day 1, and only 3 emergency patients 
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arrive, the emergency admission rate for that day stands at 3/12, or 25%. The three objectives are then averaged 
over the planning horizon.

Figure 10 depicts the bed allocation for solution 1 from Table 3. For instance, ICU bed 16 (B16) is occupied 
by elective patient 4 on day 1, then by elective patient 18 from days 2 to 4, and subsequently by elective patient 41 
from days 5 to 7. Owing to the high emergency admission rate, a majority of the beds are taken up by emergency 
patients. Conversely, Fig. 11 displays solution 2 from Table 3. Here, the emergency admission rate is low, leading 
to most of the beds being occupied by elective patients.

Figure 12 displays the probability curve of bed occupancy for the first two solutions listed in Table 3. Given 
the number of emergency patients is uncertain, the bed occupancy is also uncertain. For instance, on day 1, there 
are 3 current ICU patients and 8 elective patients. Based on the Poisson distribution, there’s a 3% probability 
that 1 emergency patient will arrive, and then the probability of occupying 12 beds is 3%. If the probability of 2 
emergency patients arriving is 5%, then the probability of occupying 13 beds stands at 5%, and so on. The Poisson 
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distribution indicates that while there’s low possibility for a large number of emergency patients to arrive, this 
could result in occupancy exceeding the available 24 beds when all emergency patients are admitted.

Under normal situation, hospitals might opt for solution 2, allocating more beds to elective patients while 
reserving an adequate number for emergencies. The bed occupancy remains stable from days 1–7, with the high-
est probability centering around occupying 28 beds. However, in critical situations, such as during the COVID-19 
outbreak, hospitals could prioritize solution 1 to ensure enough beds are available for emergency patients. The 

Algorithm 1.   NSGA-II for the first stage.
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probability of occupying about 20 beds is highest on days 1–4. On days 5–7, the probability of occupying about 
25 beds is the highest, indicating an increase in the number of emergency patients during that period.

Result analysis of the second stage
Some patients may extend LOS due to changes in their condition. In the second stage, we aim to extend patients’ 
LOS based on a probability distribution, derived from historical patient records, as shown in Table 5. Subse-
quently, we check whether the optimized solution in the first stage still satisfies the bed constraints. Three strate-
gies have been designed to find robust solutions.

Three strategies in the second stage

a.	 Elective patient-first strategy: The needs of elective patients are prioritized over those of emergency patients. 
Due to this prioritization, some new emergency patients arriving later may be rejected.

b.	 Emergency patient-first strategy: The needs of emergency patients are addressed first, followed by those of 
elective patients. Consequently, some elective patients might not receive admission.

c.	 Recall algorithm to generate a new solution: Based on the patients’ extended LOS, the NSGA-II is recalled. 
This algorithm pursues two objectives: maximizing the similarity between the new and the first-stage solu-
tions, and minimizing the number of added beds. It also ensures that the three objectives of the first stage 
do not deteriorate.

Figure 13 shows the new bed arrangement for solution 1 from Table 3 when the LOS is extended under the 
Elective patient-first strategy. The bed arrangements of these two solutions have an 86% similarity.

Algorithm 2.   NSGA-II for the second stage.
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Figure 14 compares the bed occupancy of solution 1 with its three new solutions derived from the three strat-
egies. Given that the LOS for patients is extended, additional beds are necessary to accommodate the patients’ 
needs, leading the three new solutions to have a greater number of beds than solution 1.

“Elective patient-first strategy” adds the greatest number of beds, because the demands of emergency patients 
are not fully met and the number of new emergency patients is also uncertain. In contrast, “Recall algorithm” 
added the fewest beds, demonstrating its effective performance even in the second stage.

Results analysis of the second stage
Table 6 displays the Pareto first-front solutions from the first stage and their three corresponding solutions from 
the second stage. It primarily includes the numbers of admitted emergency and elective patients, as well as the 

Table 2.   The data features of three types of patients.

Date

Emergency patients Elective patients Current ICU patients

Code Num. Pro. LOS Code Exp. LOS Loss Code LOS Rem.

Day1

– 0 0.01 0 1 1 3 0.1 10001 3 1

20001 1 0.05 1 2 1 2 0.1 10002 4 2

20002 2 0.13 3 3 1 1 0.5 10003 2 1

… … … … … … … …

20013 12 0.03 4 … … … …

… … … … 16 1 3 0.9

… … … … … … … … … … … …

Day7

– 0 0.07 0 73 7 1 0.9

……

20062 1 0.03 2 74 7 3 0.5

20063 2 0.09 4 75 7 2 0.5

… … … … … … … …

20070 15 0.03 3 … … … …

… … … … 80 7 1 0.1

Table 3.   The settings of algorithm parameters.

