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E‑DPNCT: an enhanced attack 
resilient differential privacy model 
for smart grids using split noise 
cancellation
Khadija Hafeez 1*, Donna O’Shea 1, Thomas Newe 2 & Mubashir Husain Rehmani 1

High frequency reporting of energy consumption data in smart grids can be used to infer sensitive 
information regarding the consumer’s life style and poses serious security and privacy threats. 
Differential privacy (DP) based privacy models for smart grids ensure privacy when analysing 
energy consumption data for billing and load monitoring. However, DP models for smart grids 
are vulnerable to collusion attack where an adversary colludes with malicious smart meters and 
un‑trusted aggregator in order to get private information from other smart meters. We first show 
the vulnerability of DP based privacy model for smart grids against collusion attacks to establish 
the need of a collusion resistant privacy model. Then, we propose an Enhanced Differential Private 
Noise Cancellation Model for Load Monitoring and Billing for Smart Meters (E‑DPNCT) which not 
only provides resistance against collusion attacks but also protects the privacy of the smart grid data 
while providing accurate billing and load monitoring. We use differential privacy with a split noise 
cancellation protocol with multiple master smart meters (MSMs) to achieve collusion resistance. We 
propose an Enhanced Differential Private Noise Cancellation Model for Load Monitoring and Billing for 
Smart Meters (E‑DPNCT) to protect the privacy of the smart grid data using a split noise cancellation 
protocol with multiple master smart meters (MSMs) to provide accurate billing and load monitoring 
and resistance against collusion attacks. We did extensive comparison of our E‑DPNCT model with 
state of the art attack resistant privacy preserving models such as EPIC for collusion attack. We 
simulate our E‑DPNCT model with real time data which shows significant improvement in privacy 
attack scenarios. Further, we analyze the impact of selecting different sensitivity parameters for 
calibrating DP noise over the privacy of customer electricity profile and accuracy of electricity data 
aggregation such as load monitoring and billing.

Over the past number of decades, the electric grid has been modernized, becoming more decarbonized, dis-
tributed and digitalized. Consequently, modern day electric grid systems have evolved to become smart grids 
allowing: two-way flow of electricity and data enabling applications such as smart metering. While smart meters 
provide benefits to consumers through better tracking and use of energy, more accurate billing and increased 
tariff options, they have also brought concerns related to privacy and data integrity over the use of personal 
data collected. Over the past number of years various privacy preserving techniques have been proposed to 
address this concern to prevent the invasion of privacy by smart meters, which include cryptography and data 
perturbation  methods1,2.

To date much of the literature has focused on analysing the benefits of increased complexity and computation 
introduced through cryptography-based encryption methods versus the trade-off between privacy and utility 
introduced by data perturbation techniques such as Differential Privacy (DP). In addition, several works have 
assessed the robustness of these techniques against privacy attacks such as data reconstruction, linking, inference, 
differencing and correlation  attacks3. While all these attacks differ, the goal of the adversary is to gain knowledge 
that was not intended to be shared. Such knowledge can be related to the data usage allowing an adversary to 
identify patterns and behaviours and to infer sensitive information form it.

Chamikara et al.4 outlined how data perturbation techniques are vulnerable to specific data reconstruction 
attacks such as naïve estimation, independent component analysis (ICA) and Input/Output (I/O) attacks such as 
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eigen analysis, distribution analysis attacks and spectral filtering. The goal of all these attacks is that the adversary 
attempts to reconstruct the original data from perturbed data. Setting a strong perturbation has been proven to be 
effective against these types of attacks in advance adversarial environments. Other data perturbation attacks have 
focused on removing the level of noise on masked data such as Filtering  Attack5 and Negative Noise  Reduction6 
attacks, which used in combination with other attacks could increase their efficacy.

Purpose
To date there has been no evaluation on how the privacy models that uses pure perturbation techniques such 
as Differential Privacy (DP) are resistant to collusion attacks. In this specific type of attack, a group of smart 
meters and/or (third party) aggregators collectively work together to leak sensitive information with the aim of 
reconstructing private data or injecting false packets with the aim of modifying the integrity of the data sent to 
the utility provider. The use of trusted third party aggregators in smart grid systems make it particularly vulner-
able to these types of data reconstruction/privacy and integrity attacks. The existing privacy solutions for smart 
grids that are collusion resistant either uses hybrid (DP with encryption) or pure encryption based  solutions3,7–11, 
which have high computation and communication cost.

