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An optimization case study 
for solving a transport 
robot scheduling problem 
on quantum‑hybrid 
and quantum‑inspired hardware
Dominik Leib 1*, Tobias Seidel 1, Sven Jäger 1, Raoul Heese 1, Caitlin Jones 2, 
Abhishek Awasthi 2, Astrid Niederle 3 & Michael Bortz 1

We present a comprehensive case study comparing the performance of D‑Waves’ quantum‑classical 
hybrid framework, Fujitsu’s quantum‑inspired digital annealer, and Gurobi’s state‑of‑the‑art classical 
solver in solving a transport robot scheduling problem. This problem originates from an industrially 
relevant real‑world scenario. We provide three different models for our problem following different 
design philosophies. In our benchmark, we focus on the solution quality and end‑to‑end runtime of 
different model and solver combinations. We find promising results for the digital annealer and some 
opportunities for the hybrid quantum annealer in direct comparison with Gurobi. Our study provides 
insights into the workflow for solving an application‑oriented optimization problem with different 
strategies, and can be useful for evaluating the strengths and weaknesses of different approaches.

Quantum computing (QC) is a field that has witnessed a rapid increase in interest and development over the past 
few decades since it was theoretically shown that quantum computers can provide an exponential speedup for 
certain  tasks1–3. Translating this potential into a practically relevant quantum advantage, however, has proven 
to be a very challenging endeavor. Nevertheless, the emerging field is considered to have a highly disruptive 
potential for many domains, for example in machine  learning4, chemical  simulations5 and  optimization6, the 
domain of this work. Due to the fact that optimization problems are of utmost importance also for industrial 
applications, we investigated a potential advantage of quantum and quantum-inspired technology for the so-
called transport robot scheduling problem (TRSP), a real-world use-case in optimization that is derived from 
an industrial application of an automatized robot in a high-throughput laboratory. The optimization task is to 
plan a time-efficient schedule for the robot’s movements as it transports chemical samples between a rack and 
multiple machines to conduct experiments. This is an NP-hard problem which for certain instances can be 
challenging to solve using classical computing techniques, and hence is an attractive candidate to search for an 
advantage with non-classical techniques.

In our study, we compared the solution quality and runtime of different solvers on a large set of instances of 
the problem. As solvers, we considered D-Wave’s hybrid Leap framework (LBQM) that makes use of the D-Wave 
quantum  annealer7, Fujitsu’s digital annealer (FDA)8, Fujitsu’s digital annealer hybrid framework (FDAh), as 
well as the industry-grade Gurobi  solver9. As a key element of this work, we provide three different models for 
the TRSP that follow different design philosophies. This is justified by the different ways in which the problem 
task can be modelled and the inherent differences in the problem formulations that the solvers addressed can 
accept. LBQM, FDA and FDAh are restricted to a formulation as a quadratic unconstrained binary optimization 
(QUBO), whereas a mixed integer program (MIP) with integer and float variables can be used by Gurobi, which 
makes a comparison of multiple formulations meaningful.

The TRSP considered in this paper is a special combination of different scheduling problems that, to our 
knowledge, has not been considered before. Scheduling problems have been studied intensively for several dec-
ades and classical algorithms exist for numerous  variants10,11. Since most of the industry-relevant scheduling 
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problems are NP-hard, these classical algorithms mainly consist of meta-heuristics or use general-purpose MIP 
solvers, which basically solve the problem using a branch and bound approach with several additional improve-
ments like cutting planes. In addition to classical algorithmic developments, a considerable amount of research 
has also been done in hardware-based parallel computing, especially in general purpose computation on graphics 
processing unit GPGPU  parallelization12,13. The problem discussed in this work is an extension of the typical 
job shop scheduling problem JSSP, where the inclusion of a robot adds additional restrictions. More specifically, 
the studied scheduling problem falls into the category of robotic cell scheduling and automated guided vehicles 
AGV scheduling problems. Most work on robotic cell scheduling deals with infinite cyclic  schedules14. This 
comprises polynomial-time algorithms and hardness  results15, MIP  techniques16–18 and heuristic  approaches19. 
Many efficiently solvable and hard special cases have been  identified20 and heuristics have been proposed for 
some of the hard  cases21. Those problems differ from our use case in one way or another. The problems considered 
by the above-cited papers allow, unlike our use case, that the jobs can wait at a machine after their completion 
before being picked up by the robot. Robotic cell scheduling problems without this possibility have been studied 
by Ref.22,23, whose problems differ from our, among others, in the considered objective function. Our objective 
function, the total job completion time, has been extensively studied for flow shop scheduling problems without 
a  robot11,24–26, the latter of which shows that the no-wait variant is strongly NP-hard on two machines. Apart 
from the no-wait constraint, the problem considered in our work is characterized by the fact that jobs have to go 
to the last machine several times. Such settings are known as a re-entrant flow shops, for which Ref.27 developed 
a heuristic algorithm.

We are mainly interested in the performance of non-standard solution approaches using quantum or quan-
tum-inspired solvers in this study. Because these solvers rely on heuristics, benchmarks for real-world applica-
tions are a highly relevant research topic. Most quantum optimization approaches fall into two major groups, 
one for gate-based hardware and one for annealing-based  hardware28. The majority of gate-based approaches 
to optimization use parameterized gates to find the ground state of a Hamiltonian related to the cost function 
of the optimization problem in a quantum-classical hybrid fashion, for example via the quantum approximate 
optimization algorithm (QAOA)29,30.