Parameter Value Parameter description

P 100 Number of individuals

G 200 Number of iterations

Mr 0.1 Mutation rate

Cr 0.7 Crossover rate

Q 24 Available ICU beds

T 7 Planning horizon

el 100 Number of elective patients

N 3 Number of current patients

Table 4.   The Pareto first-front solutions of the first stage.

Solution Current Emergency Elective f11 f12 f13

1 3 50 45 1 0.4 0.71

2 3 16 80 1 0.16 0.3

3 3 45 55 1 0.21 0.61

4 3 54 42 1 0.49 0.75

5 3 19 73 1 0.1 0.28

6 3 33 65 1 0.3 0.62

7 3 39 59 1 0.31 0.65

8 3 47 50 1 0.38 0.67

9 3 33 65 1 0.3 0.62

10 3 26 69 1 0.18 0.38

11 3 19 73 1 0.1 0.28

12 3 39 59 1 0.31 0.65

Avg. 3 35 61.25 1 0.27 0.54
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two objectives of the second stage: similarity and added beds. Given that the demands of current ICU patients 
must be met, the number of these patients remains consistent across all solutions.

Figure 15 shows the average value of the 12 solutions about the number of admitted patients, the total ICU 
beds and the similarity between the original solution and the new one under the three strategies.

In Fig. 15, the three strategies require 41, 38, and 33 ICU beds, respectively, to accommodate the extended 
LOS of various patients and the uncertain number of emergency patients. The “Elective patient-first strategy” 
has a high similarity, but it requires a greater number of added beds and will reject some emergency patients. 
The “Emergency patient-first strategy” exhibits smaller similarities and a moderate number of added beds but 
may postpone more elective patients. Meanwhile, the “Recall algorithm strategy” demonstrates the least simi-
larity and the fewest added beds, yet it offers the best admission rates for both elective and emergency patients.

Comparison experiments
Comparisons based on algorithms
Bed allocation performance is also influenced by the efficacy of the multi-objective algorithm. In our study, we 
compared NSGA-II with two other algorithms: multi-objective simulated annealing (MOSA) and multi-objective 
Tabu search (MOTS). To ensure a fair comparison, all three algorithms used same coding methods and optimi-
zation objectives. Additionally, domain operations in MOSA and MOTS are consistent with the crossover and 
mutation operations of NSGA-II.

Simulated Annealing (SA) occasionally accepts solutions that are inferior to the current one based on a certain 
probability. This feature can help the algorithm escape local optima and potentially find a global optimum35,36. 
The pseudocode for MOSA is detailed in Algorithm 3.

Tabu Search (TS) is a step-by-step optimization algorithm that conducts a global neighborhood search. It 
emulates human memory by marking previously identified local optimal solutions and processes during the 
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search. By doing so, it avoids revisiting them in subsequent searches37,38. The pseudocode for MOTS is detailed 
in Algorithm 4. The parameters of MOSA and MOTS algorithms are set according to the literatures39,40, as 
shown in Table 7.

Result analysis
NSGA-II, MOSA, and MOTS are implemented in Matlab R2014a on Windows 10 (X64). The best result is 
chosen from 10 runs. Figure 16 displays the average number of the three patient types across all solutions using 
the three algorithms. Due to some patients extending their LOS in the second stage, the number of admitted 
patients in this stage is fewer than in the first stage. NSGA-II outperforms both MOSA and MOTS, resulting in 
more patients being admitted to the ICU.

Table 8 presents the three optimization objectives from the first stage and the two optimization objectives 
from the second stage for the MOSA and MOTS algorithms. In the second stage, the averages for “Similarity” and 
“Added bed” are computed across the three strategies. The “Added beds” are 13.35, 16.93, and 14.78, indicating 
that, on average, NSGA-II, MOSA, and MOTS require 37, 41, and 39 beds respectively to satisfy patient demands.

Figure 17 shows the boxplots of the four optimization objectives except f11 for the three algorithms. The 
median of MOSA and MOTS is different from the median of NSGA-II, and NSGA-II can explore more pos-
sibilities and better solutions. The average running time of the three algorithms is 41.42 s, 24.65 s, and 32.74 s, 
respectively. NSGA-II has the best results and the longest run time, but this time is acceptable.

Statistical analysis
In addition, a paired t-test was conducted to determine whether there are any statistically significant differences 
between NSGA-II and the two other algorithms: MOSA and MOTS. Given the expectation that the solution 
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Table 5.   The probability distribution of extending LOS.