Given the above context, in this paper we present a collusion resistant Enhanced Differential Privacy with 
Noise Cancellation Technique (E-DPNCT) scheme, that not only preserves the privacy of smart meter, but also 
protects the data from being reconstructed by colluding entities such as smart meters and trusted third party 
aggregators. E-DPNCT extends previous work,  DPNCT12 ( A preliminary version has been published by IEEE 
International Conference on Communications (ICC) - Workshop on Communication, Computing, and Network-
ing in Cyber-Physical Systems (IEEE CCN-CPS ), Montreal, Canada, June 2021, entitled “DPNCT: A Differential 
Private Noise Cancellation Model for Load Monitoring and Billing for Smart Meters”), whose core contribution 
removed the use of a trusted third party aggregator in DP scheme and enabling the calculation of highly accurate 
billing using a periodic noise cancellation technique at a low computational cost. In this extended work, we have 
modified DPNCT with split noise distribution over multiple smart meters, increasing the approach resilience 
against collusion attacks. We assess E-DPNCT performance, by comparing it against a lightweight encryption 
based collusion resistant privacy solution,  EPIC9. We chose EPIC as a comparison due to the lack of alternative 
DP collusion resistant approaches. We demonstrate through our analysis that E-DPNCT is collusion attack 
resistant, yields highly accurate results in billing and load monitoring with low computational cost.

Contributions
Our contributions are highlighted as follows:

• We present E-DPNCT that is collusion attack resistant by splitting the noise over multiple master smart 
meters (MSMs). This, to the best of the authors knowledge, is the first data perturbation DP scheme for smart 
grids that does not make an assumption of trusted entities and that is resilient against collusion attacks.

• We assess the performance of our E-DPNCT against the state of the art encryption collusion resistant 
approach  EPIC9.

• We compared our results in accuracy with DP based model “Differentially Private Demand Side Management 
for Incentivized Dynamic Pricing in Smart Grid (DRDP)”13.

• We experimented with multiple sensitivity values and study their impact on privacy and accuracy/utility of 
the data.

The rest of the paper is organized as follows. The related work is discussed in “Literature review”. The threat model 
and Preliminary Knowledge are introduced in “Threat model and attacks” and “Preliminary knowledge” respec-
tively. After that proposed solution is introduced in “Methods”. Finally, The paper is concluded with “Conclusion 
and future work” that includes summary of analysis on E-DPNCT and the future directions.

Literature review
The literature review is further divided into two parts. The first part provides an overview of existing privacy 
models for smart grids based on (a) privacy technique i.e. DP, encryption, and hybrid; and (b) aggregator type 
i.e. trusted and un-trusted third party aggregator, is presented. In the second part, a discussion on the security 
analysis (i.e., their resistance against collusion attacks) of these privacy models is presented.

Privacy models for smart grid
Paverd et al.14 use a remote trusted entity to add Laplacian noise in smart meters data. This remote trusted entity 
is responsible for bi-directional communication between the power grid and the smart meter for an effective 
Demand Response (DR) mechanism. Dynamic billing to reward correct behaviour and enforce demand response 
model is proposed by the authors  from13,15. They provide DP at aggregator level where a trusted aggregator col-
lects original data and Laplacian noise is generated and added to the original data. Dynamic bills are calculated 
using original data and only the customers responsible for peak load are charged with peak factor price to ensure 
fair billing. However, a trusted entity is required in  both14  and15 models to mask the original data and follow 
the demand response protocol honestly. Liu et al.18 uses zero knowledge proof and a trusted authority which is 
responsible for registering users and public and private key management.

The solutions with non trusted third party  including16  and6 used infinite divisibility of Laplacian distribu-
tion and point-wise sensitivity to generate and add noise at the smart meter level. The contributions  in16  and6 
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were limited in that DP was discussed only within the context of aggregated data for load monitoring, and did 
not detail the subsequent impact of the noise and accuracy of billing to the end user, nor was a security analysis 
of the approach presented. The BDP model presented  in5 also uses DP for the preservation of appliance usage 
privacy. BDP privacy preservation model is focused on masking appliance usage of a households by choosing 
sensitivity as the maximum wattage of the heaviest electrical appliance. Ren et al.19 uses a novel measurement 
based perturbation for accuracy in bills. However, the paper did not discuss the impact of noise addition on load 
monitoring in the experiments.

Similar  to6,16  and5, EPIC by Alsharif et al.9 and Wang et al.3 use a non trusted aggregator. They differ in their 
privacy mechanism as they only use compute intensive encryption based on a key exchange mechanism which 
has a greater communication and computation overhead as compared to pure DP based solutions. Similar  to6,16 
 and5, EPIC by Alsharif et al.9, Wu et al.20, and Wang et al.3 use a non trusted aggregator. They differ in their 
privacy mechanism as they only use compute intensive encryption based on a key exchange mechanism which 
has a greater communication and computation overhead as compared to pure DP based solutions. Zhang et al.21 
proposed service model that trains the neural network models locally, and only model parameters are shared 
with the central server instead of sending private energy data to the cloud server. The goal of the paper is however 
forecasting of energy demand and federated learning model predicts future energy demand based on multiple 
features including current demand, weather etc.

