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A non‑singular fractional‑order 
logistic growth model 
with multi‑scaling effects 
to analyze and forecast population 
growth in Bangladesh
Mohammad Sharif Ullah  1,2*, K. M. Ariful Kabir 2 & Md. Abdul Hakim Khan 2

This paper is primarily concerned with data analysis employing the nonlinear least squares curve 
fitting method and the mathematical prediction of future population growth in Bangladesh. 
Available actual and adjusted census data (1974–2022) of the Bangladesh population were applied 
in the well-known autonomous logistic population growth model and found that all data sets of the 
logistic (exact), Atangana-Baleanu-Caputo (ABC) fractional-order derivative approach, and logistic 
multi-scaling approximation fit with good agreement. Again, the existence and uniqueness of the 
solution for fractional-order and Hyers-Ulam stability have been studied. Generally, the growth rate 
and maximum environmental support of the population of any country slowly fluctuate with time. 
Including an approximate closed-form solution in this analysis confers several advantages in assessing 
population models for single species. Prior studies predominantly employed constant growth rates 
and carrying capacity, neglecting the investigation of fractional-order methods. Thus, the current 
study fills a crucial gap in the literature by introducing a more formal approach to analyzing population 
dynamics. Therefore, we bank on the findings of this article to contribute to accurate population 
forecasting and planning, national development, and national progress.

Bangladesh is a small nation in South Asia, ranked 8th largest and the 10th most densely populated country. As 
the growth rate and size of the population are significant factors for its economy and policy, the resulting param-
eter of increasing population growth is alarming to Bangladesh’s people and policymakers. Thus, population 
control should be the requirement’s highest priority in national policy. Predicting and estimating the growth of 
the country’s future population is one of the most significant facts that can be solved by a mathematical model 
such as population dynamics. Food supply, available land, technology, birth and death rates, emigration, and 
prevailing conditions in the country, like war, are critical factors associated with the growth of the population, 
which also fluctuates with change.

Differential equations formulating the population dynamics mathematical model have an extensive history. 
To illustrate the individuals as continuous variables who alter the growth of the population in separate time 
steps that have disclosed exquisite results in many applications, a single-species mathematical population model 
bears the first-order nonlinear ordinary differential equation with the initial condition ignoring the spatial 
effects like diffusion and scattering1–3. Among other mathematical population models, the nonlinear Verhulst’s 
logistics model is widely used in population census data for distinct countries4–7. However, in 1976, Obaidullah8 
presented the “Expo-linear model” for Bangladesh’s population growth and explored that this model is a bet-
ter indicator of projecting population growth over time using either an exponential or linear model. The main 
limitation of his work is the sensitivity of its basic parameters. If any country’s population growth reaches zero 
levels, then the total population size does not increase, which helps the policymaker redecorate their long-term 
future planning. In 1980, Mallik9 projected that Bangladesh would attain a zero population growth rate in 2080. 
If the population growth is more significant than zero, then every year adds a certain number of people to the 
total population, and additional food is needed. Kabir and Chowdhury10 have established a correlation between 
population augmentation and food exposition in Bangladesh regarding the matter mentioned earlier. In this 
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situation, decision-makers and planners face some additional problems. Karim et al.11 also present a comparative 
analysis of Bangladeshi and Indian population growth and adaptation. Beekman12, Haque et al.13, Ali et al.14, 
Hossain et al.15, Szabo et al.16, Mondol et al.17, Ullah et al.18, and Biswas and Paul19 studied the population-
changing dynamics of the Bangladesh population and forecast using well-known mathematical and statistical 
tools. Karim et al.20 conducted a comparative analysis of three mathematical models and assessed the accuracy 
and closeness of these models in predicting the population increase of Bangladesh and India by the decision of 
the twenty-first century. Thus, overcoming such difficulties in future population predictions for Bangladesh is 
an inevitable challenge for decision-makers and planners.

