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Localization of early infarction 
on non‑contrast CT images in acute 
ischemic stroke with deep learning 
approach
Sulagna Mohapatra 1,5, Tsong‑Hai Lee 2,3,5, Prasan Kumar Sahoo 1,2* & Ching‑Yi Wu 4

Localization of early infarction on first‑line Non‑contrast computed tomogram (NCCT) guides prompt 
treatment to improve stroke outcome. Our previous study has shown a good performance in the 
identification of ischemic injury on NCCT. In the present study, we developed a deep learning (DL) 
localization model to help localize the early infarction sign on NCCT. This retrospective study included 
consecutive 517 ischemic stroke (IS) patients who received NCCT within 12 h after stroke onset. A 
total of 21,436 infarction patches and 20,391 non‑infarction patches were extracted from the slice 
pool of 1,634 NCCT according to brain symmetricity property. The generated patches were fed into 
different pretrained convolutional neural network (CNN) models such as Visual Geometry Group 16 
(VGG16), GoogleNet, Residual Networks 50 (ResNet50), Inception‑ResNet‑v2 (IR‑v2), Inception‑v3 
and Inception‑v4. The selected VGG16 model could detect the early infarction in both supratentorial 
and infratentorial regions to achieve an average area under curve (AUC) 0.73 after extensive 
customization. The properly tuned‑VGG16 model could identify the early infarction in the cortical, 
subcortical and cortical plus subcortical areas of supratentorial region with the mean AUC > 0.70. 
Further, the model could attain 95.6% of accuracy on recognizing infarction lesion in 494 out of 517 IS 
patients.

Stroke is the second leading cause of death and most significant disability in the  world1. Cerebral infarction occu-
pies approximately 80% of total strokes and is due to insufficient blood supply to the brain, leading to the death 
of brain tissue. In acute ischemic stroke (IS), the treatment with intravenous recombinant tissue plasminogen 
activator within 3–4.5 h and intra-arterial mechanical thrombectomy within 6–24 h has been well advised in 
stroke  guideline2. Early identification of ischemic size and location on brain images can help decision-making 
on urgent treatment of acute ischemic stroke. NCCT is the most commonly used brain image due to its well 
accessibility with versatile fast speed. However, NCCT has the limitation in early IS (EIS) lesion localization, 
which may take hours to days to be visible on NCCT depending on the stroke duration, severity and  location3,4, 
especially in the infratentorial region such as medulla, pons, midbrain, and cerebellum (Supplementary Fig. S1). 
MRI can give a better localization of infarction at early hours after stroke onset, but MRI is expensive, time-
consuming and not readily available in most  hospitals5,6.

Since the treatment time window for acute IS is narrow, urgent detection and localization of early IS on NCCT 
are highly demanded to save time and improve treatment outcome. Artificial intelligence has been widely used 
in medical image data  analysis7–10. With the potential of machine learning (ML), automated software named as 
e-ASPECTS (Alberta Stroke Program Early Computed Tomography Score) and RAPID ASPECTS (iSchemaView) 
have been developed to analyze the NCCT and quantify the ASPECT score automatically in early  IS11–13. In the 
case of ML, when big data is involved, it becomes a cumbersome job to extract the features manually even when 
an expert is involved. Besides, ASPECTS focuses mainly on the ten regions of middle cerebral artery (MCA) 
area in the supratentorial region without considering the areas of anterior cerebral artery (ACA) and posterior 
cerebral artery (PCA)14 (Supplementary Fig. S2). Further, ASPECTS scoring needs experience and has limited 
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applicability in detecting small infarction such as lacunar size ≤ 1.5 cm. In addition, the localization of infarc-
tion using NCCT in cortical area is challenging in comparison to subcortical area due to the presence of central 
fissure and sulci (Supplementary Fig. S3).

Although few related works developed the early ischemic stroke detection and segmentation models using 
the first-line NCCT images, none of them considered the analysis based on different region of occurrence as the 
complicacy of detection varies with the area and size of the  infarction15–23. For instance, early ischemic lesion 
detection for stroke onset < 9 h was performed for a small study population of 116  patients15. Although, the model 
achieved an accuracy of 0.74, the detection was limited to anterior and posterior territories only. A context-aware 
CNN network proposed for early ischemic stroke sign  detection16 (< 6 h of stroke onset) to estimate the presence 
of ischemic stroke sign at the hemisphere level from 170 patients data. However, it was not a robust method as 
the ischemic stroke could occur at any part of the brain. Further, a DL-based early infarct identification and 
ASPECT scoring determination using NCCT for 260 numbers of ischemic patients was  proposed17. The designed 
model considered only the MCA region and achieved an accuracy = 0.85 and AUC = 0.83. However, the lower 
F-score = 0.40 signifies the imbalance outcome of precision and recall. An early stroke detection method using 
YOLO v3 was developed for 238 patients collected from two  institutions18. Although, the model included the 
cases of smaller size of infarction, the value of F-score < 0.50 was due to low sensitivity (0.40) and precision (0.60). 
The CNN framework designed for ischemic stroke detection achieved 90%  accuracy19 by considering very less 
number of data set (256 patches). Besides, the collected data were from the MCA territory of the supratentorial 
region only and did not focus on the stroke localization.

Apart from the CNN analysis, several methods developed the ischemic region localization using the concept 
of ML and statistical  analysis20,21. One of them developed the early infarction (< 6 h of onset) detection method 
from the NCCT by considering the infarction occurred on the M1 segment of  MCA20. Even if the considered 
stroke age was < 6 h, the infarction region on NCCT was visible. Although, the ML-based automatic ASPECT 
prediction  model21 achieved an accuracy greater than 0.80, the sensitivity was only 0.50 for different parts of 
MCA regions such as M1, M3, M4, M6, caudate and internal capsule. The mathematical  models22,23 developed for 
ischemic region detection and localization by calculating the stroke imaging marker (SIM) manually. However, 
the manual calculation of early IS based on single parametric value could not be considered as a general solution 
for the extensive amount of data. Besides, the intensive mathematical calculation requires massive computational 
time and needs the modeler to understand the relation between parameters before using it for further analysis.