Acs et al.7 and Won et al.17 also use a non trusted aggregator in their approach. They differ though in that as 
they proposed a hybrid approach, using encryption in addition to differential private noise between the smart 
meters and aggregator, to mask the data. However, these solutions are computationally complex and consume 
extra bandwidth in the network to send ciphertexts information. The authors  from8 make use of encryption and 
scheduling of charging batteries as a privacy mechanism without a trusted third party. This solution requires 
extra material cost for installing and maintaining energy storage devices such as batteries.

DPNCT12 used DP with noise cancellation without a trusted third party for accurate and private load monitor-
ing and billing. This model is put under the test of collusion attacks in this paper and it proves to be vulnerable 
to collusion attacks in case of malicious smart meters. Enhancing the attack resistance of the noise cancellation 
model, E-DPNCT makes use of split noise cancellation and variable privacy selection for the electricity consum-
ers which makes it resistant to collusion attacks.

Security analysis of privacy models
Table 1 presents a summary of privacy mechanism in smart grid, highlighting a brief overview of its operation 
and the aggregator type along with a critical analysis of the main limitations of the approach and available security 
analysis. The following paragraphs also highlight key DP and encryption based privacy models where a security 
analysis has been performed on them to assess their resilience against data privacy or integrity security attacks.

DP or hybrid privacy models
The BDP  model5 proposed differential privacy with trusted third party aggregator. Barbosa et al. simulated filter-
ing attack on the protected data of 200 households. Their analysis shows that high level of differential privacy 
protects the differentially private data against filtering privacy attacks.

As for collusion attack resistance privacy  models7, is (n− 1) collusion resistant against data reconstruction 
attack that utilises DP. However, they used a hybrid approach, as they used a data perturbation differential privacy 
technique to add noise first and then used sharing secret key for data encryption and decryption at the aggregator 
end. Other collusion attack resistant privacy  models3,8–11 utilise only encryption.

Encryption privacy models
Zha et al.10 proposed an encryption based privacy model that is resilient to internal attacks where aggregators 
as well as smart meters are assumed to be malicious. Mustafa et al.11 used multiparty computation algorithms 
(MPC) for privately aggregating electricity consumption data. Their model is collusion resistant for up to two 
third of malicious parties using a verifiable secret sharing technique. The privacy model proposed  by3 used session 
keys and a fill function in a way that the aggregated mask becomes zero at the non trusted aggregator. In order 
to be protected from internal collusion attacks they used encryption, and their mathematical model achieves 
reliable privacy protection against collusion attack. Wu et al.20 uses HTV-PRE, a homomorphic threshold proxy 
re-encryption scheme with re-encryption verifiability for privacy preservation in smart grids. Baza et al.8 is 
resistant to collusion attack by the means of Partial Blind Signature (PBS) during the acquisition of anonymous 
tokens and the one time generated identity is not link-able to the charging unit. The privacy preserving model 
introduced by them is for charging coordination of batteries only. The authors  from9 proposed EPIC and intro-
duced the idea of proxies where each smart meter selects a number of proxies and sends them small chunks of 
pairwise secret masks. They analysed the impact of collusion attack on EPIC using hyperbolic probability model. 
All the collusion resistant privacy models in smart meters uses some form of encryption to protect them which 
increases the computational overhead of the solution.

For collusion resistance, E-DPNCT is compared with  EPIC9 as the system model used by them is similar to 
our model where both models share information with randomly selected MSMs. In E-DPNCT, instead of sharing 
partial encrypted electricity consumption with MSMs, each smart meter shares DP noise with the master smart 
meters (MSMs). Considering the E-DPNCT only uses DP which is not compute intensive, is a better solution in 
terms of efficiency, accuracy and security.
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Threat model and attacks
As mentioned previously, a collusion attack is an attack where the adversary conspires with entities of the smart 
grid in order to retrieve the original time series data of users’ energy consumption which poses a threat to the 
privacy of electricity  consumers22.

In the attack scenario considered, the goal of the adversary is to find real time energy usage data of individual 
consumers, to analyse the pattern and infer sensitive information from it. In the threat model, the aggregator 
is assumed to have full access to the masked electricity consumption profiles data of consumers and are also 
assumed to be honest, but not trusted entities hence, they can try to infer information from masked data but 
they will not alter it. The smart meters choose masters among other smart meters for privately sharing masking 
information with the aggregator. The smart meters can be malicious and hence, can share masking information 
with an adversary if selected as a Master Smart Meter (MSM). The aggregator along with colluding MSMs may 
try to launch a collusion attack by sharing their private noise with an adversary.

Table 1.  Comparison of techniques for privacy preserving using differential privacy in smart meters.