Fractional-order modeling has become an indispensable instrument in numerous scientific disciplines due to 
its ability to characterize complex and nonlocal behaviors that traditional integer-order models cannot adequately 
capture. Significantly, fractional modeling is required to comprehend and represent systems with memory effects, 
anomalous diffusion, and complex dynamics. Fractional modeling’s significance rests in its ability to provide more 
accurate and realistic representations of complex systems, thereby advancing our understanding and problem-
solving abilities across a wide range of disciplines. In recent decades, mathematical models of integer derivatives 
have progressed considerably due to the lack of information or the precision with which reality is translated 
into a mathematical formula. Such models cannot always wholly imitate real-world phenomena. As a result, its 
utilization is vital to humankind’s prophecy, which helps people comprehend what could ensue shortly and take 
preventative actions to avert worst-case scenarios. Compared to standard integer-order models, fractional-order 
(FO) models give a more specific and comprehensive insight into the complicated behavior of many diseases. FO 
systems are deemed more favorable than integer-order systems due to their inherent characteristics and ability 
to describe memory21,22. In addition, standard integer-order systems cannot investigate the dynamics between 
two points. Many ideas and conceptions about FO derivatives have been offered in the literature. The classical FO 
derivative is shown in22 as an example. Current literature23 discusses a novel FO derivative and related conclu-
sions based on the generalized exponential rule. As mentioned earlier, the FO derivatives22–24 were effectively 
employed to represent real-world processes in various domains, including biology, engineering, and physics25–33. 
The inability to explain the nonlocal dynamics and crossover behavior of various real-world phenomena can 
be attributed to the classical FO derivative’s non-singular kernel. In 2016, Atangana and Baleanu34 introduced 
a novel fractional-order (FO) derivative that utilizes a generalized Mittag–Leffler function as a nonlocal and 
non-singular kernel. This derivative aims to address concerns regarding the non-locality of the kernel in the 
derivative proposed in a previous study35 and to examine the nonlocal complex behavior of diverse systems 
more effectively. The Atangana-Beleanu derivative, introduced in a recent study34, has been applied in various 
fields36–43 to simulate real-world problems.

Many authors have used several fractional derivatives to describe the logistic equation (see44–47 for examples), 
whereas Qureshi et al.47 used actual statistical data to investigate the logistic growth model. Kumar et al.48 and49 
extensively examined the logistic model inside a fractional framework, namely, the Caputo-Fabrizio (CF) and 
Caputo operator, and utilized fixed point theory to establish the uniqueness and stability analysis of the corre-
sponding solution. Noupoue et al.50 conducted a study on the fractional order logistic equation. They employed 
various numerical schemes, including the generalized Euler’s method, the power series expansion (Grunwald 
Letnikov) technique, and the CF approach, and established the existence and uniqueness of the nonlinear logistic 
equation by utilizing Hadamard fractional derivative and integral formulae. Bas and Ozasalan51 used the Atan-
gana-Baleanu-Caputo operator34, which is a fractional operator characterized by a nonlocal and non-singular 
kernel, to investigate some real-world problems, namely, Newton’s law of cooling, population growth, logistic 
equation, blood alcohol model.

Nevertheless, there are several latent attributes of the ruling model that remain unexplored. It is important to 
conduct a thorough exploration in order to identify additional characteristics of the model that can contribute 
to the analysis and study of real-world issues, namely, the population of Bangladesh. In light of this motivation, 
we use census data and implement the ABC fractional-order method to examine the novel characteristics of 
the governing model.

Due to the representation of nonlinearity in the governing equations of the population model, the attain-
ment of exact solutions is only feasible to a limited extent. Therefore, one can proceed with the approximate 
solutions52. The present study will further explore perturbation techniques and multi-scale analysis, which involve 
the introduction of two distinct time scales, namely the fast and ordinary scales, for independent variables. This 
approach will be utilized to derive an approximate solution for the single-species population model. Details 
can be seen in53–57. In 1999, Meyer58 analyzed the attributes pertaining to the dynamic carrying capacity of the 
logistic model. Furthermore, a novel framework was employed to re-examine two empirical instances of human 
population expansion. For the first time in 2003 and 2007, Stojkov59, Shepherd, and Stojkov60 implemented the 
multi-scaling method in the logistic population model while carrying capacity varying with time, whereas the 
growth rate is constant. Then, in 2008, Grozdanovski et al.61 applied the multi-scaling analysis method to the 
logistic population model while the growth rate and carrying capacity varied slowly. Stojkov, Shepherd and Sto-
jkov and Grozdanovski et al.59–61 did it for an arbitrarily chosen data set, not for a particular region or country. 
Moreover, in 2015, Dose et al.62 applied the multi-scale analysis method featuring a capricious carrying capacity 
in a discrete population model.