Some researchers developed AI-based automatic segmentation of ischemic region by considering the MR 
images. For early detection of ischemic stroke, authors proposed a fully automatic CNN system by consider-
ing Diffusion Weighted Imaging (DWI)5. The proposed CNN model achieved an average dice score 0.67 with 
generation of higher False Negatives (FNs). This could lead to misclassification when the brain contains the only 
lesion. A residual-structured fully convolutional network (Res-FCN) was developed for automatic segmentation 
of acute and sub-acute ischemic stroke by considering different MRI sequences such as DWI, ADC (Apparent 
Diffusion Coefficient) and  T224. However, the designed model has very low training and testing accuracy of 0.80 
and 0.64, respectively. One study achieved sensitivity = 0.93 and specificity = 0.82 from the designed 3D CNN 
model by considering the CT angiography (CTA) images for the acute ischemic stroke  detection25. Nonetheless, 
the use of injected material for CTA images may bring lots of side effects such as itching, vomiting, nausea and 
also the chances of cancer. Therefore, for faster and safe ischemic stroke diagnosis, we considered the affordable 
first-line NCCT for our analysis.

Our previous study has shown the customized-VGG16 CNN model can perform well to identify the presence 
of early ischemic lesions on NCCT slices using the concept of automatic feature  learning3. The present study 
intended to develop an automatic localization model for early infarction sign irrespective of any cerebral region 
on NCCT examined within 12 h after stroke onset.

Methods
Study population
A total of 9,353 IS patients were retrospectively screened from 2014 to 2018 at Chang Gung Memorial Hospi-
tal, Linkou Medical Center, Taiwan. Among them, 517 IS patients (5.52%) met the inclusion criteria and were 
recruited for further processing (Fig. 1). Both NCCT and MRI were collected after de-identification with the 
imaging interval < 14 days (mean ± SD = 7.4 ± 5.3 days), and there was no recurrent ischemic event during this 
interval. The MR/DWI sequences were used for image annotation, while MR/ADC sequences were employed 
to validate the ischemic region in DWI. The images were collected from Chang Gung Research Databank in the 
format of Digital Imaging and Communications in Medicine (DICOM) with each image size 512 × 512 pixels. 
The study was approved by the Institutional Review Board (IRB) of the Chang Gung Medical Foundation, Tai-
pei, Taiwan with license number 201900028B0. The informed consent was waived by the Chang Gung Medical 
Foundation, Institutional Review Board, 199, Tung Hwa North Road, Taipei, Taiwan, 10507, Republic of China. 
All methods were performed in accordance with the relevant guidelines and regulations.

Brain CT scans were performed on a single detector CT scanner (Aquilion 64, Toshiba, Japan). The thickness 
of each brain NCCT was 5 mm. The HU of original NCCT was transformed from a brain/sinus window (center 
40HU, width 150HU) into 256 Gy levels. Brain MR image was performed at a 3.0 Tesla scanner (Ingenia 3.0T MR 
system, Philips, USA). The eligible images were screened based on the regular reports by neuroradiologists who 
identified no infarction on initial NCCT which was examined within 12 h after stroke onset but positive DWI/
ADC signal on subsequent MRI which was re-confirmed by two neurologists. In case of conflict between neuro-
radiologists and neurologists, the images were not included for analysis (the inter-observer difference near 100%).
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Study methodology
Five phases were performed to establish the infarction localization model including preprocessing, ground truth 
formation, CNN input preparation, infarction sign detection, and infarction localization (Supplementary Fig. S4).

Preprocessing phase
To improve the issues of low resolution, poor contrast quality, presence of skull bone, and in-built noise that 
could create the difficulty in detecting the infarction region, the following preprocessing steps were used. First, 
the NCCT DICOM images were converted to JPEG (joint photographic expert group) using the software Radi-
Ant DICOM  Viewer26 with the maintenance of the original image dimension 512 × 512 and the standard 8-bit 
grayscale depth (0–255). A pixel-level analysis was performed instead of voxel-level for which 2D NCCT slices 
were  preferred27. The distortion of brain tissue was carefully prevented after the conversion of NCCT images.

Second, the NCCT slices containing infarction were differentiated from those with no infarction based on 
DWI/ADC sequence. The mapping between NCCT and MRI was performed considering various cerebral features 
including the structure of ventricle, sulcus and order of the image sequences. Third, bony skull and falx calcifica-
tion were removed by combining the automatic algorithms such as binary and pixel-based thresholding along 
with the combination of morphological operations like erosion and opening both together (https:// www. mathw 
orks. com/ help/ images/ morph ologi cal- dilat ion- and- erosi on. html). Fourth, to increase the contrast quality as well 
as to remove the inbuilt noise from NCCT, the Denoising Convolutional Neural Network (DnCNN) (https:// 

Figure 1.  Patient recruitment flowchart. The figure represents the inclusion and exclusion criteria of the 
ischemic stroke patients enrolled and considered for the present analysis according to their stroke onset time, 
affected brain regions, areas and size of infarction. NCCT  non-contrast computed tomogram, MR magnetic 
resonance, DWI diffusion-weighted image.

https://www.mathworks.com/help/images/morphological-dilation-and-erosion.html
https://www.mathworks.com/help/images/morphological-dilation-and-erosion.html
https://www.mathworks.com/help/images/ref/dncnnlayers.html
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www. mathw orks. com/ help/ images/ ref/ dncnn layers. html) was applied in the final step of the preprocessing after 
comparing the Peak-Signal-to-Noise Ratio (PSNR) value with different filtering algorithms such as mean filter, 
median filter, etc. (https:// www. mathw orks. com/ help/ images/ noise- remov al. html).

Ground truth formation phase
To prevent the manual labelling errors, the DWI/ADC sequence was used as a reference to create a label on 
NCCT by using supervised learning  method28. However, several intermediate processing steps such as brain 
tissue tilt adjustment, cropping and resizing were performed using ImageJ  software29 prior to the annotation. 
These processing steps were necessary as the acquisition settings and the patient health condition vary with 
both modalities. However, these intermediate processing were solely performed for the annotation of the train-
ing images. First, the tilt adjustment was done on the selected NCCT and DWI slices to make them completely 
straight by rotating clockwise or anti-clockwise until the cerebral falx line of both the image modalities form 
90° or 270° angle with the x-axis and a 0° or 180° angle with the y-axis. This angular adjustment was performed 
automatically using bilinear interpolation method embedded in ImageJ. In the next step, the brain tissue part 
was cropped from both images. Further, the cropped NCCT slices were resized equal to the size of DWI to match 
the accurate region of infarction. Then, the infarction region was extracted from the DWI/ADC image using the 
Shanbhag segmentation method embedded inside the ImageJ. Next, the masked infarction region was overlaid 
on the corresponding preprocessed NCCT. Finally, the NCCT with annotated early infarction was confirmed 
by neurologists using corresponding DWI/ADC. The T2 shine-through effect of DWI slice was taken care of by 
the corresponding ADC slice.

