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Role of sex in lung cancer risk 
prediction based on single low‑dose 
chest computed tomography
Judit Simon 1,2,9, Peter Mikhael 3,4,9, Ismail Tahir 1,2, Alexander Graur 1, Stefan Ringer 1, 
Amanda Fata 5, Yang Chi‑Fu Jeffrey 2,6, Jo‑Anne Shepard 1,2, Francine Jacobson 2,7, 
Regina Barzilay 3,4, Lecia V. Sequist 2,8, Lydia E. Pace 2,5,10 & Florian J. Fintelmann 1,2,10*

A validated open-source deep-learning algorithm called Sybil can accurately predict long-term lung 
cancer risk from a single low-dose chest computed tomography (LDCT). However, Sybil was trained 
on a majority-male cohort. Use of artificial intelligence algorithms trained on imbalanced cohorts may 
lead to inequitable outcomes in real-world settings. We aimed to study whether Sybil predicts lung 
cancer risk equally regardless of sex. We analyzed 10,573 LDCTs from 6127 consecutive lung cancer 
screening participants across a health system between 2015 and 2021. Sybil achieved AUCs of 0.89 
(95% CI: 0.85–0.93) for females and 0.89 (95% CI: 0.85–0.94) for males at 1 year, p = 0.92. At 6 years, 
the AUC was 0.87 (95% CI: 0.83–0.93) for females and 0.79 (95% CI: 0.72–0.86) for males, p = 0.01. In 
conclusion, Sybil can accurately predict future lung cancer risk in females and males in a real-world 
setting and performs better in females than in males for predicting 6-year lung cancer risk.

Abbreviations
AI	� Artificial intelligence
AUC​	� Area under the curve
CI	� Confidence interval
IQR	� Interquartile range
LDCT	� Low-dose computed tomography
Lung-RADS	� Lung Reporting and Data System
ROC	� Receiver operating characteristics
UNESCO	� United Nations Educational, Scientific and Cultural Organization

Lung cancer is the leading cause of cancer mortality globally and is projected to remain a major cause of death 
for several decades1,2. Stage at the time of lung cancer diagnosis is the most important predictor of prognosis and 
early detection remains essential. In the National Lung Screening Trial (NSLT) and the NELSON study, early 
detection of small, asymptomatic lung tumors by low-dose chest computed tomography (LDCT) screening led 
to a significant reduction in lung cancer-specific mortality3,4. Since then, many countries have implemented 
large-scale LDCT screening, using eligibility criteria based largely on age and cigarette smoking history. The 
United States Preventive Services Task Force (USPSTF) recommends annual LDCT screening for individuals 
aged 50 to 80 years, who have a 20-pack-year smoking history and currently smoke or have quit smoking within 
the past 15 years5.

Sex is an important variable to consider in lung cancer screening programs since females have different risk 
profiles and prognoses compared to males6–12. There are also concerns that current screening criteria may be 
less applicable to females, since females smoke less when compared with males13,14. Over the last decades, the 
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incidence of lung cancer has decreased far more slowly in females compared to males15,16. However, females 
remain underrepresented in lung cancer research11,17–20.

Researchers at Massachusetts General Hospital (MGH) and Massachusetts Institute of Technology (MIT) 
have developed and validated an open-source deep-learning (DL) algorithm called Sybil that accurately predicts 
long-term lung cancer risk from a single LDCT without the need for human annotation. Sybil has the potential 
to inform personalized screening strategies among individuals undergoing LDCT, and decrease the risk of 
both under- and over-screening21. However, Sybil was trained on the NLST cohort, which consists of 60% male 
subjects. Training AI algorithms on biased samples can lead to lower performance in underrepresented groups 
and Sybil’s performance among males and females has not been compared in a contemporary dataset. Given the 
known sex differences in lung cancer risk, and the importance of improving risk stratification for females, we 
aimed to study whether Sybil works equally well among males and females on contemporary LDCT obtained as 
part of routine clinical care across a large healthcare system.