In the case of Bangladesh populations, these previous studies on population models of single species employed 
constant growth rates and carrying capacity. No fractional-order or multi-scaling scheme is employed for ana-
lyzing and predicting the population of Bangladesh. Nevertheless, the changing demographic trend63–67 of the 
population of Bangladesh lets us know that the population size and the growth rate are oscillating over time. 
Here, we assume both are functions of time for investigating and predicting the population of Bangladesh. As 
a result, the multi-scaling method is compelling for analyzing and forecasting the population of Bangladesh. 
Thus, the principal object of this research is to investigate the logistic growth model through the logistic ABC 
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fractional-order derivative approach and the logistic multi-scaling approximation for analyzing and predicting 
the future population of a particular country, Bangladesh, for 2023 and onwards (2080), using predated actual 
and adjusted census data from 1974 to 2022.

The development of this work is as follows: the model characteristics are elaborately discussed in “Math-
ematical model” section. In “Fractional-order analysis of the logistic growth model” section, we present the 
fractional-order logistic model using ABC fractional derivatives, existence and uniqueness, Hyers-Ulam stability, 
and numerical technique, where the fractional order of differentiation is α . A multi-scaling analysis of the logistic 
model is described in “Multi-scaling analysis” section. The calibration of the Bangladesh population census data 
and the determination of carrying capacity, intrinsic growth rate, and other parameters are given in “Logistic 
model used to fit the census data” section. In “Results and discussion” section, we offer some numerical results 
through the graphs. The concluding words are given in “Conclusion” section.

Mathematical model
This research starts with the well-known nonlinear Verhulst logistic population growth model68 and the adjust-
ment of the Malthusian model69. Additionally, he posited that a population’s growth is contingent upon its size 
and the carrying capacity of its environment, which refers to the maximum population that the said environment 
can sustain. Generally, single-species population models often comprise growth rate parameters and carrying 
capacity. It expresses the evolutionary character of the population. Thus, the model is

where r,K ,N(t) is the growth rate, maximum environmental support, or carrying capacity, and the total size of 
the population.

The exact solution of Eq. (1) is

Fractional‑order analysis of the logistic growth model
Over the last several decades, many researchers and academics have considered fractional calculus, which is 
based on a fundamental concept that involves considering derivatives and integrals of non-integer orders. As 
a result, these derivatives and integrals possess additional degrees of freedom. Furthermore, many academics 
have shown interest in fractional calculus due to the swift advancements and progressions in nano-technology. 
Therefore, in the case of population dynamics70–72, it is crystal clear that the integer form of the logistic model 
is sufficient for analyzing and predicting any country’s population and able to describe the future population 
movement fluctuating the value of growth rate, despite the fact that fractional calculus when compared to clas-
sical calculus, provides a more comprehensive framework for the exploration of hereditary and memory-related 
characteristics, as well as distinctive behaviors exhibited by various processes and phenomena. In the same 
context, using lower-order fractional derivatives, one can easily demonstrate the future population movement of 
any country’s population. Our predominant aspect is to describe the future population movement of Bangladesh 
through different order fractional-order derivatives, which assists the policymakers of Bangladesh in taking an 
impeccable control strategy to control the population growth of the country.

Definition 3.1  21 The Riemann–Liouville fractional differential operator for a function F(t) with order α > 0 
is defined by

where n− 1 ≤ α < n, n ∈ N .

Definition 3.2  The well-known Caputo fractional-order derivative35 of a function F(t) with order α > 0 is as 
follows,

where, Ŵ is the well-known Gamma function, α is the order of the Caputo fractional derivative operator CDα .

Definition 3.3  23 Consider F(t) ∈ H1(c1, c2), c1 > c2,α ∈]0, 1[, then the CF fractional-order derivative of a 
function F(t) is defined as follows:

where R(α) is a normalization function satisfying R(0) = R(1) = 1.

(1)
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t F(t) =
1

Ŵ(n− α)

∫ t

0

F(α)(η)

(t − η)α−n−1
dη, t > 0,α > 0, n− 1 < α ≤ n, n ∈ N

(5)0
CFD

α

t F(t) =
R(α)

1− α

∫ t

c1

d

dv
F(t)exp

[

−α
t − x

1− α

]

dv.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20118  | https://doi.org/10.1038/s41598-023-45773-1

www.nature.com/scientificreports/

Definition 3.4  Let us assume the function F : [0,∞] → R. The ‘‘conformable fractional derivative’’ of the func-
tion F(t),  ∀t > 0 denoted by Tα(F)(t) of fractional-order α ∈ (0, 1) is defined as follows:

Definition 3.5  Under the condition of F(t) ∈ H1(0,T), the general definition of ABC fractional-order deriva-
tive of a function F(t) is as follows:

In Eq. (7), substituting εα
[

−α
1−α

(t − v)α
]

 by ε1 = exp
[

−α
1−α

(t − v)
]

 for the Capto-Fabrizo differential operator. 