CNN input preparation phase
The DL-based infarction localization model considered the image patches as the input to the CNN instead of the 
entire NCCT slices. The use of image patches was to prevent from the imbalanced pixel ratios between the acute 
infarction lesion and the normal brain region. To prepare the appropriate input for the CNN model, different 
sub-phases such as patch generation, patch selection and patch resizing were adopted in this phase.

For patch generation, TileMage Image Splitter version 2.11 (https:// tilem age- image- split ter. en. uptod own. 
com/ windo ws) was used to divide the image slices into smaller patches of the user-defined size, where the size 
of patches varied (15–22 pixels) based on the dimension of the input image. The patches were formed consider-
ing both the annotated and its corresponding un-annotated NCCT. The generated patches were stored in JPEG 
format based on the requirement of the DL-based localization model (Supplementary Fig. S5a).

For patch selection, both infarction and non-infarction patches were selected for AI analysis. In the designed 
model, the infarction (abnormal) patches were extracted from the infarction region whereas the non-infarction 
(normal) patches were collected from the brain region situated at the contralateral hemisphere by applying the 
brain symmetry property (Supplementary Fig. S5b). For those patients who had infarction on both hemispheres, 
the non-infarction patches from both hemispheres were considered for training.

For patch resizing, the pools of infarction and non-infarction patches were resized before testing in the DL 
models. The resizing for a batch of patches was performed using the Plastiliq Image Resizer version 1.2.5 (https:// 
plast iliq- image- resiz er. en. uptod own. com/ windo ws) (Supplementary Fig. S5c).

Infarction sign detection phase
The infarction localization phase focused mainly on the identification of infarction region that obtained using 
CNN model selection and finalization. The infarction identification process was carried out by correctly classify-
ing the infarction and non-infarction patches using pretrained CNN. For this purpose, a total of 21,436 infarction 
(abnormal) patches and 20,391 non-infarction (normal) patches were extracted from the 1,634 NCCT slices of 
517 patients. The main aim of this localization phase was to identify at least a single infarction patch accurately 
that could assist the diagnosis of acute cerebral infarction.

For CNN model selection and input patch size, the entire pool of both abnormal and normal patches was 
divided randomly into training/validation and testing sets in the ratio of 80:20. Several state-of-the-art pretrained 
CNN models that were already trained with a large ImageNet  dataset30 were employed based on their reusability 
and faster analysis. The pretrained CNN models adopted the concept of transfer  learning31, where the learn-
ing process of those pretrained models was initiated from the patterns which were already learned during the 
training of various dataset instead of learning from scratch. Different pretrained CNN models were performed 
including Visual Geometry Group (VGG16)32, Residual Networks 50 (ResNet50)33,  GoogleNet34, Inception-v335, 
Inception-v436, and Inception-ResNet-v2 (IR-v2)36 that were trained on ImageNet dataset and were customized 
using transfer learning.

For CNN model finalization, after selection of the appropriate pretrained model with the default settings, 
proper hyperparameter tuning was performed to derive the final CNN model for infarction localization, and 
the derived model was validated through k-fold cross validation.

CNN model tunings were performed including the addition of three batch normalization layers, where one 
was before the flatten layer and the other two were after each dense layer, which was different from the standard 
VGG16 model (Supplementary Information S1: Default architecture of VGG16). The number of neurons was 
modified to 500 (first dense layer) and 250 (second dense layer) different from the standard 4,096. The output 
layer activation function was modified to Sigmoid from the default Softmax activation function for binary clas-
sification. So, the model could perform optimally when the feature difference among the inputs was complicated, 
and the feature differentiation between the infarction and non-infarction patches was  challenging37. To adjust 
the learning rate adaptively with lower requirements of hardware and computational resources, Adam optimizer 
was  used38. For loss minimization, Categorical Crossentropy loss function was considered as it performed well 

https://www.mathworks.com/help/images/ref/dncnnlayers.html
https://www.mathworks.com/help/images/noise-removal.html
https://tilemage-image-splitter.en.uptodown.com/windows
https://tilemage-image-splitter.en.uptodown.com/windows
https://plastiliq-image-resizer.en.uptodown.com/windows
https://plastiliq-image-resizer.en.uptodown.com/windows
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for the binary class where the inputs were encoded in the form of one-hot vector like (1, 0) for infarction and 
(0,1) for normal patches,  respectively39.

To establish a robust infarction localization model, rigorous hyperparameter tuning was performed using the 
concept of random search technique as it outperforms the traditional grid search  technique40. After performing 
several trails of experiments with different combinations of hyperparameters, a fine-tuned model was obtained 
by setting the optimal values such as learning rate = 0.001, batch size = 8, number of epochs = 4, number of steps 
per epoch = 5000 and dropout rate = 0.40 (first dropout layer) and 0.30 (second dropout layer).

In the k-folds cross validation strategy, to assess the robustness of the tuned-VGG16 CNN model as well as 
to handle the overfitting issue, the whole dataset of patches generated from 517 infarction patients were divided 
patient-wise into k-folds (k = 20) randomly. In each fold, the patches from 25 patients (5% of 517 patients) were 
selected randomly for testing; whereas the other 492 (95% of 517 patients) early infarction patients’ data (patches) 
were used for training and validation purposes. The primary reason to consider k = 20 folds was to provide a 
larger set of training data to the machine in each round, so that the model could extract multiple distinct features, 
which could help correct recognition of unseen testing data. Finally, the best checkpoint model with the smallest 
validation loss and the highest average performance value was saved as the final derived model.

All implementations were carried out using the GPU version of TensorFlow 1.14 with the specification TITAN 
RTX 24GB × 4, Intel®Xeon®Scalable Processors, 3 UPI up to 10.4GT/s with 256 GB memory, Nvidia-smi 430.40 
in Ubuntu 18.04.3 platform. Various predefined libraries such as Keras = 2:1:6, python = 3:6:9, numpy = 1:18:4, 
matplotlib = 3:2:1, OpenCV = 4:1, pillow = 7:1:2, and Scikit-learn = 0:21:3 were used in the image analysis.