Approaches based on quantum annealing also seek to find the ground state of a Hamiltonian, but by aiming 
for an adiabatic change from an initial state that can be easily prepared. In contrast to actual quantum comput-
ing devices, other classical software and hardware components are merely inspired by quantum computing, for 
example  FDA31 and Toshiba’s Simulated Bifurcation (TSB)32. Typically, optimization tasks for quantum solvers 
and the aforementioned quantum-inspired technologies are modeled as QUBO  problems33. An in-depth analy-
sis of pure QUBO comparison on four quantum and quantum-inspired solvers can be found in Ref.34. In their 
work, the authors compare the solutions of a library of quadratic benchmark problems on the D-Wave quantum 
annealer, FDA, and TSB against each other.

QC has already been successfully used for optimization in various fields. For example, in Ref.35, chemical reac-
tion networks are optimized with quantum computing. In Ref.36, it is shown that using the QAOA, it is possible to 
beat some classical heuristic algorithms on the binary paint shop problem. However, some work has shown that 
the current circuit model algorithms are not always adequate enough to reach significant convergence required 
for a good  solution37. Quantum annealing has proven to offer some advantage against the classical simulated 
annealing algorithm for a spin-glass problem, using D-Wave  hardware38, but this is no conclusive evidence. In 
one of the more recent works on quantum  annealing39, the authors suggest a nature inspired hybrid quantum 
algorithm for robot trajectory optimization for PVC sealing in a real industrial setting. In Ref.40, the authors 
present a solution to the maximum independent set (MIS) problem using a Rydberg atom device, along with a 
claim of a possible super-linear quantum speed-up against classical simulated annealing. Other classical algo-
rithms might still be superior to a quantum approach on current  devices41. Several works consider scheduling 
 problems42–44. In Ref.45, an AGV transportation problem using different classical and quantum approaches is 
studied and Ref.46 investigates a nurse scheduling problem with the usage of a quantum annealer.

The remaining manuscript is structured as follows. We provide a detailed description of the TRSP and its 
mathematical modeling in Sect. "Transport robot scheduling problem". In Sect. "Benchmark setup", we describe 
the design of our numerical study and list the problem instances and solvers that we use. The results of this study 
are presented in Sect. "Benchmark results". Finally, we conclude our study in Sect. "Conclusion and outlook". 
Detailed model descriptions, solver information, further information on the benchmark setup and instance 
lists are contained in the supplementary material (referenced by a preceding “S” to the label it is referring to).

Transport robot scheduling problem
In this section, we present a detailed explanation of the TRSP, which is a real-world use case derived from one 
of BASF’s high-throughput laboratories. This optimization problem is about finding the most time-efficient 
route of a transport robot tasked with moving chemical samples from one processing machine to another. In 
the following, we first provide a general description of the problem setup and then present different modeling 
approaches. These models build the foundation of the subsequent benchmarks.

Problem description
The laboratory we are modeling consists of a sample rack and three different processing machines: a water mixer, 
a sample shaker and a photo booth. And, finally, the robot itself that is tasked with carrying chemical samples 
from one place to another with the goal to conduct chemical experiments. Only the experimental plan (i. e., 
how each sample has to be processed in the laboratory) is predefined in advance, but not the specific order of 
the experiments. Initially, a certain number of samples is stored on the rack. Each of these samples needs to be 
first taken to the water mixer, then to the sample shaker. Once the sample shaking is completed, one or more 
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photos have to be taken of each sample at the photo booth. Consecutive photos need to be taken after specific 
(i. e., predefined) time intervals, where the first photo of each sample has to be taken immediately after the shak-
ing process. Finally, each sample has to be brought back to the rack. The processing times for different samples 
on the same machine can be different as specified by the experimental plan. We assume that each machine can 
only hold (and process) one single sample at any given time, or remain idle, and the processing steps cannot 
be interrupted before their completion. It is required that a machine starts processing a sample as soon as the 
sample is brought by the robot. Moreover, we assume that a sample has to be moved by the robot in-between 
two processing steps. Hence, a sample has to be lifted from a machine (and the machine is made available) as 
soon as it finishes processing.

By definition, the robot requires exactly one time unit to move from any place to any other, with or without 
a sample, and picking up or dropping a sample does not require extra time. Like the machines, the robot can 
transport only a single sample at any given time or drive empty or remain idle. In particular, it is not possible 
that the robot places a sample at a machine and picks up another at the same time.

The objective of this scheduling task is to minimize the sum of sample completion times, i. e., the sum of the 
times when the samples arrive at the the rack after their last photo has been taken. The solution of this optimiza-
tion problem is a sequence of tasks for the robot that yields an efficient laboratory operation.

Mathematical modeling
In our benchmark, we test three modeling approaches against each other. On the quantum and quantum-inspired 
side we consider a QUBO formulation, whereas on the classical side we use two MIP formulations. First, a so-
called sequence model and second, a so-called time-indexed model. In the following, we first introduce the com-
mon terminology for all modeling approaches. Next, we shortly sketch the main features of each model. For a 
more detailed description, we refer to Section S1. The motivation for the development of multiple models is to 
carry out a comparison between the solutions obtained by the most suitable problem encoding for quantum and 
classical solvers. This ensures that we are comparing the best of both worlds (classical and quantum), and do not 
restrict ourselves to a model which is more suitable for quantum over classical computing.