On top of that, it is to be noted that 0ABCD
α

t [constant] = 0.
The normalization function is denoted by the symbol ABC(α) , and its definition is as follows: 

ABC(0) = ABC(1) = 1. Additionally, εα represents a unique function that is referred to as the Mittag–Leffler 
function.

Definition 3.6  Let us assume that F(t) is a function of the interval L[0,T] , then the integral that corresponds 
to it in the ABC sense is provided by:

Lemma 1  According to proposition 3, described in28, the anticipated solution of the supposed problem for the frac-
tional order  0 < α ≤ 1 is

Considering that the right side disappears at time t = 0 , then

Fractional order model
This section explores a fractional-order logistic population growth model utilizing the ABC fractional 
derivative34, which can be summarized as follows: the inspiration for this section is derived from the model 
previously introduced in Sect. "Mathematical Model".

under the initial value N(0) ≥ 0.

Existence and uniqueness of the solution for the ABC model
We derive the solution’s existence and uniqueness concerning the Atangana-Baleanu Caputo derivative for the 
Eq. (10). Consider a continuous real-valued function with the notation B(K) accompanying the supremum-
norm characteristic. This function belongs to a Banach space on H = [0, b] and Q = B[H] with the norm ‖N‖,

whereas �N� = sup
t∈k

|N |.

The Atangana-Baleanu-Caputo fractional integral operator is employed on both sides of Eq. (10), yielding 
the resultant outcome.

As per the definition of the Atangana-Baleanu-Caputo (ABC) fractional derivative, it can be observed that

where

(6)Tα(F)(t) = lim
E→0

F
(

t + εt1−α
)

− F(t)

ε
.

(7)0
ABCD

α

t F(t) =
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0
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dv
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α
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0
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0
ABCD
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If N(t) have an upper limit, f  must satisfy the Lipschitz condition. Thus, in the context of couple functions 
N(t) and N∗(t) , one can write,

Let us assume, ψ = �r
(

1− (N−N∗)
K

)

�.

Then we can write,

which demonstrates that the Lipschitz criteria is satisfied. The results of applying the expressions in (11) in 
a recursive way are as follows:

Now, when N0(t) = N(0), one can write using the differences between consecutive terms

Here, it is crucial to note that

On top of that, in the context of Eq. (14), allowing for

Theorem 1  The fractional-order model denoted by Eq. (10) possesses a distinct solution provided that the condition 
for t ∈ [0, b] is satisfied.

Proof  It is a presumption that the function N(t) is bounded. As a preliminary matter, Eq. (14) clarifies that f  
is a valid representation of the Lipschitz condition. Therefore, by using Eq. (17) in conjunction with a recursive 
hypothesis, we arrive at the following:

Therefore, when n → ∞, the above sequence exists and hold �INn(t)� → 0.
Furthermore, according to triangle inequality, for any k , one can write Eq. (18) as follows:
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Hyers‑Ulam stability
Definition  34 ∀δ > 0, ∃ constants ξ > 0, proposed model’s ABC fractional-order integral form (10) is called Hyers-
Ulam stable, when

∃Ṅ(t) which satisfying

Theorem 2  According to the criteria H, the logistic fractional-order model (10) presented in this study exhibits 
Hyers-Ulam stability (HUS).

Proof  The logistic fractional-order population growth model (10) has a specific solution that conforms to 
Eq. (11) as per Theorem 1. Henceforth, it is possible to compose,

Assume,

Then we have

According to Eq. (24), the ABC fractional-order integral model (8) is Hyers-Ulam stable. The theorem is 
proven by the fact that the ABC fractional-order model (10) exhibits Hyers-Ulam stability due to those men-
tioned above.

Calculation of coefficients and constants
Equation (10) can be written as

Let us assume there exists a non-decreasing function that does not depend on N such that

Then, the solution of Eq. (25)

is

From which we have

(20)
∣

∣

∣

∣
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∣
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(23)

∣

∣N(t)− Ṅ(t)
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We will use Eq. (27) in the computation of Hyer-Ulam stability.