Infarction localization phase
The localization of classified abnormal (infarction) patches was performed on the respective NCCT using tem-
plate matching algorithm developed by OpenCV (https:// docs. opencv. org/4. x/ d4/ dc6/ tutor ial_ py_ templ ate_ 
match ing. html). The designed localization system took the classified abnormal patches and the preprocessed 
NCCT altogether as the input, and matched those abnormal patches with the corresponding NCCT using the 
derived algorithm (Supplementary Information S1: Infarction localization phase).

Statistical analysis
When performing the analysis of acute infarction patients using deep learning, the accuracy = (TP + TN)/
(TP + FP + TN + FN) achieved by the models was not sufficient to evaluate the performance. Therefore, other per-
formance metrics such as sensitivity/recall = TP/(TP + FN), specificity = TN/(TN + FP), precision = TP/(TP + FP), 
F-score = (2 × precision × sensitivity)/(precision + sensitivity), were used for evaluating the developed classifica-
tion model. In the proposed model, the TP (true positives) represented the actual infarction patches predicted 
to be infarction as per requirement, and the TN (true negatives) denoted the non-infarction patches correctly 
predicted as non-infarction. Similarly, FP (false positives) predicted non-infarction as infarction, and FN (false 
negatives) incorrectly predicted the infarction as non-infarction. Apart from those performance metrics, the 
receiver operating characteristic (ROC) was also plotted to show the area under the curve (AUC) to predict the 
binary outcome. Average precision (AP) curve was also depicted to represent the trade-off between sensitivity 
and precision, which is useful in unbalanced dataset (https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. 
metri cs. avera ge_ preci sion_ score. html).

The model performance was also evaluated to compare the outcome of the patch-level accuracy =  Tcp/Tco and 
patient-level accuracy =  Tcc/Tp. Where  Tcp was the total number of correctly classified patches,  Tco represented 
the total number of patches considered from both hemispheres during the infarction localization for individual 
patient,  Tcc defined the total number that correctly identified patients with infarction lesion, and  Tp was the total 
number of considered infarction patients.

Results
Patient demographics
Among the 9,353 patients screened, 517 (5.52%) met the inclusion criteria and were used for analysis. In these 
517 patients, 355 had stroke onset time < 6 h, and 162 had stroke onset time between 6 and 12 h (Fig. 1). Patients 
were divided based on the infarction regions including supratentorial region (n = 428) and infratentorial region 
(n = 89). Supratentorial region comprised ACA, MCA and PCA areas which were further categorized into corti-
cal (n = 156), subcortical (n = 204), and cortical plus subcortical (n = 68) areas. Similarly, infratentorial region 
comprised midbrain, pons, medulla and cerebellum. The current study also considered the analysis of infarction 
size 0.5–1.5 cm (n = 64) for both supratentorial and infratentorial regions. The clinical profiles of considered 
ischemic patients were represented in Table 1.

CNN model and input size selection
The selection of the preferable patch size and the robust pretrained CNN model were carried out through several 
performance metrics (Table 2). For model selection, the primary metric AP was considered. Among all the mod-
els, the AP value of VGG16 for the patch size 140 × 140 was 0.69 which was higher than other pretrained models 
and patch sizes (Table 2 and Supplementary Fig. S6). Although, IR-v2 performed better (AP = 0.68) than VGG16 
(AP = 0.55) for patch size 224 × 224, the other performance metrics like specificity = 0.70 and F-score = 0.68 were 
higher in the case of VGG16 (Table 2). Based on the results of the performance metrics (Table 2 and Supplemen-
tary Fig. S6), the pre-trained VGG16 model with input patch size 140 × 140 was selected for our CNN model to 
classify the infarction and non-infarction patches accurately.

https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html
https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
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CNN model finalization
The average testing values obtained by using 20-folds of the experiment were considered. The results of different 
performance metrics with the corresponding mean, obtained after performing a 20-fold cross-validation study, 
are presented in Table 3.

The tuned-VGG16 model achieved the mean AUC = 0.73 (Table 3: 5th row and 8th column) along with 
mean specificity = 0.78 (Table 3: 5th row and 5th column) and precision = 0.77 (Table 3: 5th row and 6th col-
umn), respectively. The delineation of ROC curve showing individual AUC = 0.73 for stroke onset time ≤ 6 h 

Table 1.  Clinical profiles of the ischemic stroke patients recruited with onset time ≤ 6 h (h) and 6–12 h. 
Statistics: Student’s t-test for numerical data and Chi-square test for categorical data.

 ≤ 12 h (n = 517)  ≤ 6 h (n = 355) 6-12 h (n = 162)
P value
 ≤ 6 h vs. 6-12 h

Age (mean ± SD) 68.2 ± 12.7 68.1 ± 12.5 68.5 ± 13.2 0.690

Male sex, no. (%) 303 (58.6%) 222 (62.5%) 81 (50.0%) 0.007

Hypertension, no (%) 419 (81.0%) 287 (80.8%) 132 (81.4%) 0.864

Diabetes, no. (%) 201 (38.8%) 137 (38.5%) 64 (39.5%) 0.843

Hyperlipidemia, no. (%) 234 (45.2%) 153 (43.0%) 81 (50.0%) 0.143

Heart disease, no. (%) 186 (35.9%) 138 (38.8%) 48 (29.6%) 0.042

Old cerebral infarction, no. (%) 171 (33.07%) 114 (32.11%) 57 (35.18%) 0.491

Intracranial artery stenosis, no. (%) 365 (70.59%) 234 (65.91%) 124 (76.54%) 0.015

Table 2.  Performance metrics related to CNN model and patch size selection. AUC  area under curve, 
AP average precision, VGG16 visual geometry group 16, ResNet50 residual networks 50, IR-v2 inception-
ResNet-v2.