Common terminology
The processing machines are addressed by M1 for the water mixer, M2 for the sample shaker and M3 for the photo 
booth. The scheduling time is discretized into time slots which all have length of one time unit. The transport 
robot takes one time unit for each operation that is either transportation or empty traversal between the machines 
and the rack. In this way, each transport robot scheduling problem is uniquely determined by the number of 
samples to be scheduled N ≥ 1 , the number of photos K ≥ 1 , which agrees for each sample j ∈ {1, . . . ,N} , the 
processing times pj,1, pj,2, pj,3 ∈ N>0 for machines M1,M2 and M3 , which can vary for each sample j ∈ {1, . . . ,N} 
and the time gaps gj,k ∈ N≥2 to be kept between consecutive photos k and k + 1 for k ∈ {1, . . . ,K − 1} , which 
also can vary for each sample j ∈ {1, . . . ,N} . As an example, Fig. 1 provides a feasible schedule in form of a Gantt 
chart to visualize these parameters.

QUBO model
A general QUBO reads

Figure 1.  An example Gantt chart of a robot transport scheduling problem with N = 2 samples and K = 2 
photos.Tasks associated with sample one (two) are colored blue (red). When a sample is processed on one of 
the machines or carried by the robot in the time-frame [t, t′] , a bar is drawn from t to t ′ in the respective row in 
a corresponding color. Empty movements of the robot are not drawn explicitly. For example, at time t = 13 the 
robot is at the rack as sample 1 has been brought to the sample rack from t = 12 to 13. It takes one unit of time 
for the robot to travel from the rack to the water mixer to pick up sample 2 at t = 14 . From t = 22 to t = 23 , 
the sample is brought from the photo booth to the rack and back, which is a consequence of the assumption 
that a sample has to be moved by the robot in-between two processing steps. The objective value of the depicted 
schedule is 19+ 26 = 45.
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for some matrix Q ∈ R
n×n , where x represents a vector of n binary optimization variables. Two challenging 

properties of QUBOs must be taken into account in the modeling. Since only binary variables are allowed, this 
implies that other types of variables must be avoided, i. e. a reformulation into a binary form is necessary. Sec-
ond, the problem is unconstrained. This restriction can be overcome by using penalty terms, which are quadratic 
functions in the model variables that evaluate to a positive value when the current assignment of values to the 
variables leads to an infeasible solution. Typically, the penalty terms are designed to yield 0 if the correspond-
ing solution is feasible, so that they do not contribute to the objective values of feasible solutions. More general 
information about QUBOs and their properties can be found, e. g. , in Ref.33,47,48.

Our proposed QUBO model for the TRSP is based on the well-known starting time formulation (see e. g. 
Ref.43) and can be written as

where F is the objective function and P1, . . . ,P7 denote the penalty functions and ρ0, . . . , ρ7 ∈ R>0 are tunable 
parameters that have to be chosen such that the objective and penalty terms are suitably balanced. As in Eq. 1, n 
represents the total number of binary optimization variables. These have a distinct meaning that can be identi-
fied with three indices. Specifically,

for all j ∈ {1, . . . ,N} , m ∈ {1, 2, 3} and t ∈ {1, . . . ,T − 1} . Here, T denotes the time horizon, which is chosen 
in such a way that there is enough time to schedule all samples sequentially, implying that there is at least one 
feasible solution. It can be explicitly computed for each instance as described in Section S1.1. In terms of Fig. 1, 
one has, for example, x1,1,1 = 1 and x1,2,8 = 1.

The penalty terms for the QUBO model have to be formulated using the binary optimization variables. This 
section only provides an example for such a term, a complete description can be found in Section S1.1. Specifi-
cally, we consider here the constraint that each sample must access the machines M1 and M2 exactly once, which 
can be achieved by

This term evaluates to zero if and only if for each pair of sample j and machine Mm , the variable xj,m,t is 1 for 
precisely one time slot t. Since P1 is bounded below by 0 due to its quadratic nature, each local minimum of P1 
is a feasible solution w.r.t. the rule of machine access to M1 and M2 . The other penalty terms can be formulated 
similarly.

Finally, the objective function F sums up for each sample the time when the sample arrives at the rack after 
the entire scheduling process (“sum of sample completion times”). For example, the objective function in the 
case of Fig. 1 evaluates to 45 time units.

MIP models
MIPs have been used since the late 1950s as a tool for solving scheduling problems. It is not possible to model the 
disjunctive constraints resulting from the discrete ordering decisions only by means of starting time variables. 
Different types of binary variables have been proposed to achieve this. The main types are position variables xijk 
indicating if job j is the kth job on machine i49, linear ordering variables δijk deciding if job j is processed before 
job k on machine i50 and time-indexed variables xijt specifying that job j is started (or processed or completed) on 
machine i at time t51,52. Ref.53 compared these three approaches experimentally for a job shop scheduling problem.

Due to the powerful nature of (mixed) integer programming in contrast to the restrictive nature of the QUBO 
models, we provide two MIP models to be solved using Gurobi, where we follow two state-of-the-art approaches 
for formulating scheduling problems as  MIPs11. The first one, in the following named sequence model, makes 
use of continuous start time and binary linear ordering variables. The second model, called the time-indexed 
model, is restricted to a binary formulation comparable to the QUBO model, where we make use of time-indexed 
variables. The latter provides a model with a natural vicinity to the QUBO formulation whereas the sequence 
model exploits the features of MIP formulations. In this sense we provide a baseline from two different angles, 
one for each solution approach.