Materials and methods
Participants
With approval from the institutional review board (Mass General Brigham Institutional Review Board), this 
retrospective study included consecutive subjects who underwent lung cancer screening at Brigham and Women’s 
Hospital (BWH; Boston, USA) or MGH (Boston, USA) between January 1, 2015, and June 30, 2021. The cohort 
from MGH matches one of the external validation sets used for Sybil21. The research was performed in accord-
ance with the Declaration of Helsinki and the Health Insurance Portability and Accountability Act (HIPAA). 
Informed consent was obtained from all subjects and/or from their legal guardian(s). We chose these cohorts 
to evaluate Sybil’s performance on contemporary scans obtained as part of routine clinical care. Based on the 
USPSTF eligibility criteria applicable at the time, patients aged 55 to 80 years with a 30 pack-year history of 
smoking who were either current smokers or quit smoking within the past 15 years underwent LDCT for lung 
cancer screening22. Participants without clinical follow-up to establish the presence or absence of lung cancer were 
excluded. We excluded studies obtained after cancer diagnosis and with a slice thickness greater than 2.5 mm to 
align with Sybil’s training set21. Scans with a Lung-RADS score of 0 which indicates that part or all of the lung 
could not be evaluated were also excluded.

Data collection
Demographics including sex and smoking history were abstracted from the electronic medical record. LDCT 
scans were obtained according to standard of care according to the American College of Radiology practice 
guideline on lung cancer screening5. Image acquisition parameters were extracted from the Digital Imaging and 
Communications in Medicine (DICOM) header of included LDCT scans.

Lung cancer diagnosis
Participants diagnosed with lung cancer according to the institutional cancer registry within 6 years after the 
baseline LDCT were considered as having a confirmed lung cancer diagnosis. Those without a lung cancer 
diagnosis per the cancer registry and one or more negative follow-up screening LDCT scans were considered as 
not having lung cancer. Screening LDCT was considered negative if the Lung-RADS score was either 1 or 223.

Image analysis
Sybil is a validated DL algorithm that predicts the future risk of developing lung cancer based on a single LDCT 
scan21. The model aggregates visual information across all three dimensions of the LDCT volume using a 3D 
convolutional neural network architecture, as previously described21.

For each LDCT scan, the algorithm selects the thinnest axial series. Sybil does not require additional clini-
cal data or annotations by a radiologist. Sybil’s output consists of six numbers representing the cumulative lung 
cancer risk per year over a period of 6 years following each LDCT.

Statistical analysis
Categorical variables are expressed as frequencies (percentages), while continuous values are expressed as 
mean ± standard deviation (SD) or median and interquartile range (IQR). Normality of continuous parameters 
was tested with the Shapiro–Wilk test. To assess Sybil’s performance in the prediction of future lung cancer risk 
in our cohort stratified by sex, we plotted receiver operating characteristics (ROC) curves for each year up to 
6 years following the LDCT. We plotted ROC curves for females and males and compared the area under the 
curve (AUC) values using DeLong’s test. We computed bootstrapped confidence intervals (CIs) using 5000 resa-
mples after clustering LDCTs by participant. Uno’s concordance (C)-index was computed to express how likely 
the scan closer to a lung cancer diagnosis had a higher predicted risk in a randomly selected pair of LDCTs. A 
two-sided p-value of < 0.05 was considered statistically significant for all tests. All analyses were performed using 
statistical software R (version 4.2.2) and its packages, namely ‘pROC’ (version 1.18.0) and ‘ggplot2’ (version 3.4.2).

Results
Baseline characteristics
We obtained 16,375 LDCTs from 8459 consecutive adult subjects (3066 LDCTs from 2107 subjects at BWH and 
13,309 LDCTs from 6,352 subjects at MGH). After exclusion, 10,573 LDCTs from 6127 subjects (47.3% female, 
mean age 64.9 ± 6.2) were analyzed (Fig. 1). 27.6% of the initial study population were excluded due to lack of 
follow-up. 47.0% of the excluded patients were female and 53.0% were male. Excluded patients were 90.4% white, 
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3.4% identified as African American, 2.2% as Asian and 4.0% identified with other racial background. Baseline 
characteristics are summarized in Table 1. 