Patch sizes Architectures Accuracy Sensitivity Specificity Precision F-score AUC AP

24 × 24

GoogleNet 0.66 0.65 0.67 0.73 0.68 0.65 0.36

Inception-v3 0.67 0.66 0.68 0.73 0.69 0.67 0.62

Inception-v4 0.65 0.65 0.67 0.73 0.68 0.68 0.52

VGG16 0.65 0.61 0.72 0.79 0.69 0.67 0.62

ResNet50 0.65 0.63 0.68 0.77 0.69 0.67 0.60

IR-v2 0.66 0.65 0.55 0.68 0.66 0.67 0.61

64 × 64

GoogleNet 0.63 0.59 0.72 0.81 0.68 0.66 0.44

Inception-v3 0.66 0.63 0.71 0.74 0.68 0.67 0.54

Inception-v4 0.66 0.63 0.69 0.72 0.67 0.67 0.56

VGG16 0.66 0.66 0.66 0.63 0.64 0.67 0.64

ResNet50 0.67 0.66 0.67 0.65 0.66 0.67 0.63

IR-v2 0.66 0.64 0.68 0.67 0.66 0.67 0.60

140 × 140

GoogleNet 0.59 0.55 0.77 0.90 0.68 0.66 0.29

Inception-v3 0.66 0.67 0.65 0.59 0.63 0.67 0.68

Inception-v4 0.67 0.65 0.68 0.68 0.66 0.67 0.60

VGG16 0.66 0.67 0.64 0.57 0.62 0.66 0.69

ResNet50 0.66 0.62 0.71 0.75 0.68 0.67 0.53

IR-v2 0.66 0.62 0.72 0.77 0.69 0.67 0.52

224 × 224

GoogleNet 0.64 0.60 0.73 0.89 0.69 0.67 0.45

Inception-v3 0.66 0.67 0.65 0.59 0.63 0.67 0.62

Inception-v4 0.66 0.62 0.71 0.75 0.68 0.67 0.53

VGG16 0.66 0.63 0.70 0.74 0.68 0.67 0.55

ResNet50 0.66 0.62 0.73 0.78 0.69 0.68 0.51

IR-v2 0.66 0.67 0.65 0.58 0.62 0.67 0.68

299 × 299

GoogleNet 0.62 0.58 0.73 0.83 0.68 0.66 0.40

Inception-v3 0.65 0.69 0.63 0.52 0.59 0.66 0.50

Inception-v4 0.66 0.65 0.68 0.67 0.66 0.67 0.60

VGG16 0.66 0.63 0.72 0.75 0.69 0.68 0.66

ResNet50 0.65 0.61 0.73 0.79 0.69 0.67 0.48

IR-v2 0.63 0.58 0.74 0.84 0.69 0.66 0.40
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and AUC = 0.74 for stroke onset time within 6–12 h (Fig. 2a,b) justified the uniformity of the derived model in 
infarction localization irrespective of the onset time. The localization of the infarction in the infratentorial region 
(Fig. 2c–f and Table 3: 11th, 12th rows and 8th column) showed the tuned-VGG16 model performed equivalently 
as supratentorial with AUC = 0.74 for stroke onset time ≤ 6 h and AUC = 0.73 for stroke onset time within 6–12 h. 
The mean specificity = 0.89 and mean precision = 0.78 (Table 3: 13th row and 5th, 6th columns) suggested the 
ability of the proposed CNN model to recognize the non-infarction patches (TNs) more precisely with less false 
positives (FPs). Further, the achievement of AP = 0.69 for stroke onset time ≤ 6 h and AP = 0.63 for stroke onset 
within 6–12 h signified the balanced outcome of higher precision and lower recall (Table 3: 11th, 12th rows and 
9th column). In case of the supratentorial infarction, the derived localization model could correctly determine 
the TP (infarction region) with the mean value of AUC = 0.73 (Table 3: 9th row and 8th column) and sensitiv-
ity = 0.77 (Table 3: 9th row and 4th column).

Considering the analysis of infarction in cortical area, the developed model achieved mean AP = 0.75 (Table 3: 
17th row and 9th column) with AUC = 0.69 for stroke onset ≤ 6 h and AUC = 0.73 for stroke onset time within 
6–12 h (Fig. 2g,h). Further, the F-score = 0.72 for stroke onset time ≤ 6 h and 0.79 for stroke onset time within 
6–12 h in subcortical infarction (Table 3: 19th, 20th rows and 7th column) signified the harmonic balance 
between higher recall and lower precision. For the cortical plus subcortical infarction, the model achieved a 
significant outcome with sensitivity and AP ≥ 0.70 for both stroke onset time (Table 3: 23rd, 24th rows and 4th, 
9th column). As presented in Fig. 2i–l, the ROC curve showing the AUC = 0.77 (stroke onset time ≤ 6 h) and 
AUC = 0.78 (stroke onset time 6–12 h) in the cases of subcortical infarction along with the value of AUC = 0.69 
(stroke onset time ≤ 6 h) and AUC = 0.74 (stroke onset time 6–12 h) for cortical plus subcortical infarction signi-
fied the ability of tuned-VGG16 model in differentiation between all positives (TP, TN) and negatives (FP, FN).

The derived model achieved AUC = 0.78 for both stroke onset time in the cases of infarction size ≤ 1.5 cm 
(Fig. 2m,n) with mean sensitivity = 0.77 and AP = 0.75 (Table 3: 29th rows and 4th, 9th column), conveying the 
stability of the selected CNN model for the localization of small infarction.

Considering the patch-level accuracy, the tuned-VGG16 model achieved 100% accuracy without any misclas-
sified infarction patch in 19 out of 64 patients for the infarction size ≤ 1.5 cm and 46 out of 453 patients for the 
infarction size > 1.5 cm (Fig. 3a,c). The accuracy varied from 60 to 100% in the 23 patients with even a smaller 
infarction size ≤ 0.9 cm (scatter plot in Fig. 3b). In the case of infarction size > 1.5 cm (Fig. 3c), the tuned-VGG16 
achieved patch-level accuracy ≥ 70% for 266 out of total 453 stroke patients.

Table 3.  Performance evaluation of the tuned-VGG16 infarction detection model. – not mentioned, AUC  area 
under curve, AP average precision.