Ref. no Privacy type Working mechanism Aggregator type Security analysis Limitation

14 Differential privacy
Laplacian noise is added at trusted 
remote entity for effective and pri-
vate bi directional communication 
between power grid and consumer

Trusted No privacy attacks analysis is 
available No privacy from trusted entity

13, 15 Differential privacy
Dual Differential privacy (Lapla-
cian Noise) with Dynamic pricing 
for fair billing using trusted third 
party

Trusted No privacy attacks analysis is 
available

No privacy from aggregator, no 
analysis on the usability of differ-
entially private data at grid level

16 Differential privacy
Adding gamma distributed noise 
to each individual agent using infi-
nite divisible Laplace distribution

Not trusted No privacy attacks analysis is 
available

Privacy for aggregated informa-
tion only

6 Differential privacy
Finding balance at individual level 
privacy with increased data points 
for decrease error in billing error

Not trusted No privacy attacks analysis is 
available Reduced accuracy in utility

5 Differential privacy
Differential privacy using Lapla-
cian noise with filtering attack 
analysis to preserve appliance 
usage privacy

Not trusted Filtering attack resistant Reduced accuracy in utility, No 
analysis on internal attacks

9 Hash MAC and homomorphic 
encryption

Aggregated load and bill calcula-
tion with privacy preservation of 
individual using multiple proxies 
and short term encrypted messages

Not Trusted Collusion attack resistant High computational complexity 
and communication overhead

3 Encryption with Fill Function

Lightweight internal attack resist-
ant privacy preservation technique 
using homomorphic enryption 
with dynamic entry and exit for 
member smart meters

Not trusted Collusion attack resistant High computational complexity 
and communication overhead

7 DP with encryption

Multiple exchange of encrypted 
messages with aggregator for DP 
masked data and cluster based 
analysis for privacy and utility 
analysis

Not trusted Collusion attack resistant
Partial fault tolerance, increased 
utilization of bandwidth and pri-
vacy for aggregated data only

17 DP with encryption (modular 
addition)

Differential privacy using Lapla-
cian noise with current and future 
cipher text for fault tolerance with 
modular additive encryption

Not trusted No privacy attacks analysis is 
available

Computationally complex, no pri-
vacy for individuals data profiles

8 Encryp. with Charge control 
devices

Electric storage units used as prox-
ies for encrypted charging request 
sharing at different time slots to 
preserve privacy

Not trusted Collusion attack resistant High computational complexity 
and material cost

10 Encryption
k partitioned encrypted data with 
spatial and temporal aggregation 
with (k − 1) distributed smart 
meters

Not trusted Collusion attack resistant High computational complexity 
and communication overhead

11 MPC encryption
Multiple data aggregated tech-
niques with a trade off between 
accuracy and privacy with secure 
multiparty computation algorithms

Not trusted Collusion attack resistant High computational complexity 
and Communication overhead

This paper Differential privacy

Laplacian noise added at an instant 
is split into multiple parts and 
sent to master smart meters for 
aggregated noise cancellation at 
aggregator level along with self 
noise cancellation models accurate 
billing

Not trusted Filtering attack, collusion attack Communication overhead
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DP, DPNCT and collusion attack resilience
In DP privacy models, at every instant t each smart meter generates and adds DP noise into its energy consump-
tion data before sending it to the aggregator for load monitoring and billing. A noise cancellation technique is 
adopted from  DPNCT12 where each smart meter sends the added noise to a randomly selected master smart 
meter. The aggregated noise from the MSMs is then sent to the aggregator to calculate total load in an area for 
load monitoring.

The privacy model adopted in DPNCT is vulnerable to collusion attacks, if the aggregator and MSMs collude 
to compute the original reading of the individual smart meters. This is further demonstrated in Fig. 1a, where an 
adversary can get masked data from the aggregator (1) and collude with a malicious MSM to get individual noise 
information (2) added by each smart meter at an instant t. The added noise can be subtracted from individual 
masked profile to get the original energy consumption data.

Preliminary knowledge
In this section preliminary information on differential privacy is discussed which is used construct to construct 
E-DPNCT.

Differential privacy
The probabilistic model of Dwork et al.23 states that the DP protected data ensures privacy for a mechanism 
M for any two neighbouring data sets D1 and D2 that differ in one record and for all the possible outcomes 
S ⊆ Range(M) , if the below Eq. (1) is  satisfied23:

This ensures that if a query function f runs on the neighbouring data sets D1 and D2 then the outputs are indis-
tinguishable by the differential privacy mechanism M where ǫ is the privacy budget.

Laplace mechanism
The Laplace mechanism ensures differential privacy by outputting a query as f (x)+ n where n is noise drawn 
from Laplace distribution f (x, �) = 1/2(e|x|/�) , where � = �f /ǫ and �f  is sensitivity of query over data D.