Future lung cancer risk prediction in females and males
Lung cancer was diagnosed in 341 (3.2%) cases (3.7% of the females and 2.8% of the males). Sybil predicted the 
risk of lung cancer with AUCs of 0.89 (95% CI: 0.85–0.93) for females and 0.89 (95% CI: 0.85–0.94) for males 
at 1 year, 0.85 (95% CI: 0.80–0.90) for females and 0.82 (95% CI: 0.77–0.88) for males at 2 years, 0.83 (95% CI: 
0.78–0.88) for females and 0.81 (95% CI: 0.76–0.87) for males at 3 years, 0.83 (95% CI: 0.78–0.88) for females 
and 0.80 (95% CI: 0.75–0.86) for males at 4 years and 0.84 (95% CI: 0.79–0.89) for females and 0.78 (95% CI: 
0.73–0.84) for males at 5 years; all p > 0.05. At 6 years, AUC was 0.88 (95% CI: 0.83–0.93) for females and 0.79 
(95% CI: 0.72–0.86) for males, p = 0.009. Detailed data on Sybil’s performance by sex can be seen in Table 2 and 
Fig. 2.

When comparing Sybil’s risk prediction between the two centers, the performance was significantly better at 
BWH at 1 year (0.97 [95% CI: 0.94–0.99]) than at MGH (0.86 [95% CI: 0.82–0.90], p < 0.001). From the second 
year of follow-up onward, this difference in performance was not statistically significant (Table 3). Additional 
details regarding Sybil’s ability to predict lung cancer by center are reported in Supplementary Table 1.

Discussion
The validated DL algorithm called Sybil accurately predicted future lung cancer risk in both females and males 
with AUCs of 0.89 (95% CI: 0.85–0.93) for females and 0.89 (95% CI: 0.85–0.94) for males at 1 year. For long-
term lung cancer risk prediction at 6 years, Sybil performed better in females than in males with AUCs of 0.88 
(95% CI: 0.83–0.93) for females and 0.79 (95% CI: 0.72–0.86) for males. This study provides a validation of the 
prediction of sex-stratified lung cancer incidence up to 6 years in a large cohort of participants who recently 
underwent lung cancer screening as part of standard of care.

The role of artificial intelligence (AI) continues to expand in medicine. However, the utility of AI-generated 
predictions is largely dependent on the quality and diversity of the training datasets24. Females have been under-
represented in clinical trials, including in the NLST25. The 2020 report on ‘Artificial Intelligence and Gender 
Equality’ by UNESCO (United Nations Educational, Scientific and Cultural Organization) calls for increased 
efforts to address the potential for sex inequities in AI26. Given the possibility for biases to be introduced dur-
ing the development of DL models, careful evaluation is warranted using contemporary data collected from 
the clinical setting in which deployment is considered27. If uncovered, biases can be addressed by re-training 
and adapting the algorithm, thereby preventing future digital systems to the perpetuate disparities of the past28.

The current study adds to prior work in several ways. Sybil was developed on a 60% male population using 
LDCT scans obtained almost two decades ago as part of a clinical trial while our study population consisted of 
more than 10,500 contemporary LDCT scans from participants who underwent lung cancer screening LDCT 
as standard of care since 2015. The percentage of males in the current study is a more balanced 53% and reflects 
current clinical practice in our health system. In the current study, Sybil performed equally well at predicting 
lung cancer risk in both sexes in years 1–5 and demonstrated significantly better performance in risk prediction 
among females at 6 years. The difference in performance at 6 years is hypothesis generating and might reflect 
Sybil’s capability to detect early signs of tumorigenesis. A prior study showed that lung cancer prevalence was 
nearly twice as high in females compared to males of similar age and smoking history29. Consistent with this 
finding, the overall incidence of lung cancer in our study population was higher in females than in males (3.7% 

Figure 1.   Study flowchart. BWH Brigham and Women’s Hospital, MGH Massachusetts General Hospital.
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in females vs. 2.8% in males). These results suggest that lung cancer may progress more slowly in females and 
might contribute to Sybil’s better performance in females at 6 years.

Lung cancer remains the leading cause of cancer mortality in the United States in both sexes. However, females 
have different risk profiles as compared to males and over the last decades, the incidence of lung cancer has 

Table 1.   Characteristics of the 6127 participants of the Lung Cancer Screening Program in a health system 
from 2015 to 2021, per low-dose chest computed tomography (LDCT).