Theorem 3  Equation (27) is Hyer-Ulam stable if 1−α
ABC(α)

ǫ + αbα

Ŵ(α)ABC(α)
ǫ < 1.

Proof  Let N be any solution of Eq. (27) and Ṅ be a unique solution. Then

which implies that

Therefore, Eq. (27) is Hyer-Ulam stable.
Now, if f (t,N) = rN

(

1− N
K

)

, one can write

where� = r + 2rN0
K .

In the case of Bangladesh population-adjusted census data,

Now, if b = 10,α = 1
2 then ABC(α) = 1.

Therefore,

Hence, Eq. (27) is Hyer-Ulam stable.

Numerical analysis
This section will outline the methodology for developing a numerical scheme to solve nonlinear fractional-order 
logistic differential equations that incorporate fractional derivatives and nonlocal, non-singular kernels. In order 
to accomplish this task, we shall examine the ordinary nonlinear equation of fractional order, as presented below:
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The fundamental theorem of fractional calculus exemplifies that Eq. (28) can be transformed into a fractional 
integral equation as follows:

One can be written the Eq. (27) at the point tn+1, n = 0, 1, 2, . . . as follows

Using a two-step Lagrange polynomial interpolation, one can estimate the function f (v, x(v)), in the interval 
[tk , tk+1] as follows:

Thus, Eq. (26) can be written as

Let us assume,

Then we have

Substituting the value of Eqs. (33) and (34) in Eq. (32), we have

Then, for the Bangladesh population, one can write

(28)
{

0
ABCD

α

t x(t) = f (t, x(t)),
x(0) = x0.
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Multi‑scaling analysis
To perform a multi-scaling analysis, let us assume all parameters are a function of time. Therefore, an explicit 
solution of Eq. (1) is written

where q and  s are integrating variables.
Firstly, Eq. (37) may only be appraised for a minimal choice of r(t) and K(t) ( r and K being positive constants). 

Secondly, to work out Eq. (1) or Eq. (37), approximate methods (numerical techniques) must be used.
The actual and adjusted census data63–67 (1974–2022) in Fig. 1a,b of the population of Bangladesh, popula-

tion size, and growth rate r(t) vary with time t  . Thus, the carrying capacity K slowly changes. The phenomenon 
arises as a result of gradual oscillations in either the population of a given species, the surrounding environment, 
or a combination of both factors. Hence, the multi-scaling method becomes convenient for the analysis of the 
population of Bangladesh.

Therefore, Eq. (1) is no longer autonomous as the variables depend on time t  ; for more details, see61. From 
Eq. (1), one can write,

The main goal is to illuminate the procedure, which may always be valid t ≥ 0 , fabricating an approximation 
to the solution of Eq. (38).

Note: Bangladesh has a long practice of population census. The first census was carried out in 1974 after Bang-
ladesh’s independence (1971). Consequently, the census was made in 1981, 1991, 2001, 2011, and 2022. Therefore, 
we started our work in 1974, and the corresponding value was calculated using the interpolation method.

The multi‑scale logistic equation
The two-term expansion of the slowly varying logistic model61 for analyzing and predicting the population of 
Bangladesh are as follows:

Along with K(εt) and r(εt), which vary periodically, such as

which affords an approximate solution owing to slowly varying parameters. Here δ and � are the amplitudes 
of the oscillatory components when ε is small. At this juncture, the carrying capacity and growth rate exhibit 
fluctuations in proximity to their initial values K0 and r0, which are emblematic of surroundings that vary slowly 
with time.

(37)N(t) =
N0e

t
∫

0

r(q) dq

1+ N0

t
∫

0

r(q)
K(q) e

q
∫

0

(r(s) ds

dq

,

(38)
dN(t, ε)

dt
= r(εt)N(t, ε)

(

1−
N(t, ε)

K(εt)

)

,N(t = 0, ε) = N0.

(39)N(t, ε) =
K(εt)N0K0

N0K0 − K(εt)(N0 − K0)e−t0
−

εN2
0

{

′
K (εt)K2

0 r0 − K2(εt)
′
K r(εt)e−t0

)

r(εt)r0
{

N0K0 + K(εt)(K0 − N0)e−t0
}2

+ . . .