Stroke onset time # of patients Accuracy Sensitivity Specificity Precision F-score AUC AP

Total patient-wise analysis

 ≤ 6 h 355 0.72 0.66 0.78 0.77 0.65 0.73 0.69

 6–12 h 162 0.73 0.68 0.79 0.78 0.68 0.74 0.70

 Mean – 0.73 0.67 0.78 0.77 0.66 0.73 0.69

Supratentorial region-wise analysis

 ≤ 6 h 297 0.71 0.72 0.69 0.74 0.68 0.71 0.70

 6–12 h 131 0.75 0.82 0.67 0.78 0.76 0.75 0.76

 Mean – 0.73 0.77 0.68 0.76 0.72 0.73 0.73

Infratentorial region-wise analysis

 ≤ 6 h 58 0.74 0.60 0.89 0.81 0.63 0.74 0.69

 6–12 h 31 0.72 0.55 0.89 0.76 0.60 0.73 0.63

 Mean – 0.73 0.57 0.89 0.78 0.61 0.73 0.66

Cortical area-wise analysis

 ≤ 6 h 119 0.69 0.65 0.73 0.76 0.63 0.69 0.73

 6–12 h 37 0.72 0.72 0.72 0.80 0.71 0.73 0.77

 Mean – 0.70 0.68 0.72 0.78 0.67 0.71 0.75

Subcortical area-wise analysis

 ≤ 6 h 132 0.75 0.79 0.68 0.73 0.72 0.77 0.72

 6–12 h 72 0.78 0.88 0.65 0.77 0.79 0.78 0.78

 Mean – 0.76 0.83 0.66 0.75 0.75 0.77 0.75

Cortical plus subcortical area-wise analysis

 ≤ 6 h 48 0.67 0.70 0.64 0.74 0.66 0.69 0.70

 6–12 h 20 0.73 0.80 0.66 0.76 0.74 0.74 0.74

 Mean – 0.70 0.75 0.65 0.75 0.70 0.71 0.72

Infarction size (0.5–1.5 cm)-wise analysis

 ≤ 6 h 39 0.79 0.74 0.82 0.75 0.71 0.78 0.73

 6–12 h 25 0.78 0.81 0.75 0.79 0.76 0.78 0.78

 Mean – 0.78 0.77 0.78 0.77 0.73 0.78 0.75
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The patient-level accuracy analysis using the tuned-VGG16 model showed the derived VGG16 model could 
correctly recognize 494 out of 517 patients (95%, Fig. 3d) even for those patients with a single classified infarc-
tion patch (TP).

Infarction localization on NCCT 
The infarction localization model was developed to automatically display the infarction region on the corre-
sponding NCCT (Fig. 4 and Supplementary Fig. S7). As shown in Fig. 4, the finalized tuned-VGG16 localization 
model could successfully recognize the abnormal patches in both supratentorial and infratentorial brain regions 
(Fig. 4a,b and Supplementary Fig. S7a) and also in cortical, subcortical and cortical plus subcortical areas (Fig. 4c 
and Supplementary Fig. S7b).

Although the infarction localization model could correctly identify the patches of different infarction size in 
the corresponding NCCTs, there were some cases where the localized infarction in NCCT (Fig. 4d) was smaller 
than the DWI/ADC (FNs). In some instances, the tuned-VGG16 model localized the infarction on the normal 
region of the opposite hemisphere (Fig. 4d) by misclassifying the non-infarction patches as infarction (FPs). 
However, this type of wrong localization could be managed by the clinicians considering the neurological deficit 
criteria.

Discussion
Our previous  study3 developed a CNN-based model to identify the early ischemic injury on the first-line NCCT, 
which could accurately classify the normal and ischemic stroke patients by identifying the probable ischemic 
slices. However, the previous study has the limitation to localize the infarction on these NCCT slices to know the 
region, size, and severity of the  infarction15–25,41,44. The present study was reformed to develop a supervised deep 

Figure 2.  Receiver operating characteristics (ROC) curves generated from tuned-VGG16 infarction localization 
model. (a) Stroke onset time (≤ 6 h). (b) Stroke onset time (6–12 h). (c) Supratentorial region infarction (≤ 6 h). 
(d) Supratentorial region infarction (6–12 h). (e) Infratentorial region infarction (≤ 6 h). (f) Infratentorial region 
infarction (6–12 h). (g) Cortical area infarction (≤ 6 h). (h) Cortical area infarction (6–12 h). (i) Subcortical area 
infarction (≤ 6 h). (j) Subcortical area infarction (6–12 h). (k) Cortical plus subcortical area infarction (≤ 6 h). 
(l) Cortical plus subcortical area infarction (6–12 h). (m) Infarction size 0.5–1.5 cm (≤ 6 h). (n) Infarction size 
0.5–1.5 cm (6–12 h). ROC receiver operating characteristic, VGG16 visual geometry group 16.
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learning (DL)-based localization model for early infarction sign by integrating several automatic methods and 
software. The proposed model is considering not only the stroke onset time < 12 h, but also the different regions 
(supratentorial, infratentorial) and areas (cortical, subcortical, cortical plus subcortical), and even the lacune-size 
infarction. Although few related works developed DL-based infarction localization model using NCCT 15–23,41,44, 
none of these image analyses were performed in both infratentorial and supratentorial regions considering the 
complicacy of localization in cortical and subcortical areas. A detailed comparison of those related studies related 
to clinical contribution was presented in Table 4.

Although, the previously proposed works used first-line NCCT and DL methodologies for early ischemic 
stroke detection and segmentation, several technical limitations exist in terms of model development, data 
partition and performance  evaluation15,17,18,41–44. For instance, most of the previous works performed slice-wise 
 analysis17,18,41,43,44, where the global features generated from other cerebral parts like sulcus, artery, and ventricle 
dominate the local features of infarction, resulting higher FNs. Therefore, the sensitivity (0.4118, 0.6541) and 
F-score value (0.4417, 0.4918) of those related works are very less. In contrast, we trained the model by providing 
both local and global information in the form ischemic and normal patches through our patch-based solution 
extracted from the opposite hemisphere.