In smart grids where aggregators are considered un-trusted entity each smart meter mask its own reading 
before sending to aggregator using Infinite divisibility principal of Laplace distribution. According to the infinite 
divisibility property of the Laplacian noise, if the sampling of a random variable is done from the probability 
distribution function of Laplace distribution then for N ≥ 1 , the distribution is  infinite12:

In this Eq. (2) , G and G′ represent identically distributed and independent gamma density functions having same 
parameters, N represents the number of smart meters within the network and the selection of � is based on and 
point-wise sensitivity. Equation (2) states that when using gamma density function, the aggregated noise of all 
the smart meters at the network level will be equal to Lap(�) at time t.

(1)Pr(M(D1) ∈ S) ≤ e
ε ∗ Pr(M(D2) ∈ S)

(2)Lap(�) =

N
∑

i=1

(G(N , �)− G′(N , �))

(a) DPNCT (b) E-DPNCT with 3 MSMs.

Figure 1.  Collusion attack scenarios.
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Sensitivity
By definition, sensitivity refers to the maximum difference in the output of two neighbouring data sets for a 
function f, defined further in Eq. (3)23.

Sensitivity (�f ) is dependent on the function f and the type of data. In smart grids the function f is total electricity 
consumption of an area at an instant t which is load monitoring and total energy consumption by a household in 
billing period T. Most commonly the sensitivity is selected as the maximum amount a household can consume 
in an area.

Sequential composition
If M1(D) satisfies ǫ1 differential privacy and M2(D) satisfies ǫ2 differential privacy then the combined mechanism 
that releases both outputs satisfies ǫ1+ ǫ2.

Parallel composition
If M(D) satisfies ǫ-DP and D1 and D2 are two disjoint subsets of D such that D1 ∩ D2 = D then the mechanism 
which releases all of the results of disjoints sets satisfies ǫ-differential privacy.

ǫ‑DP guarantee theorem
Differential private metering reporting in E-DPNCT satisfy ǫ-DP guarantee. The proof is as follows:

Let us consider F, F ′ ∈ R|X| in a way such that ||F − F ′||1 ≤ 1 and F = x1, x2, x3, . . . , xn . Let M be a function 
such that M : R|X| → Nk . F and F ′ can be represented by their probability density functions linked with Laplace 
distribution as pF1 and pF2 . According  to23, these probability distributed functions can be compared as follows:

Methods
In this section our proposed collusion resistant E-DPNCT privacy model is introduced with reference to Fig. 2 
and Algorithm 1. Its performance against collusion attacks is assessed and compared to an encryption based 
approach  EPIC9. In addition, we analyse E-DPNCT privacy of individual consumers and accuracy in providing 
billing an load monitoring.

E‑DPNCT operation
A step by step split noise collusion resistant E-DPNCT model is introduced in Fig. 2. In E-DPNCT, as shown in 
Step 1, each smart meter will firstly select privacy parameters to mask the original data by generating DP noise 
using Laplace distribution and adding this noise to the original metered data before sending it to the aggregator. 
In case of E-DPNCT, the query function f can be bill calculation over a period of time T or load monitoring for 
N number of households in an area. If DP noise is added to each individual smart meters reading then according 
to the above Eq. (1) it ensures ǫ-DP protection.

As for generating noise through Laplace Mechanism, a random variable is generated from probability density 
function of Laplace distribution. In E-DPNCT (Fig. 2, Step 1.2), the privacy parameter ǫ is controlled by the user 
through a defined range from 0− 1 . The smaller value of ǫ ensures more privacy, this however, comes at the cost 
of errors in accuracy of billing and load monitoring.

Laplace mechanism employed in E-DPNCT relies on another privacy parameter which is sensitivity (�f ) , 
the setting of which depends on the type of data and query. In case of E-DPNCT, the two functions are billing 
and load monitoring which relies on sum of all measurements so the sensitivity is the maximum difference a 

(3)�f = maxf (x)D1,D2|f (D1)− f (D2)|

(4)
pFn [F = {x1, x2, . . . , xn}]

pF ′n [F
′ = {x1, x2, . . . , xn}]

(5)=

k
∏

j=1

exp
(

−
ε|M(Fn)j−xj |

�f

)

exp
(

−
ε|M(F ′n)j−xj |

�f

)

(6)=

k
∏

j=1

exp

(

ε(|M(F ′n)j − xj| − |M(Fn)j − xj|)

�f

)

(7)≤

k
∏

j=1

exp

(

ε(|M(Fn)j − |M(F ′n)j|)

�f

)

(8)= exp

(

ε(||M(Fn)− |M(F ′n)||)

�f

)

(9)≤ exp(ε)
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single measurement can make on billing and load monitoring. It is calculated in multiple different ways, the 
most common of which, is the maximum measurement among all the smart meters.