MIP: sequence model
In the sequence model, we model sequences of events that affect the behavior of the transport robot with respect 
to the machines and the photos of a sample. We define the set of events as

(1)
min
x

x⊤ · Q · x

s.t. x ∈ {0, 1}n

(2)
min
x

ρ0F(x)+

7
∑

i=1

ρiPi(x)

s.t. x ∈ {0, 1}n,

(3)xj,m,t :=

{

1, if sample j starts processing on machine Mm at time t,
0, otherwise

(4)P1 :=

N
∑

j=1

2
∑

m=1

[(

T−1
∑

t=1

xj,m,t

)

− 1

]2

.
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An event e = (j, i, 0) represents either that a sample j is placed on machine Mi for i ∈ {1, 2} or to the (i − 2) th 
photo shoot for i > 2 , an event (j, i, 1) corresponds to picking it up again. For each event e ∈ E we define an 
optimization variable τe ∈ R≥0 to model the time for event e to happen. In terms of Fig. 1, we have, for example, 
τ(1,1,0) = 1 and τ(1,1,1) = 4 . A simple formulation can be achieved by additionally introducing a binary variable for 
each pair e, f ∈ E , e  = f  of events that indicates if e occurs before f. We reduce the size of the model by exploiting 
the fact that the ordering of some events is fixed or coupled. For example, we do not need a variable that specifies 
the order in which a given sample is brought to the water mixer and to the sample shaker. This leads to three 
sets of linear ordering variables that can be found in Section S1.2 , as well as the various constraints to ensure 
feasibility. The objective function (i. e., the sum of the sample completion times) can be easily expressed using 
the variables τe corresponding to events when a sample is picked up from the last photo.

MIP: time-indexed model
The second constrained model makes use of discrete time-indexed variables similar to the QUBO model from 
Section S1.1 . In this formulation, we model the behavior of the transport robot by defining certain routes a 
sample can be transported along, which include those from the rack to all machines and back or movements 
between subsequent machines. The numbering of the moves is shown in Fig. S1.

As the model name implies, we have, given a discrete time horizon T ∈ N>0 , binary variables to model when 
each sample takes which route as

for all j ∈ {1, . . . ,N} , r ∈ {1, . . . , 8} and t ∈ {0, . . . ,T − 1} . In terms of the Gantt chart from Fig. 1, this would 
imply y1,1,0 = 1 , y1,2,4 = 1 , y2,1,5 = 1 and so on. The time horizon T is defined as for the QUBO model, see Eq. 
(S2).

The constraints of the model are similar to the penalty terms of the QUBO Model and are listed in Section 
S1.3. The objective function (i. e., the sum of the sample completion times) is defined in terms of the ancilla 
optimization variables zj for j ∈ {1, . . . ,N} , that are bounded below by the arrival time of sample j at the rack 
after the schedule has finished.

Benchmark setup
In the present section, we describe the design of the benchmark. We start with an outline of the considered 
problem instances that are listed in more detail in Section S2. Subsequently, we describe the three different 
commercial technologies that we use.

Instances
To set the stage for our benchmark, we specify 260 test instances of our optimization problem of interest, each 
defined by a different set of parameters. Specifically, each instance is uniquely determined by the number of 
samples N, the number of photos K, the gaps gj,k between subsequent photos k and k + 1 for k ∈ {1, . . . ,K − 1} 
and j ∈ {1, . . . ,N} , and, finally, the processing times pj,1, pj,2, pj,3 of the water mixer, sample shaker and photo 
booth, respectively, as explained in Sect. "Mathematical modeling". For the sake of simplicity, the processing time 
of the photo booth agrees for all samples of the same instance, that is pj,3 := p3 for all j ∈ {1, . . . ,N}.

In Section S2, we describe the algorithm that was used to generate parameter sets for the benchmark instances. 
Since the resulting instances span a wide range of complexity, we divide the resulting benchmark library into two 
parts, where each part is defined by the number of binary variables in the corresponding QUBO formulation 
from Sect. "Mathematical modeling" as explained in Section S1.1 in more detail. The first part, which we call 
library of minor instances, contains all 161 instances that have at least 2071 and at most 8080 binary variables. 
The second part, which we call library of major instances, contains the remaining 99 instances with at least 10822 
and at most 22692 binary variables. The reason for that specific division is that 8192 is the maximal amount of 
variables that can be solved directly on Fujitsu’s digital annealer.

We collect groups of instances (N, K) that have the same number of samples and photos as shown in 
Fig. S2, i. e., within those groups the leftover parameters pj,m and gj,k for j ∈ {1, . . . ,N},m ∈ {1, 2, 3} and 
k ∈ {1, . . . ,K − 1} may vary. These groups can be understood as a collection of “similar” TRSPs in the sense 
that the complexity of the tasks to be solved is comparable. However, some instances may still be easier or more 
difficult to solve than others in practice. This grouping approach allows us to consider statistical metrics over 
several instances when we compare models and solvers. Moreover, it allows us to estimate the scaling behavior 
of different solution approaches. In Section S2, we list how many instances each group contains.

Quantum and classical solvers
In our benchmark, we solve the generated instances with a selection of model and solver combinations with the 
main goal to assess the performance of quantum and quantum-inspired technology. Specifically, we consider 
three solver candidates: 

1. Gurobi: As a baseline, we use the branch and bound algorithm of Gurobi, which is a state-of-the-art math-
ematical programming solver running on classical  hardware9. In summary, it relies on an implicit enumera-
tion that allows the original problem to be split into smaller sub-problems using a decision tree. The use of 

(5)E :=
{

(j, i, a) | j ∈ {1, . . . ,N}, i ∈ {1, . . . , 2+ K}, a ∈ {0, 1}
}

.