The patch-based analysis was performed by using first-line NCCT 15,42. In the first-work15, ResNet used for 
patch classification considering the sizes 17 × 17, 19 × 19 and 23 × 23, whereas in the second  work23 two-stage 
model (Unet-ResNet) was employed for the early ischemic stroke segmentation by considering a fixed patch size 
of 23 × 23. The smaller size of patches might lead to feature distortion while performing the internal  resizing43,44 
while input to the ResNet whose default size is 224 × 224. This might lead to inadequate feature extraction, 
especially when the infarction size was so large or too small. Accordingly, we used the patch of size of 140 × 140 
for qualitative feature extraction after an extensive performance analysis of different patch sizes as presented 
in Table 2. The adopted size of patches enables the network to differentiate both infarction and normal regions 

Figure 3.  The analysis of patch-level and patient-level accuracy. (a) Analysis of patch-level accuracy (%) for 
patients with infarction size ≤ 1.5 cm. (b) Analysis of patch-level accuracy (%) for patients with infarction size 
0.5–1.5 cm. (c) Analysis of patch-level accuracy (%) for patients with infarction size > 1.5 cm. (d) Analysis of 
patient-level accuracy.
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Figure 4.  Localization of early infarction on first-line NCCT. (a) Automatic localization of early infarction 
in supratentorial region. (b) Automatic localization of early infarction in infratentorial region. (c) Automatic 
localization of early infarction in cortical, subcortical and cortical plus subcortical areas. (d) Inaccurate 
localization of infarction. It could be observed that the tuned-VGG16 model incorrectly localized the infarction 
in the opposite hemisphere, which was FP (3rd row). Further, there were two distinct infarctions located in the 
DWI (6th row) represented by the green and purple circles, respectively. In these cases the developed model 
could accurately localize the bigger size of the infarction on NCCT (green circle), whereas failed to identify the 
comparatively smaller one. Besides, it could be visualized from the localized NCCT slice (9th row), that the 
identified infarction region was smaller than the corresponding DWI, where some of the ischemic patches were 
misclassified as normal (FNs). NCCT  non-contrast computed tomogram, DWI diffusion-weighted imaging.
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 effectively45,46. Besides, the execution of sequential VGG16 is faster than the two stages UNet-ResNet23, where 
the computational-intensive segmentation was performed first following the classification.

In our current study, a large study population of 517 patients with stroke onset < 12 h considered while the 
previous works were developed on limited  datasets15,43. For instance, there were only 116 patients recruited for 
patch-wise  classification15. The precise segmentation of early infarction using multi-scale U-Net was developed 
by considering only 30 ischemic  cases43. Further, the primary reason of low sensitivity (0.65) in the DL-assisted 
IS detection  model41 could be imbalance data (normal slice: 6076, ischemic slice: 732). Therefore, the model 
could learn the normal features (TNs) only. Our proposed model was developed by considering the NCCT slices 
without visibility of ischemic lesion for stroke onset < 12 h, where the differentiation of ischemic and normal 
features was challenging. On contrary, there was a clear visibility of the stroke region in the prior proposed 
 works18,41–43 for the easy differentiation.

One more novel point of our analysis is the automatic generation of ground truth for the AI analysis. In 
most of the related  works15,17,19,20,41,44, the training images were needed to be annotated first, and the annotation 
procedure might contain some errors based on the doctor’s experience and expertise. In some of the clinical 
scenarios, the infarction is not visible in early IS, where the annotation is difficult using the naked eye. Therefore, 
we constructed an automatic model combining the dual image modalities using both DWI/ADC and NCCT 
with the imaging interval less than 14 days to minimize the chances of annotated errors. The automatic model 
can not only reduce the burden of the clinicians but also increase the annotation accuracy as every procedure 
of annotation is performed automatically. In one of the  studies44, the neurologists generated the ground truth 
for early ischemic stroke segmentation model without considering any reference image. Besides, there was no 
outcome validation. Hence, there might be potential diagnostic verification bias.

The reviewed dataset used for AI analysis was relatively comprehensive in comparison to the analysis per-
formed in the previous related  works15–23,41–46. Our rigorous study design achieved a mean accuracy = 0.73 for 
both stroke onset durations even with the variation of ischemic changes (Table 3: 5th row, 3rd column). The main 
reason of achieving lower mean sensitivity = 0.57 (Table 3: 13th row, 4th column) for infratentorial infarction in 
comparison to supratentorial infarction is likely due to the small number of considered patients (n = 89) and also 

Table 4.  Comparison of the different IS localization models using NCCT. – not mentioned, NCCT  non-
contrast computed tomogram, MCA middle cerebral artery, AUC  area under curve, AP average precision, IS 
ischemic stroke.

Comparison 
parameters Qiu et al.20 Chin et al.19 Nishio et al.18 Beecy et al.41 Kuan et al.17 Pan et al.15 Our work

Goal Detection and quan-
tification of IS Detection of early IS Detection of acute IS Diagnosis of acute 

infarction
Segmentation of 
early infarct

Identify ischemic 
lesions

Detection and 
localization of 
early IS

Image type NCCT NCCT NCCT NCCT NCCT NCCT NCCT 

Stroke onset time  < 8 h – – – –  < 9 h  < 12 h

Brain part M1 – – – – – Whole brain

Brain region – – – – – – Supratentorial, 
Infratentorial

Brain area – – – – – Anterior and poste-
rior area

Cortical, subcorti-
cal, cortical plus 
subcortical

Infarction size – – – – – –  ≥ 0.5 cm

No. of IS patients 257 – 238 114 260 116 517

Accuracy – 0.92 – 0.88 0.85 0.74 0.73 (mean)

Sensitivity – – 0.41 0.65 – – 0.67 (mean)

Specificity – – – 0.91 – – 0.78 (mean)

Precision – – 0.62 – – – 0.77 (mean)

F-score – – 0.49 – 0.44 – 0.66 (mean)

AUC – – – 0.91 0.83 – 0.73 (mean)

AP – – – – – – 0.69 (mean)

Limitations of the 
related works

1. Only stroke in 
M1 segment is 
considered
2. No performance 
analysis related to IS 
localization outcome
3. Single hospital 
study
4. Same scanner and 
image acquisition 
protocols of NCCT 

1. Limited study 
population
2. No contribution 
towards localization

1. Sensitivity ≈ 40%, 
precision ≈ 60%, 
F-score < 50%
2. Clear visibility of 
infarction lesion on 
NCCT 

1. Limited study 
population
2. Visible stroke 
lesions on NCCT 
3. High imbalance 
data This is one of 
the main reasons for 
low sensitivity
4. Single hospital 
study