Females Males p

Number of LDCTs 5067 5506 –

Age (years), mean ± SD 64.9 ± 6.3 64.8 ± 6.2 0.299

Pack-years, median [IQR] 40 [30–50] 40 [35–50]  < 0.001

Race, n (%)

 < 0.001

 Asian 28 (0.6) 165 (3.0)

 Black or African American 194 (3.8) 201 (3.6)

 White 3999 (78.9) 4388 (79.6)

 Other 149 (2.9) 230 (4.2)

 Unknown 693 (13.7) 531 (9.6)

Lung-RADS categories per radiology reading for each LDCT, n (%)

0.003

 1 841 (16.6) 1058 (19.2)

 2 3389 (66.9) 3515 (63.8)

 3 450 (8.9) 526 (9.6)

 4 387 (7.6) 407 (7.4)

Future lung cancer, n (%) 186 (3.7) 155 (2.8) 0.015

Number of LDCTs with each year of complete follow-up, defined as having information about a lung cancer diagnosis or a negative follow-up test, n (%)

 < 0.001

 1 1530 (30.2) 1779 (32.3)

 2 1192 (23.5) 1393 (25.3)

 3 1142 (22.5) 1108 (20.1)

 4 724 (14.3) 753 (13.7)

 5 357 (7.0) 379 (6.9)

 6 124 (2.4) 93 (1.7)

CT scanner manufacturer, n (%)

0.069

 Siemens 1378 (27.2) 1381 (25.1)

 Toshiba 0 (0.0) 1 (0.0)

 General Electric 2500 (49.3) 2791 (50.7)

 Philips 1191 (23.5) 1332 (24.2)

Scanner kilovoltage peak, n (%)

0.113

 100 108 (2.1) 88 (1.6)

 110 3 (0.0) 6 (0.1)

 120 4957 (97.8) 5411 (98.3)

 140 1 (0.0) 0 (0.0)

Image reconstruction diameter in mm, mean ± SD 394.8 ± 58.8 426.0 ± 49.7  < 0.001

Tube current in mA, median [IQR] 69 [50–92] 80 [55–100]  < 0.001

CTDIvol in mGy, median [IQR] 2.1 [1.7–2.7] 2.7 [1.7–3.0]  < 0.001

Slice thickness in mm, n (%)

 < 0.001

 0.67 4 (0.1) 0 (0.0)

 1 2551 (50.3) 2704 (49.1)

 1.25 2500 (49.3) 2791 (50.7)

 1.5 5 (0.1) 6 (0.1)

 2 9 (0.2) 4 (0.1)

Single collimator width in mm, n (%)

 < 0.001

 0.5 0 (0.0) 1 (0.0)

 0.6 1368 (27.7) 1375 (25.0)

 0.625 3491 (68.9) 3883 (70.5)

 1.2 1 (0.0) 2 (0.0)

 1.25 208 (4.2) 245 (4.4)

Total collimator width in mm, mean ± SD 46.3 ± 18.4 47.0 ± 18.7 0.062
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Table 2.   Sybil’s future lung cancer predictions per year in 2901 females with 5067 LDCT scans and 3226 males 
with 5506 LDCT scans between 2015 and 2021. AUC​ area under the curve, C-Index concordance index.

Females Males p

1-year risk, AUC (95% CI) 0.890 (0.849, 0.934) 0.887 (0.846, 0.936) 0.915

2-year risk, AUC (95% CI) 0.849 (0.803, 0.898) 0.820 (0.766, 0.875) 0.320

3-year risk, AUC (95% CI) 0.827 (0.777, 0.878) 0.809 (0.756, 0.867) 0.549

4-year risk, AUC (95% CI) 0.831 (0.784, 0.877) 0.802 (0.749, 0.857) 0.308

5-year risk, AUC (95% CI) 0.837 (0.792, 0.886) 0.783 (0.727, 0.842) 0.067

6-year risk, AUC (95% CI) 0.878 (0.829, 0.930) 0.787 (0.715, 0.860) 0.009

C-index (95% CI) 0.834 (0.788, 0.881) 0.814 (0.767, 0.866)

Figure 2.   Receiver operating characteristics curves displaying the ability of the Sybil algorithm to predict future 
lung cancer risk over 6 years following a single low-dose computed tomography scan in 2,901 females and 3,226 
males who underwent lung cancer screening between 2015 and 2021. CIs for each curve can be found in Table 2. 
AUC​ area under the curve.

Table 3.   Sybil’s risk prediction for future lung cancer risk in 2901 females with 5067 LDCT scans and 
3226 males with 5506 LDCT scans, by hospital. AUC​ area under the curve, BWH Brigham and Women’s 
Hospital, C-Index concordance index, MGH Massachusetts General Hospital.