(6)yj,r,t :=

{

1, if sample j is transported by the robot on route r during the time (t, t + 1) ,
0, otherwise
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lower bounds derived from linear programming (LP) relaxations allows for a reduction of the search space. 
Gurobi is an all-purpose solver that can in principle solve the proposed optimization problems to a guaran-
teed optimality in a deterministic fashion (given sufficient time). In this work we utilized the cloud based 
service of Gurobi solver, which ran on a Intel(R) Xeon(R) Platinum 8275CL CPU (3.00 GHz with 8 physical 
cores).

2. D-Wave’s hybrid Leap framework (LBQM): D-Wave provides cloud-based access to their adiabatic quantum 
computers with over 5000  qubits7. By design, their hardware is specifically tailored to solve QUBOs. To this 
end, the QUBO is encoded in an Hamiltonian such that each optimization variable is represented by one 
 qubit54 and the ground state corresponds to the optimal solution. The quantum annealing mechanism aims 
to find the ground state by performing a suitable time evolution of the quantum system with a subsequent 
measurement of all qubits to reveal the optimal solution. The D-Wave hardware has only limited connectiv-
ity, which means that each qubit can only interact with a certain number of other qubits. This limitation 
restricts the correlations between optimization variables that can be represented by the Hamiltonian. Finding 
a suitable representation with these constraints is an NP-hard  problem55 that has to be solved classically to 
configure the quantum annealer for a certain problem. In practice, the quantum annealer can typically only 
be used for QUBOs with much less than 5000 optimization variables. For this reason, D-Wave also provides 
a hybrid software framework LBQM, which is a black-box algorithm for binary quadratic models (BQMs) 
that runs on both classical and quantum annealing hardware. It allows larger optimization problems that 
are too big for the quantum hardware to be handled by presenting only parts of the original problem to the 
quantum annealer. However, the exact mode of operation of LBQM is not publicly available. In this study, 
we use only the quantum annealer in a hybrid fashion via LBQM. The quantum machine used in the hybrid 
framework is the D-Wave Advantage System 4.1 and the region na-west-1. We choose to use a constant 
number of 1000 samples (or readouts) for all evaluations and use default settings for all parameters.

3. Fujitsu’s digital annealer (FDA) and Fujitsu’s digital annealer hybrid framework FDAh: The digital annealer 
from Fujitsu can be considered as a quantum-inspired algorithm that runs on dedicated (classical)  hardware31 
and can be accessed using a cloud service. It is based on simulated  annealing56,57 with two major differ-
ences. Firstly, the utilization of an efficient parallel-trial scheme to exploit the parallelization capabilities of 
the hardware and, secondly, a dynamic escape mechanism to avoid locally optimal solutions. The detailed 
hardware specifications are confidential. The solver supports QUBOs with up to 8192 variables. In addition, 
the hybrid solver FDAh is provided to solver bigger problem instances by utilizing both dedicated and clas-
sical  hardware8 similar to D-Wave’s LBQM. In this study, we use both FDA and FDAh. Both solvers require 
a set of parameters that specify how the annealing is done, which also include the number of repetitions and 
parallel runs on the chip. The specific parameters we used for FDA and FDAh are provided in Section S3.

In a small pre-study, we excluded a few other solvers; see Section S4. The main scope of the paper is to benchmark 
the performance of quantum-hybrid and quantum-inspired technologies on the TRSP on a high level against an 
all-purpose solver with an out-of-the-box performance. In this sense, we also exclude meta-heuristics that are 
tailor-made to the problem as well.

Each instance can be modelled with each of the three modeling approaches from Sect. "Transport robot 
scheduling problem". However, not all solvers are applicable to all problem formulations and all instances. The 
MIP sequence model is solved with Gurobi for all instances. The time-indexed model is solved with Gurobi 
only for the minor instances. The QUBO model is solved with LBQM and FDA for minor instances. For major 
instances, the QUBO model is only solved with FDAh.

We call each valid model and solver combination an approach and use a unique name to refer to it. Sum-
marized, we consider Gurobi with the sequence model (SE-GU), Gurobi with the time-indexed model (TI-GU), 
LBQM with the QUBO model (QU-LBQM), FDA with the QUBO model (QU-FDA) and FDAh with the QUBO 
model (QU-FDAh). An overview over all approaches is shown in Fig. 2.

Figure 2.  Summary of model (see Section "Mathematical modeling") and solver (see Section "Quantum and 
classical solvers") combinations for the benchmarks.
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For all problems, we prescribe a runtime limit of 3600 seconds for Gurobi. This limit was determined on a 
heuristic basis, since initial experiments have shown that Gurobi can solve the considered problem instances on 
this time scale with a practically relevant quality. This time limit exceeds the runtimes of LBQM, FDA and FDAh 
by far to provide Gurobi enough time to return solutions that are suitable for a relative comparison (see Fig. 4).

Both LBQM and FDA also require a time limit for each run, which scales with the problem size in the QUBO 
formulation as follows. The time limit for LBQM is set to be min{100, 1.5 · n

100 } seconds, where n is the number 
of variables in the QUBO formulation for the minor instances. The runtime of the digital annealer is implicitly 
set with the steps parameter, where each step taken in the annealing process takes a constant amount of time. We 
set the number of steps to be 1e7 for the instances with 2071 ≤ n ≤ 4096 , 5e7 for the ones with 4096 < n ≤ 6000 
and 1e8 for the instances with 6000 < n ≤ 8080 variables in the QUBO formulation. Lastly the major instances 
computed with the hybrid framework FDAh based on the digital annealer require a time limit as well. For this 
we distributed the available time of 5 hours to the instances, correspondingly to their number of variables. This 
computes approximatively as n · 0.0117 seconds where n is the number of variables in the QUBO formulation.