In E-DPNCT (Fig. 2, Step 1.3), when adding the noise, each smart meter can choose its level of sensitivity as 
a privacy parameter ensuring a personalised level of privacy and accuracy trade off. Since different households 
have different amount of energy consumption and require different level of privacy, a robust and personalised 
sensitivity level ensures a more personalised level of privacy. Considering N households have different energy 
consumption x1, x2, x3, . . . , xN at an instant t, the sensitivity parameter ( � f) can be chosen as a maximum value 
from x1, x2, x3, . . . , xN or a mean of x1, x2, x3, . . . , xN according to the requirements of privacy and accuracy. In 
E-DPNCT, the following values are experimented with sensitivity parameter:

• �f  = max x1, x2, x3, . . . , xN
• �f  = max

2  x1, x2, x3, . . . , xN
• �f  = average x1, x2, x3, . . . , xN = 

∑

x1,x2,x3,...,xN
N• �f  = average2

The mechanism is detailed in Algorithm 1 function E − DPNCT() where each smart meter selects a sensitivity 
parameter �f  and generate noise nt at instant t. Noise nct from previous time period �t is subtracted and nt is 
added to original reading xt . nt is split into m parts using the function RandomlySplitNoise and send to m selected 
master smart meters. nt is added to a list Nt to keep track of total noise added in a time period �t . Further discus-
sion on impact of sensitivity over privacy and accuracy is discussed later in “Utility analysis”.

Figure 2.  System model of split noise E-DPNCT.
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Using both ǫ and sensitivity the noise (n) is generated (Fig. 2, Step 1.4). Next, noise added in previous time 
period is collected as nt−1c (Fig. 2, Step 1.5). Noise n is added and nt−1c is cancelled in original data x to mask 
it (Fig. 2, Step 1.6).

In Step 2, it can be seen in Fig. 2 that each smart meter selects m number of MSMs. For attack resistance 
against colluding smart meters, each smart meter splits its noise into m parts. The smart meter then sends the 
masked data X to the aggregator (Fig. 2, step 3) and as Step 4 in Fig. 2, it then sends the partial noise to the 
selected m MSMs at an instant t, which is further explained in Algorithm 1 function RamdomlySplitNoise(). In 
Step 5 (Fig. 2), each MSM aggregates the partial noise received from each smart meter and sends it to the aggre-
gator shown in Step 6 (Fig. 2). The aggregator then aggregates masked data X received from each smart meter 
in the area at instant t and total noise 

∑

n received from each MSM for the instant t. Aggregated noise data is 
subtracted from aggregated masked data to get total noise as shown in Step 7 (Fig. 2). The total bill is calculated 
by aggregating masked data Xi per household for a billing period T. This mechanism is explained in Algorithm 2. 
The mechanism of periodic self noise cancellation for billing is adopted from  DPNCT12 where each smart meter 
periodically cancels the noise added in the previous time period. The mechanism ensures accuracy in bills and is 
briefly explained in Algorithm 1. Function AggregatedLoadCalculation takes masked readings Xt from all smart 
meters in an area at an instant t Aggregator collects aggregated noise Nk from each master smart meter. The 
aggregated noise is then subtracted from masked data to get total load at an instant t. Similarly, using function 
BillCalculation bills are calculated by aggregating masked reading Xi by a smart meter i for a billing period. If 
total units consumed are more than allowed units, the excess units are charged at surcharge unit price. Billing 
and load monitoring analytic reports are then sent to the power grid for demand response policies.

Experiments and results
In this section we discuss our experiments and their results with respect to resistance against collusion attack, 
level of privacy preservation and accuracy in utility functions i.e., billing and load monitoring.

Collusion attack resistance
To assess the resistance of our split noise E-DPNCT against collusion attacks, a collusion attack is launched with 
multiple MSMs. As shown in Fig. 1b, a collusion attack on the E-DPNCT model is successful only if all the m 
MSMs are malicious and colluding with the aggregator. In this scenario, the attacker needs to collude with all 
three of the MSMs to get complete noise information (2.1, 2.2, 2.3) from Fig. 1b and the aggregator to get masked 
profile of the individual smart meters in order to compute original data.

At instant t, m MSMs are randomly selected from the total smart meters N in an area such that m ⊂ N . The 
probability that the selected MSM would be a colluding smart meter increases with the increase in total number 
of malicious smart meters in the group. Figure 3 shows the rate of success of a collusion attack with increasing 
percentage of malicious smart meters on x-axis and percentage leaked data on y-axis. As shown in this figure, 
with m = 4 MSMs (blue line), the percentage leaked data in one month is less than 1% when 50 out of 200 smart 
meters are malicious which is significantly better where only 1 MSM (black line) is used. As the number of MSMs 
m increases, the resilience against collusion attacks also increases i.e. with 13 MSMs, 135 out of 200 smart meters 
would need to be malicious before the percentage of leaked data increases over 1%.