BWH and MGH BWH MGH p

1-year risk, AUC (95% CI) 0.886 (0.856, 0.919) 0.965 (0.943, 0.998) 0.859 (0.819, 0.904)  < 0.001

2-year risk, AUC (95% CI) 0.835 (0.800, 0.873) 0.881 (0.821, 0.953) 0.816 (0.773, 0.861) 0.050

3-year risk, AUC (95% CI) 0.817 (0.78, 0.853) 0.850 (0.783, 0.926) 0.794 (0.748, 0.843) 0.101

4-year risk, AUC (95% CI) 0.816 (0.781, 0.852) 0.835 (0.767, 0.909) 0.786 (0.741, 0.833) 0.146

5-year risk, AUC (95% CI) 0.811 (0.774, 0.849) 0.812 (0.740, 0.887) 0.780 (0.732, 0.830) 0.367

6-year risk, AUC (95% CI) 0.838 (0.796, 0.882) 0.796 (0.714, 0.877) – –

C-index (95% CI) 0.823 (0.790, 0.859) 0.844 (0.781, 0.909) 0.81 (0.769, 0.852)
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decreased far more slowly in females compared to males16. Moreover, lung cancer in people who never smoked 
is increasing world-wide, especially among women13. The 2021 USPSTF lung cancer screening eligibility criteria 
lowered the age at which one can access screening from 55 to 50 years and reduced the requisite smoking pack-
years from 30 to 205. These changes should ideally have reduced sex disparities in eligibility by increasing the 
number of females eligible for lung cancer screening. However, data suggest that while more women can now 
access lung screening LDCT, sex disparities in eligibility still persist14. Given the potential inaccuracy of widely 
used clinical risk scores when applied to females, identifying more accurate risk stratification tools is particularly 
important in females, as it is in racially and ethnically minoritized groups.

DL-based prediction systems for lung cancer screening have shown promise in assisting radiologists with 
early detection and risk assessment2,30–32. We anticipate that DL-based algorithms will eventually be integrated 
into clinical practice, which raises medicolegal concerns related to liability, accuracy, patient consent, and data 
privacy. Addressing potential biases in DL-based algorithms rigorously, establishing clear user guidelines, and 
continuously evaluating these systems are essential steps to mitigate these challenges and promote the integration 
of DL-based prediction systems into patient management pathways.

It is important to acknowledge that our cohort predominantly comprised participants identified as White, 
constituting approximately 80% of the participants both in males and females. This raises concerns about the 
generalizability of our results to more diverse populations, as both race/ethnicity and socioeconomic status 
disparities are associated with lung cancer risk and might affect Sybil’s performance33,34. Studies are required to 
assess Sybil’s performance in more diverse populations. A considerable proportion of patients were excluded 
from the analysis due to the lack of clinical follow-up. While no imbalance was detected between the included 
and excluded groups in terms of sex and race/ethnicity, there may have unmeasured differences in these groups.

There are several limitations to this study. First, this was a retrospective study relying on routinely collected 
clinical data which may be subject to misclassification. Second, we did not evaluate the impact of other demo-
graphic features or the possible mediating and compounding impacts of socioeconomic status or gender, which 
may affect lung cancer risk. Third, this experiment was conducted using data from a single health system with 
limited racial and ethnic diversity. This study was limited to participants who qualified for lung cancer screen-
ing under the 2013 USPSTF criteria since CT scans were obtained between 2015 and 2021, prior to the release 
of the 2021 USPSTF criteria. Another limitation of our study is the limited follow-up time, which mirrors the 
current state of lung cancer screening.

In summary, our results did not reveal sex differences in the performance of an open access DL algorithm 
that predicts lung cancer risk based on a single LDCT, suggesting that Sybil can accurately predict future lung 
cancer risk in females and males and there is no need for retraining. For predicting long-term lung cancer risk at 
6 years, Sybil performs better in females than in males. Pending validation in a more racially diverse populations 
and confirmation of benefit in prospective trials, both of which are underway, Sybil may eventually be deployed 
in clinical settings. For example, Sybil could potentially be used to risk-stratify individuals following their annual 
screening LDCT, thereby enabling the extension of screening interval for low-risk individuals.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reason-
able request.
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