The benchmark setup is summarized in Table 1, where we recall the approaches from Fig. 2. The table also 
contains the values of the QUBO parameters ρ0, . . . , ρ7 from Eq. (S16) that were chosen for LBQM, FDA and 
FDAh, respectively. The choice was made according to previous experiments with smaller problem instances. 
For this purpose, a typical strategy is to iteratively increase the parameter ρi if the corresponding penalty term Pi 
is non-vanishing. Additionally, one needs to make sure that the parameter ρ0 for the target function is set such 
that it is not in favor to violate penalty terms and a good optimization is achieved.

Some solutions of the library of minor instances have not been solved to feasibility by LBQM, i. e., the solu-
tion vector returned does not translate to a feasible schedule of the TRSP. Those instances can be identified by 
having an objective value of at least 104 , which is the minimum of the penalty parameters chosen for the QUBO 
model according to Table Table 1. This can be seen as follows: the parameters of the library of minor instances 
are bounded as N ≤ 9 , K ≤ 4 , pj,3 ≤ 3, pj,1 ≤ 8, pj,2 ≤ 4, gj,1 ≤ 5, gj,2 ≤ 12 and gj,3 ≤ 24 for j = 1, . . . ,N . Using 
those upper bounds we compute a maximal time horizon of T = 648 time units for those instances. It follows that 
the sum of sample completion times is bounded above by 9 · 648 = 5832 < 104 , i. e., a solution to an instance 
of the library of minor instances is feasible if and only if it has an objective value below 104 . Of course this does 
neither apply to the library of major instances nor to the solutions of FDA or FDAh as they have lower penalty 
parameters due to prestudies with the smallest instances. In a general setup a way to identify infeasible solutions 
is to store the penalty term 

∑7
i=1 Pi(x) and evaluate the solution with it. The solution is feasible in this case if 

and only if the penalty term evaluates to 0 on it.

Benchmark results
In the current section, we present the results of our previously described benchmark, which is summarized in 
Table 1. For this purpose, we first show the results for the minor instances and subsequently the results for the 
major instances.

Table 1.  Benchmark setup: Summary of problem instances from Section "Instances" and solvers from 
Section "Quantum and classical solvers" for the optimization problems (or models) from Section "Transport 
robot scheduling problem".

Property Minor instances Major instances

Number of instances 161 99

Number of variables (n) 2071 to 8080 10822 to 22692

Approach (cf. Fig. 2) Used for minor instances Used for major instances

SE-GU � �

TI-GU � ×

QU-LBQM � ×

QU-FDA � ×

QU-FDAh × �

Approach (cf. Fig. 2) Minor instance limit Major instance limit

SE-GU 3600s 3600s

TI-GU 3600s —

QU-LBQM min{100, 1.5 · n

100
} · 1s —

QU-FDA







1 · 107 iterations, 2071 ≤ n ≤ 4096

5 · 107 iterations, 4096 < n ≤ 6000

1 · 108 iterations, 6000 < n ≤ 8080

—

QU-FDAh — n · 0.0117s

Solver QUBO parameters from Eq. (S16)

LBQM ρ0 = 1, ρ1 = 30000, ρ2 = ρ3 = ρ4 = ρ5 = ρ7 = 10000, ρ6 = 15000

FDA ρ0 = 1000, ρ1 = 4000, ρ2 = ρ3 = 1000, ρ4 = ρ5 = ρ6 = ρ7 = 1500

FDAh ρ0 = 1000, ρ1 = 2000, ρ2 = ρ3 = 500, ρ4 = ρ5 = ρ6 = ρ7 = 750
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Results for Minor Instances
In Fig. 3, we show the objective values and runtimes of several approaches as scatter plots. All runtimes are end-
to-end runtimes, that is, we consider the entire evaluation pipeline, beginning with the submission of the problem 
to the solver and ending with the return of a solution, including potential network delays. The programmatic 
construction of the optimization problem for the application programming interface (API) of the solver based 
on the instance data is not part of the runtime.

From Fig. 3a, we can observe that both the SE-GU and TI-GU solutions reach a better objective value than 
the solutions from QU-LBQM and QU-FDA. When comparing objective values, it has to be taken into account 
that the QUBO model objective, Eq. 2, also includes penalty terms, which become positive for infeasible solu-
tions and therefore increase the objective value accordingly. Specifically, we find that only QU-LBQM yields 
infeasible solutions for some instances, whereas all other approaches yield feasible solutions (SE-GU and TI-GU 
solutions are by definition always feasible). For our analysis, we include both feasible and infeasible solutions. By 
performing a Welch t-test58, we find that the means of the results from both SE-GU and TI-GU are lower than 
the means of the QU-FDA and QU-LBQM results with a statistical significance of over 99% , respectively. The 
same holds for the QU-FDA objective values in comparison to QU-LBQM.