(40)K(εt) = K0 + δsinεt and r(εt) = r0 +�sinεt,

Figure 1.   (a) Growth rate and (b) census data of Bangladesh population.
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Logistic model used to fit the census data
In 1838, Verhulst68 utilized a logistic model to fit Belgian population census data. Verhulst also described how 
the vital parameters r and K (for multi-scaling r0 and K0 ) could be estimated from the population data. Therefore,

“Actual” carrying capacity, intrinsic growth rate, and other parameters
This section elaborately discusses calculating the Bangladesh population’s crucial parameters, carrying capacity, 
and intrinsic growth rate. Usually, population size and growth in a country like Bangladesh straightforwardly 
impact national plans and natural resources. As a result, the key parameters that control the total population size 
are the most significant factors in analyzing and predicting the future population of any country. Bangladesh’s 
census data63–67 Fig. 1a,b reveals that the growth of Bangladesh’s population is neither a constant, sinusoidal, nor 
lines-decaying function. However, it is a strictly decreasing function. As the growth curve strictly decreases, the 
total population must increase to the carrying capacity value and slow down68.

The Bangladesh population’s63–67 initial carrying capacity and intrinsic growth rates are calculated employing 
actual and adjusted census data using Verhulst’s formula18,68. Then, the nonlinear least square curve fitting method 
via the “trust-region-reflective algorithm” was used to fit Bangladesh in both the data, Fig. 2a,b, subfigures (a) 
blue, and (b) green line, which gives the fitted value of two crucial parameters that are illustrated in Table 1. 
Furthermore, for multi-scaling cases, the values of ε, δ,� are chosen arbitrarily for analyzing the mentioned data 
and applied for forecasting, Table 2.

(41)K =
N0N

2
1 + N2

1N2 − 2N0N1N2

N2
1 − N0N2

(42)r =
1

T
log

[

1
N0

− 1
K

1
N1

− 1
K

]

Figure 2.   Data fitting curve of (a) initial and (b) adjusted census data of Bangladesh population.

Table 1.   Initial and fitted value of growth rate and carrying capacity of Bangladesh (initial and adjusted) 
population (1974–2022).

Country Initial value of K Initial value of r Fitted K Fitted r

Bangladesh (initial) 230,343,707.2780429 0.036006736285777 230,343,677.2780429 0.0356036

Bangladesh (adjusted) 230,305,033.7788595 0.036182814238104 225,062,093.9465337 0.0374286

Table 2.   Value of ε, δ,� Bangladesh (initial and adjusted) population.

Cases ε δ �

Bangladesh (initial census)
0.1

0.2 0.002120635

Bangladesh (adjusted census) 0.7 0.00160095945
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Results and discussion
Finally, we forecasted the population of Bangladesh (2023–2080) using the logistic, ABC FO derivative, and logis-
tic multi-scaling approximation method through mathematical simulation, considering that both vital parameters 
are periodic functions of time for the multi-scaling case. In order to conduct an analysis and make predictions 
regarding the future population of Bangladesh, it is necessary to ascertain both parameters: the population growth 
rate and the country’s carrying capacity. Based on the actual and adjusted census data (1974–2022) of the popu-
lation of Bangladesh63–67, according to18,68, the approximate growth rate and carrying capacity are determined. 
Then, the nonlinear least square curve fitting method via the “trust-region-reflective algorithm” (Fig. 2a,b) has 
been applied and approximately gives the fitted value r and K(for multi-scaling case, it be r0  and K0 ), which are 
listed in Table 1. The data fitting curve demonstrated in Fig. 2a,b revealed that the analyzed result fits satisfactorily 
with actual and adjusted census data of the Bangladesh population. One of the exciting features is that Fig. 2b 
fits more than Fig. 2a. Thus, we can continue analyzing and forecasting the population of Bangladesh. Panels 
a* and b* of Fig. 3 illustrate the analysis and prediction of the results of the Bangladesh population (initial and 
adjusted) census data case. Figuresa(i) and b(i) depict the analyzing results of the census (initial and adjusted), 
logistic solution, and ABC-FO numerical solution, which shows that all data sets are worked with census data 
with excellent agreement. All line graphs are almost overlapped with each other. All data sets regression coef-
ficients r and R2 at 95% CI levels are listed in Table 3, which reveals that all the data cases work have an excellent 

Figure 3.   Analysis and projected population of Bangladesh (initial & adjusted). The black and green dot curve 
represents Bangladesh’s initial and adjusted census data. The red and blue color represents logistic and numerical 
(ABC) results in all cases. *i and *ii specify the analyzing and predicting results.