A key question emerging from this research is the number of MSMs (m) required in the E-DPNCT model for 
successful resistance against collusion attacks. In order to answer this question, different scenarios were simulated 

(10)�f =

{

maxi,t |xi,t |, avgi,t |xi,t |,
maxi,t |xi,t

2
|,
avgi,t |xi,t |

2

}

Figure 3.  Collusion attack on E-DPNCT with multiple master smart meters.
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varying the number of MSMs (y axis) as shown in Fig. 4a. It can be demonstrated that with a large network size 
of 2000 smart meters (x-axis) and 50% malicious smart meters, a very small number of MSMs i.e. m = 7 (red 
line), is required for a successful resistance against collusion attacks. Resistance against collusion attacks can be 
considered successful when only less than 1% data is leaked. This definition can be relaxed to 5% data leak and 
10% data leak. In Fig. 4a–c, the required number of MSMs for successful resistance against collusion attacks are 
compared for 1% data leak, 5% data leak and 10% data leak respectively. It can be seen from the results that as we 
relax boundaries of successful attack resistance the required number of MSMs are also decreased. For example, 
in Fig. 4a, the required number of MSMs where total number of smart meters are 2000 and malicious smart 
meters are 75% , is 16 (green line). Whereas, the required number of MSMs is 11 for the same scenario in Fig. 4b 
and 9 in Fig. 4c. Each smart meter communicate with MSMs to send its noise data so in order to decrease the 
communication overhead appropriate number of MSMs can be chosen using this analysis.

To access the performance of E-DPNCT for the collusion attack resistance, the results of a collusion attack 
on the E-DPNCT model are compared against the encryption based EPIC model. Less than 1% data leak is con-
sidered as successful resistance against collusion attack. As shown in Fig. 5, the number of required MSMs, on 
y-axis, are compared for different % percentage of malicious smart meters in an area is on x-axis. Results show 
that our E-DPNCT model required less number MSMs as compared to the EPIC privacy  model9. For example, 
with 40% malicious smart meters the required number of MSMs in EPIC is 11 whereas, the required number of 
MSMs in E-DPNCT for the same is 6.

E-DPNCT has lower computational complexity and communication overhead as it does not require the 
sharing/communication of secret keys for data encryption and decryption. The EPIC model involves generating 
and sharing multiple secret keys for data encryption and decryption using homomorphic encryption which has 
high computation and communication cost as compared to E-DPNCT method. DP used in E-DPNCT utilises 
the random noise generation which has the minimal computation complexity. Each smart meter generates a 
random number as part of differential privacy model and cost of generating a random number is O(1). Whereas, 

(a) Required number of MSMs for
less than 1% data leak

(b) Required number of MSMs for
less than 5% data leak

(c) Required number of MSMs for
less than 10% data leak

Figure 4.  Rate of increase in required number of MSMs for successful collusion attack resistance.

Figure 5.  Comparison of collusion attack resistance between split noise E-DPNCT and  EPIC9.
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Algorithm 1.  Enhanced DPNCT.

Algorithm 2.  Calculation of Bill and Aggregated Load at Aggregator.
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aggregator aggregates N masked readings and subtract aggregated noise from it which has computational com-
plexity of O(N) for load monitoring. For billing function the computational complexity is O(T) where T is billing 
period. E-DPNCT is also more fault tolerant in cases where smart meters fail to report their noise data. This is 
further discussed in “Utility analysis” where the utility of E-DPNCT protected data is further evaluated.

Privacy analysis
In order to verify the privacy and utility, we use the energy consumption data provided by Muratori et al.24 to 
perform experiments to evaluate the accuracy and privacy of the E-DPNCT model. This simulated data provides 
the energy consumption data of 200 households in watts with a granularity of 10 minutes this gives us 6 read-
ings in an hour. The total number of readings received by a smart meter in a one month (30 days) billing period 
T, can be calculated as T = 6 ∗ 24 ∗ 30 = 4, 320 . We used the Numpy library of Python 3.025 to implement 
E-DPNCT. To maintain simplicity while generating Laplacian noise, we fixed the ǫ = 1 . The impact of setting 
different values of privacy parameters ǫ have been explored previously  by26,27 and are hence not elaborated in 
this paper. The point-wise sensitivity can be selected by each smart meter. As an example we experimented with 
�f  = maxi,t |xi,t | , �f  = avgi,t |xi,t | and half of both values in case of any outliers. We took the mean = 0 to measure 
the scale parameter � . Generating a random number has the complexity cost of O(1) and our algorithm operates 
such that it adds a random number ni,t per reading xi,t.