Extend LOS Probability (%)

0 40

1 25

2 20

3 10

4 5
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quality of NSGA-II is superior to that of the other two algorithms, a one-sided alternative hypothesis H1 was 
formulated as follows,

where µNSGA-II and µOA are the population means for NSGA-II and OA (representing the compared algorithms: 
MOSA and MOTS). The results of the paired t-test are listed in Table 9.

As shown in Table 9, for all three pairs, P was less than 0.1, and the mean difference is less than 0, which 
indicates that NSGA-II is significantly different from other algorithms and performs better.

H1: µNSGA-II − µOA < 0
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Comparisons based on scenarios
Scenario design
Probabilistic distributions of extending LOS have some implications for bed allocation in the second stage. 
Table 10 shows the probability distribution of extending LOS through 5 representative scenarios. For example, 
S1 represents the situation in which “Extend LOS = 0 day” accounts for the largest proportion, and S2 represents 
the situation in which “Extend LOS = 1 day” accounts for the largest proportion, etc. The last row in Table 10 is 
the probability distribution curve of the scenarios with five trends respectively.

Result analysis
Figure 18 shows the total number of admitted patients of the three algorithms under the 5 scenarios. Compared 
with MOSA and MOTS, the changes of NSGA-II are gentler, indicating that NSGA-II is fit to generate robust 

Table 6.   The solutions and their corresponding three solutions. Two objectives of the second stage values are 
in bold.

No.

First-stage Second-stage

Original 
solution Elective patient-first Emergency patient-first Recall algorithm

Eme. Ele. Eme. Ele. f21 f22 Eme. Ele. f21 f22 Eme. Ele. f21 f22

1 50 45 40 43 0.86 19 45 29 0.73 15 55 26 0.38 12

2 16 80 7 60 0.77 14 12 49 0.61 11 16 55 0.36 8

3 45 55 29 40 0.88 22 38 33 0.63 14 38 42 0.36 7

4 54 42 4 57 0.87 20 50 23 0.63 15 35 40 0.49 9

5 19 73 11 60 0.75 13 19 45 0.67 13 15 52 0.47 10

6 33 65 14 58 0.82 16 28 39 0.63 14 44 37 0.33 8

7 39 59 20 46 0.88 20 35 34 0.62 18 26 50 0.52 12

8 47 50 31 40 0.84 22 44 25 0.56 17 41 35 0.38 9

9 33 65 11 60 0.82 18 28 39 0.63 12 42 43 0.33 11

10 26 69 5 62 0.80 16 26 42 0.64 15 15 57 0.46 8

11 19 73 4 57 0.75 10 19 45 0.67 11 10 70 0.47 9

12 39 59 14 58 0.88 20 35 34 0.62 16 40 57 0.56 10

Avg. 35 61.25 15.83 53.42 0.83 16.79 31.58 36.42 0.64 14.25 31.42 47.00 0.43 9.01
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solutions. To analyze the variations in patient numbers in the 5 scenarios, the number of admitted patients using 
NSGA-II were fitted. Both quadratic and cubic fits were found to be the better fits. Figure 19 presents the fitted 
curve and equation, with the residual plot revealing that the modulus of the residuals for the cubic fit is a mere 
0.39. NSGA-II can fit the number of admitted patients in different scenarios, which shows that when the scenario 
changes appropriately, NSGA-II can still obtain reasonable results, which indicates that when solving ICU bed 
allocation under uncertainty, our model and algorithm are robust.

Algorithm 3.   MOSA for the first and second stages.

Table 7.   Parameters of MOSA and MOTS.

Parameters Value

MOSA

Start temperature 1000

End temperature 1.0e−3

Cooling rate 0.95

MOTS

Tabu list 50

Tabu length 5

Candidate set 10

Iterations 200
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Table 11 shows the results of the five optimization objectives in the two stages using the three algorithms 
under the 5 scenarios, and Fig. 19 shows the similarity and added beds for the three algorithms. In scenario 5, 
where most patients extend their LOS, there’s a significant shift in bed allocation, leading to a lower similarity 
and a greater need for additional beds. Conversely, in scenario 1, with fewer patients extending their LOS, bed 
allocation changes minimally, resulting in higher similarity and fewer additional beds. The “added beds” of 
NSGA-II are 13.35, 15.67, 19.67, 20.93, and 21.07, respectively, indicating that in 5 scenarios, to meet the demands 
of patients, 37, 40, 44, 45, 45 ICU beds are required respectively.

Figure 20 shows the average bed occupation using three algorithms in the first stage and the 5 scenarios in the 
second stage. The bed occupation curve of NSGA-II lies to the left of the curve for MOSA and MOTS, indicating 
that NSGA-II requires fewer ICU beds compared to MOSA and MOTS.