Table 3.   Regression coefficient and R2 value of Bangladesh (initial & adjusted) population different data sets 
in ABC FO case.

Bangladesh population Regression coefficient, r R
2

Initial census vs. exact solution 0.999 0.998

Initial census vs. ABC FO solution 0.999 0.998

Adjuster census vs. Exact solution 0.999 0.999

Adjuster census vs. ABC FO solution 0.999 0.999
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agreement. The absolute error curve of all data cases is demonstrated in Fig. 4. The error curve shows that errors 
are in a considerable margin, even less, which justifies the current study’s exactness. On top of that, the error is 
less in the Bangladesh-adjusted census data case compared to the initial census data case. Therefore, the present 
study works significantly for the Bangladeshi population in both data cases. Therefore, we can continue our 
efforts to forecast the future population of Bangladesh.

Finally, we forecasted the population of Bangladesh (2023–2080) employing the logistic growth model, where 
Figuresa(ii), and b(ii) portrayed the predicted results of Bangladesh’s population, which illustrates that gradu-
ally Bangladesh’s population size approaches its environmental maximum capacity size, namely the carrying 
capacity. Finally, Fig. 5 exemplifies the projected population of Bangladesh (2023–2100) for different fraction-
order α = 1.0, 0.95, 0.9, 0.85, 0.8. If policymakers reduce the growth rate of Bangladesh’s population to a reduced 
fractional order, then Bangladesh’s future population size will be as shown in Fig. 5. Again, Fig. 6 represents the 
comparison of the results of the present study with UN73, BBS74, and Mondal et al.17 projected results, which 
clarify that the present study results follow the adjusted census data case in a better argument compared to other 
projected results. On top of that, the UN73 and current studies’ projected results are in good agreement.

As a final point, we applied a multi-scaling approximation scheme for analyzing and predicting Bangladesh’s 
(initial and adjusted) population, as demonstrated in Panels a* and b*of Fig. 7. Both data sets regression coef-
ficients, r and R2 at 95% CI levels are listed in Table 4, which reveals that both data cases are in excellent agree-
ment as logistic and ABC-FO schemes. The absolute error curve of both data cases is demonstrated in Fig. 4. 
The error curve illustrated in Fig. 8 shows that errors are in a significant margin, even less, which validates the 
current study’s accuracy. On top of that, the error is less in the Bangladesh-adjusted census data case compared 
to the initial census data case as previously. In the usual way, one can see that the usual logistic method, the 
ABC fractional-order logistic method, and the multi-scaling scheme results have no difference; all are identical. 
Nevertheless, for the analyzing case, the comparison Tables 5, 6 (including logistic model numerical solution 
multistep Adams–Bashforth-Moulton Predictor–Corrector (PECE) method with the Runge–Kutta-Fehlberg 
method) illustrated that among other scheme results, the multi-scaling results are more identical and, more 
precisely, are the same as census data if we consider last year’s data for both data sets. To verify the multi-scaling 
scheme’s well-posedness, we employ the same strategy for census data of Sri Lanka’s (1990–2020) population75 
and find that it works favorably. Analyzing result and error curve is depicted in Fig. 9, and different schemes 
comparing results are listed in Table 7. Therefore, it is easy to say that multi-scaling schemes are more reliable 

Figure 4.   Absolute error curve (census versus logistic and census versus ABC (FO)) of Bangladesh (initial & 
adjusted) population (1974–2022).

Figure 5.   Adjusted census and projected population of Bangladesh (1974–22,080) for different fractional-order 
α = 1.00, 0.95, 0.90, 0.85, 0.80.
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Figure 6.   Comparison curve of Bangladesh population (1974–2080) (adjusted census data).

Figure 7.   Analysis and projected population of Bangladesh (initial and adjusted). The black and green dot 
curve represents Bangladesh’s initial and adjusted census data. The black color represents multi-scaling results in 
both cases. *i and *ii specify both cases analyzing and predicting results.

Table 4.   Regression coefficient and R2 value of Bangladesh (initial & adjusted) different population data sets 
multi-scaling case.

Bangladesh population Regression coefficient, r R
2

Initial census vs. multi scaling 0.999 0.999

Adjuster census vs. multi scaling 0.999 0.999
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than other methods for analyzing and predicting any country’s population. Therefore, we are banking on this 
research work to provide a more reliable prediction for the future population measurement of Bangladesh.