Previously, selecting a sensitivity parameter is not widely explored in differential private models for smart 
grids. Most common method of choosing sensitivity in literature is maximum value in the whole  dataset7,15,16. 
Whereas, others choose the sum of electricity consumed by electric appliances in  households5,28. In E-DPNCT, 
the impact of different sensitivity values(x-axis) on privacy (correlation coefficient) can be seen in Fig. 6a. It can 
be seen in the figure that sensitivity has a direct impact on the privacy of data in DP as noise is calibrated accord-
ing to the sensitivity of the query. The higher the sensitivity, the higher privacy is achieved. We used correlation 
coefficient as privacy metric which tests the relationship between masked time series profile with original profile. 
The correlation coefficient of original data with itself is 1 showing no privacy which means that both data sets 
are the same whereas �f = max has the lowest correlation with original data showing highest privacy level.

Utility analysis
Mean Absolute Error (MAE) in total energy consumption for billing and load monitoring is calculated as  follows7:

where xi is the original energy consumption of the household and Xi is the masked energy consumption of the 
household.

Billing
Calculation of bills is the first utility goal of our proposed model. The error in the billing period T occurs due to 
noise added in the last �t as all the previous noise is cancelled out in subsequent �t where �t can be an hour, 
a day or a week. The error in the bill is reported by each house hold and it is cancelled in the next billing period 
as depicted by the E-DPNCT Algorithm 2. The aggregator calculates bill using Block meter rate tariff ,where 
a consumer is charged with base unit price for first set of max allowed units and after that the excess units are 

(11)MAE =
∑ |xi − Xi|

xi

(a) Impact of different sensitivity values on Privacy of data (b) Impact of different sensitivity values on accuracy in billing

Figure 6.  Impact of sensitivity on privacy and accuracy.
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charged with surcharge unit price as shown in Algorithm 1. For experiments we set the maxallowedunits =2000 
kw for the billing period of one month.

In Fig. 6b we compared the impact of sensitivity value over the accuracy in billing of a household using 
MAE. The E-DPNCT protected data using maximum load at an instant t as sensitivity(�f ) value exhibits largest 
error whereas selecting half of average load at an instant t as sensitivity(�f ) yields least MAE in billing results. 
Hence, robust selection of sensitivity value can be choice of energy consumers so that they can decide the level 
of privacy at the cost of accuracy.

In Fig. 7, MAE in billing comparison between E-DPNCT and  DRDP13 is depicted. It can be seen from the 
figure that E-DPNCT performs significantly better than DRDP.

Load monitoring
Calculation of total load in an area at an instant (t) is the second utility goal in smart grids. Due to the use of 
infinite divisibility of Laplace noise, at each instant t, the aggregated masked load sent by all the smart meters in 
an area has privacy of ǫt as referred in Fig. 4. In the ideal situation each MSM sends the aggregated noise to the 
aggregator to calculate accurate aggregated load. However, in situations where the aggregator does not receive 
any aggregated noise from MSMs the error would be Lap(�) (Theorem 24). We evaluated mean absolute error in 
cases where smart meters could not report the added noise to MSMs. In Fig. 8b, the green line shows 10% (20 out 
of 200) smart meters fail to report the added noise back to the aggregator and the black line shows the original 
load in real time. It shows that even with 10% smart meters not reporting the added noise information to their 
MSMs the load monitoring will be close to the original load monitoring curve. Further, Fig. 8a illustrates com-
parison of MAE in load monitoring in an area (y-axis) for different levels of faulty smart meters (x-axis), which 
fails to report their noise to the MSMs. From these results it can be deduced that the total mean absolute error 
(MAE) in load monitoring is only 0.1 kWh if 10% smart meters do not send their noise information to the MSMs.

Conclusion and future work
In this paper, an E-DPNCT model with split noise distribution to multiple MSMs for a better resistance against 
privacy attacks is presented. We compared attack resistance of our E-DPNCT model with the state of the art 
privacy model EPIC. In addition, the impact of sensitivity parameter on privacy and accuracy in billing and load 
monitoring is analysed. In conclusion, using multiple MSMs reduces the probability of a successful collusion 
attack in E-DPNCT and further preserve privacy and accuracy in billing and load monitoring. We also deduced 
that selecting sensitivity parameter for Laplace mechanism in differential privacy based privacy model plays 
crucial part in privacy vs. accuracy trade off. As part of future work, We plan on adding more utility functions 
on top of billing and load monitoring for example, time of use (ToU), value added services, etc. and access the 
impact of noise on them. We also plan to work on detecting and mitigating data integrity attacks where adver-
sary tries to inject false data for financial gains. The data perturbation privacy models for smart grids are easy 
target of such data integrity attacks. Hence, there is a need of a DP based privacy model which is resistant to 
data integrity attacks.

Figure 7.  Comparison of mean absolute error in billing with  DRDP13.
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Data availibility
The energy consumption data used in this paper is provided by Muratori et al.24. It is synthetically generated 
residential power consumption data of 200 households.
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