Conclusion
This paper studies ICU bed arrangement when the number of emergency patients is uncertain and the LOS of 
three types of patients is also uncertain. The research is conducted in two primary stages. The first stage consid-
ers how to balance reducing elective patient waiting time while increasing emergency admission rate and bed 
utilization. Based on the first stage, the second stage considers how to minimize the number of added beds while 
ensuring the least changes in bed arrangements when patients extend their LOS.

Algorithm 4.   MOTS for the first and second stages.
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This research improves the utilization rate of medical resources and the stability of hospital scheduling. This 
can lead to decreased hospital expenses, the accommodation of more patients, and heightened patient satisfac-
tion. Moreover, this research provides strategies for hospitals to effectively respond to varying demands for ICU 
beds during sudden illnesses. A limitation of this research is its assumption that emergency patient arrivals follow 
a Poisson distribution. Future studies should explore fitting other distributions for emergency patient arrivals.

Number of patients in two stages of the three algorithms
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Figure 16.   The average number of patients in all solutions of the three algorithms.

Table 8.   The optimization objectives in the two stages of MOSA and MOTS.

No.

MOSA MOTS

The first stage
The second 
stage The first stage

The second 
stage

f11 f12 f13 f21 f22 f11 f12 f13 f21 f22

1 1 0.22 0.38 0.46 14.81 1.00 0.39 0.39 0.82 11.98

2 0.98 0.2 0.27 0.62 18.25 0.98 0.28 0.38 0.33 16.53

3 1 0.74 0.54 0.69 16.02 1.00 0.69 0.49 0.57 14.47

4 1 0.81 0.55 0.56 17.65 0.98 0.27 0.36 0.56 13.88

5 1 0.23 0.5 0.47 16.5 1.00 0.43 0.42 0.73 16.52

6 1 0.46 0.51 0.58 18.54 0.99 0.47 0.45 0.5 15.89

7 1 1.25 0.61 0.58 19.85 1.00 0.65 0.46 0.65 13.04

8 0.99 0.29 0.51 0.76 16.97 1.00 0.71 0.52 0.7 16.64

9 1 0.65 0.53 0.57 15.12 1.00 0.7 0.5 0.67 14.02

10 1 0.82 0.58 0.61 17.08 1.00 0.75 0.64 0.63 13.88

11 0.99 0.32 0.52 0.43 16.62 1.00 0.8 0.66 0.58 15.4

12 1 0.65 0.53 0.61 15.69 1.00 0.28 0.36 0.54 15.74

Avg. 1 0.55 0.50 0.58 16.93 1 0.51 0.47 0.61 14.78
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Figure 17.   The boxplots of the four optimization objectives.

Table 9 .   Results of paired t-test.

Problem NSGA-II VS MOSA NSGA-II VS MOTS

Mean difference − 3.58 − 1.43

P value 0.012 0.036

Table 10.   The probability distributions under 5 scenarios.

Extend LOS S1 S2 S3 S4 S5

0 40% 25% 5% 5% 5%

1 25% 40% 25% 10% 10%

2 20% 20% 40% 20% 20%

3 10% 10% 20% 40% 25%

4 5% 5% 10% 25% 40%

Trend
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Figure 18.   The number of admitted patients of the three algorithms under 5 scenarios.
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Figure 19.   Similarity and added and total beds of the three algorithms under 5 scenarios.
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Table 11.   Five objectives of the three algorithms under 5 scenarios.

No. Stage Obj.

Scenario

S1 S2 S3 S4 S5

NSGA-II

The first stage

f11 1 1 1 1 1

f12 0.27 0.27 0.27 0.27 0.27

f13 0.54 0.54 0.54 0.54 0.54

The second stage
f21 0.63 0.58 0.53 0.51 0.50

f22 13.35 15.67 19.67 20.93 21.07

MOSA

The first stage

f11 1 0.99 0.99 0.99 0.99

f12 0.55 0.55 0.55 0.55 0.55

f13 0.5 0.5 0.5 0.5 0.5

The second stage
f21 0.58 0.49 0.45 0.43 0.42

f22 16.93 21.74 23.41 25.08 26.73

MOTS

The first stage

f11 1 0.99 0.99 0.99 0.99

f12 0.51 0.51 0.51 0.51 0.51

f13 0.47 0.47 0.47 0.47 0.47

The second stage
f21 0.61 0.57 0.52 0.49 0.48

f22 14.78 18.8 21.87 24.75 25.03
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Figure 20.   The average bed occupation of the three algorithms.
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