On the other hand, the curves, adjusted census, and predicted (1901–2100) demonstrated in Fig. 10 bear a 
striking resemblance to a sigmoid curve, an S-shaped, well-known main characteristic of the logistic growth 
model. Again, the fractional-order method is a better choice for its heredity and memory qualities, whereas the 
multi-scaling logistic approximation models are helpful for mathematicians when no exact data is available to 
compare with numerical data. Due to the increasing demographic trend, Bangladesh will reach the pinnacle 
of population size and achieve a zero growth rate. Then, gradually, Bangladesh’s population will decrease like a 
sigmoid curve, an S-shaped curve68.

In conclusion, it is evident that according to17,73,74 and the present research work predicting results, the People’s 
Republic of Bangladesh will shortly face some environmental catastrophes, according to Verhulst68. It is an alarm-
ing threat to our forthcoming generation. Thus, the Government of Bangladesh must take preventive measures 
and plan to avoid such senile outcomes, which is only possible if the Government of Bangladesh can control 

Figure 8.   Error curve of Bangladesh (initial and adjusted) population.

Table 5.   Comparison of different schemes results of Bangladesh population initial census in the year 2022.

Bangladesh initial census 165,158,616.0000

Scheme Population size Percentile of error

Exact (logistic) 164,250,406.1566 0.55%

Predictor–corrector 164,250,406.1568 0.55%

Fractional-order 164,082,545.7138 0.65%

Multi-scaling 165,158,616.0541 0.3 ∗ 10−7%

Table 6.   Comparison of different schemes results of Bangladesh population adjusted census in the year 2022.

Bangladesh adjusted census 170,000,000.0000

Scheme Population size Percentile of error

Logistic 170,145,565.0601 0.09%

Predictor–corrector 170,145,565.0603 0.09%

Fractional-order 169,990,102.5184 0.006%

Multi-scaling 170,000,000.0009 0.5 ∗ 10−9%
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the value of growth parameters. On top of that, future demographic projections will offer an estimation of the 
future populace, which may be enhanced through the mitigation of population growth and the implementation 
of potential measures. For this purpose, we illustrate Fig. 11 for different values of the growth parameter r0(the 
initial growth value of multi-scaling case) where other parameters are the same as previous. The projected final 
population size (FPS) of adjusted census data results in 2080 is demonstrated in Table 8.

Conclusion
Population dynamics models are characterized by significant non-Markovian properties, displaying behavior that 
is influenced by memory effects. This research study aims to examine the logistic growth model in the context of 
population dynamics, using both classical (multi-scaling) and non-classical (fractional) differential operators. 
The predominant objective of this investigation is to analyze and predict the expansion of the population of 
Bangladesh by utilizing the ABC fractional-order derivative and a multi-scaling logistic approximation model 
approach while taking into account census data spanning from 1974 to 2022. The fractional-order method is 
better for its heredity and memory qualities, and one can easily demonstrate the delaying effects through lower-
order fractional value, whereas in the conventional process, one has to fluctuate the value of the growth rate to 

Figure 9.   Multi-scaling analysis of Sri Lanka (census) population (1990–2020).

Table 7.   Comparison of different schemes results of Sri Lanka population census in the year 2020.

Sri Lanka census 21,413,249

Scheme Population size Percentile of error

Logistic 21,438,307.51789 0.12%

Predictor–corrector 21,438,307.51789 0.12%

Fractional-order 21,426,601.72682 0.06%

Multi-scaling 21,413,249.35605 0.2 ∗ 10−5%

Figure 10.   Adjusted census and predicted population of Bangladesh (1901–2080).
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do this. In contrast, multi-scaling logistic approximation models are helpful for mathematicians when no exact 
data is available to compare with numerical data. Here, the ABC FO derivative and the multi-scale technique 
have successfully been applied to the logistic growth model in the Bangladesh population (1974–2022), in which 
the defined parameters of the multi-scaling scheme are changed slowly with time. Our model fitted well with 
both census data cases (Bangladesh-actual and adjusted census). Therefore, one can conclude that the ABC FO 
derivative and the multi-scaling logistic aspect worked well for analysis and population forecasting. Although 
we are investigating only the populations of Sri Lanka and Bangladesh, the theoretical framework can extend 
to the population growth of arbitrary countries. Thus, we expect this study will bring attention to policymakers 
and support the government in controlling population growth.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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