On the other hand, according to Fig. 3b, the computation time for TI-GU and for some instances of SE-GU 
exceed the computation time of QU-LBQM and QU-FDA. Since MIP solvers typically spend a lot of time proving 
that a solution is optimal, we are also interested in the time taken by Gurobi (for both SE-GU and TI-GU) to find 
solutions of the same quality as those obtained from QU-LBQM or QU-FDA. Hence, we perform an additional 
analysis of the iterative solver progress of each Gurobi run and look for the earliest computation time at which 
Gurobi has reached an objective value that is less than or equal to the corresponding objective value returned by 
the competing solvers for the same instance. We call this earliest computation time the relative runtime. Specifi-
cally, we consider the relative runtime of TI-GU w.r.t. QU-LBQM (TI-GU@QU-LBQM), the relative runtime 
of SE-GU w.r.t. QU-LBQM (SE-GU@QU-LBQM), the relative runtime of TI-GU w.r.t. QU-FDA (TI-GU@QU-
FDA) and the relative runtime of SE-GU w.r.t. QU-FDA (SE-GU@QU-FDA). In the special case that Gurobi is 
not able to find an objective value of the desired quality within its limit of 3600 seconds (which only occurs for 

Figure 3.  Benchmark results for minor instances as scatter plots. The results are grouped into sets of instances 
(N, K) with the same number of samples N and photos K. A horizontal line marks the upper time limit of 3600s 
for Gurobi in Fig. 3b. Some instances have not been solved to feasibility by QU-LBQM, as indicated by the peaks 
above 104 in Fig. 3a. Abbreviations according to Fig. 2.
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some major instances), this time limit is used in place of the earliest computation time. Exemplarily, we consider 
a specific instance to visualize TI-GU@QU-LBQM and TI-GU@QU-FDA in Fig. 4.

The results of this analysis are shown in Fig. 5. This plot shows that QU-LBQM is not able to compete with 
SE-GU. All problems from the first 4 out of 9 instance groups have been solved with SE-GU in under 1 second 
while the remaining instances in less than 10 seconds, whereas the QU-LBQM runtimes range between 50 and 
100 seconds. However, LBQM finds a comparable solution faster than TI-GU for most problems with 6 or more 
samples and remains competitive for smaller problems. A Welch-t test confirms that the mean of TI-GU runtime 
is larger than the one of QU-LBQM runtime with a significance over 99%.

Furthermore, Fig. 5b shows that QU-FDA is outperformed by SE-GU as well. Analogous to Fig. 5a, the 
instances in groups (4, 4), (5, 3), (5, 4) and (6, 3) have been solved by SE-GU in 1 second or less. But in contrast 
to Fig. 5a, the other groups have their median between 1 second and 10 seconds, i. e., which reflects that the 
target objectives from QU-FDA are lower than those from QU-LBQM (see Fig. 3a). Nonetheless, the time taken 
for SE-GU to reach the solution quality of QU-FDA is 10 to 100 times smaller. Regarding TI-GU, QU-FDA finds 
a comparable solution almost always faster with a few exceptions.

Results for Major Instances
The results for major instances are presented in analogy to the results for minor instances from the previous 
section. In Fig. 6, we show the runtime and the target value of the solvers on the corresponding models as scat-
ter plots.

The objective values of QU-FDAh are worse than the ones of SE-GU with a significance of over 97% , but 
Fig. 6b shows that the runtime of SE-GU increases strictly until it reaches the upper bound for the computation 
time of 3600 seconds, which happens for ca. 15 samples. On the other hand, the computation time of QU-FDAh 
ranges between 120 and 300 seconds, where only a slight increase can be seen.

Analogously to Fig. 5b, we evaluate the earliest computation times of SE-GU model to reach objective values 
equal to or lower than the objective values obtained from QU-FDAh, denoted by the relative runtime of SE-
GUw.r.t. QU-FDAh (SE-GU@QU-FDAh). The results are shown in Fig. 7.

In Fig. 7, a strictly increasing computation time can be seen for SE-GU, whereas the QU-FDAh runtime 
remains almost constant. For the biggest instances with N = 20 samples, QU-FDAh has a clear advantage with 
respect to the computation time, whereas it is competitive to SE-GU for the instances with 15 samples. In this 
sense QU-FDAh finds a solution of comparable quality much faster for problems with 20 samples than SE-GU 
and the latter was not able to prove optimality for some of the instances with 20 samples. A Welch t-test confirms 
with a significance of over 99% that the QU-FDAh mean is lower than the SE-GU@QU-FDAh mean.

Conclusion and outlook
This paper presents a thorough benchmarking of an industrially relevant use case of combinatorial optimiza-
tion, the transport robot scheduling problem (TRSP) with the goal to achieve a time-optimal robot schedule, as 
motivated by a BASF high-throughput laboratory. We solve a large set of instances for this optimization problem 
with varying difficulty using three commercially available solvers: (i) the D-Wave’s hybrid Leap framework, (ii) 
the quantum-inspired Fujitsu digital annealer and (iii) the classical state-of-the-art solver Gurobi. To this end, 

Figure 4.  Visualization of the relative runtime of TI-GU w.r.t. QU-LBQM and QU-FDA, denoted by TI-GU@
QU-LBQM and TI-GU@QU-FDA, respectively. Here, we consider the example instance (7, 4, 3)(3); see 
supplementary material. The orange dots (connected by lines for better visualization) mark the resulting 
objective values of TI-GU at the corresponding time steps. The horizontal upper, blue and lower, green line 
mark the final objective value of QU-FDA and QU-LBQM, respectively, on the same instance. The blue and 
green lines intersect with the orange lines at some point. The time coordinate of the next lower TI-GU objective 
value after this intersection represents the relative runtime of TI-GU w.r.t. the solver, which is marked as a 
vertical line in the corresponding color. In other words, the relative runtime represents how long TI-GU has 
to run until it reaches an objective value that is at least as good as the result from QU-LBQM or QU-FDA, 
respectively.
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we develop several mathematical models: a (QUBO) model for the quantum and digital annealer and two differ-
ent MIP models for Gurobi, which we call time-indexed and sequence model, respectively. Modeling the same 
problem in different, solver-specific forms helps us to optimally assess the capabilities of each solver. In total, 
we compare five different approaches (i. e., model and solver combinations as sketched in Fig. 2): (i) Gurobi 
with the time-indexed model (TI-GU), (ii) Gurobi with the sequence model (SE-GU), (iii) D-Wave’s hybrid 
Leap framework (LBQM) with the QUBO model (QU-LBQM), (iv) Fujitsu’s digital annealer (FDA) with the 
QUBO model (QU-FDA) and (v) Fujitsu’s digital annealer hybrid framework (FDAh) with the QUBO model 
(QU-FDAh). For our performance study, we separated all problem instances into two groups. First, the minor 
instances with problems less than 10000 binary variables in the QUBO formulation and, second, the major 
instances with problems with more than 10000 and up to 22000 variables. For practical reasons, we only solve 
the minor instances with SE-GU, TI-GU, QU-LBQM and QU-FDA, whereas the major instances are only solved 
with SE-GU and QU-FDAh, respectively.

Our benchmark reveals insights both regarding the objective values of the optimization problem (i. e., the 
sum of sample completion times) as well as the end-to-end runtimes for the considered approaches. Regarding 
the objective values, we observe for minor instances that SE-GU and TI-GU give similar results, outperforming 
QU-FDA, which in turn outperforms QU-LBQM (cf. Fig. 3a). For major instances, SE-GU outperforms QU-
FDAh (cf. Fig. 6a). Regarding the runtime, we find that for smaller instances TI-GU takes the highest time and 
SE-GU takes mostly the lowest. Between these two extremes, QU-FDA and QU-LBQM take about the same 
amount of time (cf. Fig. 3b). However, the runtime of SE-GU significantly increases with increasing instance 
complexity. This same observation continues for the large instances, for which the runtime of SE-GU is mostly 
larger than that of QU-FDAh (cf. Fig. 6b).

To get further insights into the relationship between objective value and runtime, we also studied the relative 
runtime of Gurobi, that is the time that Gurobi took to find an objective value that is at least as good as the final 
result from another approach. For minor instances, we find that the relative runtimes of SE-GU w.r.t. QU-LBQM 
and QU-FDA, respectively, are strictly lower than the runtimes of QU-LBQM and QU-FDA, i. e., Gurobi found 
solutions of comparable quality faster than the quantum and quantum-inspired approaches (cf. Fig. 5a and 5b). 
This is not surprising since SE-GU tended to find better objectives in shorter time. For major instances, the 

Figure 5.  Benchmark results for minor instances as scatter plots. We show the relative runtimes of TI-GU 
and SE-GU w.r.t. QU-LBQM and QU-FDA, denoted by TI-GU@QU-LBQM, TI-GU@QU-FDA, SE-GU@
QU-LBQM and SE-GU@QU-FDA, respectively. The results are grouped into sets of instances (N, K) in analogy 
to Fig. 3. See Fig. 4 for an example of the relative runtime computation. Abbreviations according to Fig. 2.
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relative runtimes of SE-GU w.r.t. QU-FDAh increase significantly with increasing instance complexity and clearly 
exceed the runtime of QU-FDAh for the biggest instances (cf. Fig. 7). Thus, QU-FDAh shows an advantage on 
some bigger instances. Although the resulting objective values of QU-FDAh were not optimal, the approach 
shows a clear advantage on some bigger instances when compared to SE-GU on a similar time scale.

Our benchmark spans instances of different scales and therefore allows qualitative estimation of the scaling 
behavior of different approaches. Specifically, we observe that TI-GU and SE-GU show a runtime that scales 
exponentially with the instance complexity (as estimated by the number of samples and photos), whereas the 

Figure 6.  Benchmark results for major instances as scatter plots. The results are grouped into sets of instances 
(N, K) as for previous the plots. Abbreviations according to Fig. 2.

Figure 7.  Benchmark results for major instances as scatter plots. We show the relative runtime of of SE-GU 
w.r.t. QU-FDAh, denoted by SE-GU@QU-FDAh, in analogy to Fig. 5. We also show the runtime of QU-FDAh 
from Fig. 6b. The results are grouped into sets of instances (N, K) as for previous plots. Abbreviations according 
to Fig. 2.
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runtime of QU-LBQM, QU-FDA and QU-FDAh remains almost constant. The quality of the solutions is not 
significantly determined by the instance complexity. Further research is needed to investigate and quantify these 
observations in more detail.

Summarized, no general advantage of the quantum and quantum-inspired solvers was found. However, 
for certain instances the quantum-inspired hybrid usage of the Fujitsu digital annealer turned out to be a very 
promising alternative to Gurobi and was clearly superior to the usage of D-Wave’s hybrid Leap framework. Our 
study is not a conclusive result but rather an application-oriented case study that provides a snapshot of the 
current technology and leaves room for performance improvements on the modeling as well as the solver side. 
For example, an improvement of the quantum annealer inside the hybrid framework might be possible with 
additional problem-specific fine-tuning of the annealing schedule or other hardware-related parameters. Moreo-
ver, the recently released constrained quadratic model (CQM) solver from D-Wave also promises to provide 
much better performance compared to the solver used in this work. Especially in an agile field such as quantum 
computing, a technology snapshot such as ours can hardly provide any forecasts about future developments. 
Therefore, in order to preserve an up-to-date assessment, further practical evaluations for real-world use cases 
will be necessary. The methods and results from this project can serve as a blueprint or at least point of reference 
for this kind of ongoing research.

Data availability
Data of the problem instances and solver configurations are presented within the paper. The code is available 
upon reasonable request.
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