1. Only MCA region 
is considered
2. Low F-score 
value = 0.44

1. Limited study 
population
2. Visible infarction 
lesion on NCCT 
3. Lack of external 
validation

1. Limitation to 
localize if the infarc-
tion size < 0.5 cm
2. Sometimes, the 
old and new infarc-
tion both localized 
together
3. Generation of FPs 
during whole slide 
localization
4. Single hospital 
study
5. Same scanner and 
image acquisition 
protocols of NCCT 
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the slower ischemic change resulting in the increase of FNs (the infarction patch misclassified as normal patch). 
The achievement of the patch-level classification accuracy ≥ 80% for 32 out of 64 patients with an infarction size 
0.5–1.5 cm (Fig. 3a), inferred the effectiveness of the developed model in detecting lacunar infarction. Further, 
it could be observed from the pattern of the scatter plot’s trend-line (Fig. 3b) that the patch-level accuracy of 
the localization model could be increased along with an increase in the number of patients, which was one of 
the notable points of the derived model. Besides, the CNN model developed in the current study could classify 
patient-wise one or two patches for some participants (n = 83) with infarction size > 1.5 cm. Hence, the percentage 
of patch-level accuracy for those considered patients was ≤ 50% (Fig. 3c). However, in the case of early ischemic 
stroke, it is sufficient to know the location of the infarction even with a single correctly classified patch (TP).

There are some limitations in the present study. First, during the testing of whole NCCT slices, few FPs (nor-
mal patch misclassified as abnormal) were generated (Fig. 4d: 3rd row), especially for the patients with stroke 
onset time < 2 h, where the infarction is minute in comparison to contralateral side. However, this mistake could 
be overcome using the information of neurological deficit since supratentorial infarction may cause neurological 
abnormalities on the contralateral body and clinical information. Second, we found in some IS patients, the size 
of infarction region localized by patches is smaller than that in DWI/ADC (Fig. 4d: 6th and 9th rows) which 
signified that some abnormal patches were classified as normal. This is due to the extended time gap between 
the initial NCCT and the follow-up DWI/ADC, which might affect the infarction outcome. Third, it could be 
observed that the localization accuracy was higher in large infarctions than small infarctions. The reason might 
be the imbalanced distribution of healthy tissue and the infarction. Hence, during the model performance, the 
learned features from the normal region dominated the distinguished features of the infarction region. Further, 
the interval between the DWI/ADC and initial NCCT could be another potential reason. Therefore, the model 
achieved good accuracy to classify only when equal number between infarction and normal patches extracted 
from both hemispheres was given as input. However, the biasedness of the derived model could be observed 
by testing the patches generated from the whole NCCT slices. Consequently, either the infarction patches were 
misrecognized as non-infarction or the infarction was wrongly detected on the non-infarction regions due to 
the misclassification of the normal patches. Fourth, sometimes in the case of patients with both old and recent 
strokes, the infarction in the old stroke was detected instead of the recent stroke. Fifth, all the study images were 
collected from a single center, which may not be able to be generalized in other medical systems. The validation 
of the proposed automatic ischemic region localization system may be needed in other medical systems with 
different MR and NCCT sequences. Also, a prospective study collecting images in the emergency department 
will be the next aim of this study. Sixth, the improvement of our system to localize tiny infarct of size < 0.5 cm 
considering the features from whole NCCT slice is necessary.

Conclusion
The present study set up an AI-based automatic model with the concept of automatic feature extractor using 
DL to detect early infarction sign in both supratentorial and infratentorial regions with stroke onset < 12 h and 
examine the different brain areas including cortical, subcortical and cortical plus subcortical and also infarction 
size 0.5–1.5 cm.

Data availability
The data used for the primary dataset, stroke code test sets and international test were obtained from hospitals as 
described above. Data use was approved by relevant institutional review boards. The datasets generated and/or 
analyzed during the current study are not publicly available due to privacy issues of the patients but are available 
from the corresponding author on reasonable.

Received: 17 June 2023; Accepted: 21 October 2023

References
 1. Rothwell, P. M. et al. Effect of urgent treatment of transient ischaemic attack and minor stroke on early recurrent stroke (EXPRESS 

study): A prospective population-based sequential comparison. Lancet 370, 1432–1442. https:// doi. org/ 10. 1016/ S0140- 6736(07) 
61448-2 (2007).

 2. Powers, W. J. et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guide-
lines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart 
Association/American Stroke Association. Stroke 50, e344–e418. https:// doi. org/ 10. 1161/ STR. 00000 00000 000211 (2019).

 3. Sahoo, P. K. et al. Automatic identification of early ischemic lesions on non-contrast CT with deep learning approach. Sci. Rep. 
12(1), 18054 (2022).

 4. Rajini, N. H. & Bhavani, R. Computer aided detection of ischemic stroke using segmentation and texture features. Measurement 
46(6), 1865–1874 (2013).

 5. Chen, L., Bentley, P. & Rueckert, D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural net-
works. Neuroimage Clin. 15, 633–643. https:// doi. org/ 10. 1016/j. nicl. 2017. 06. 016 (2017).

 6. Zhang, R. et al. Automatic segmentation of acute ischemic stroke from DWI using 3-D fully convolutional DenseNets. IEEE Trans. 
Med. Imaging 37(9), 2149–2160 (2018).

 7. Lee, E. J., Kim, Y. H., Kim, N. & Kang, D. W. Deep into the brain: Artificial intelligence in stroke imaging. J. Stroke 19(3), 277 
(2017).

 8. Kim, J. K., Choo, Y. J., Shin, H., Choi, G. S. & Chang, M. C. Prediction of ambulatory outcome in patients with corona radiata 
infarction using deep learning. Sci. Rep. 11(1), 7989 (2021).

 9. Lee, K.-Y., et al. Automatic detection and vascular territory classification of hyperacute staged ischemic stroke on diffusion weighted 
image using convolutional neural networks. Sci. Rep. 13(1), 404 (2023).

 10. Hwangbo, L., et al. Stacking ensemble learning model to predict 6-month mortality in ischemic stroke patients. Sci. Rep. 12(1), 
17389 (2022).

https://doi.org/10.1016/S0140-6736(07)61448-2
https://doi.org/10.1016/S0140-6736(07)61448-2
https://doi.org/10.1161/STR.0000000000000211
https://doi.org/10.1016/j.nicl.2017.06.016


13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19442  | https://doi.org/10.1038/s41598-023-45573-7

www.nature.com/scientificreports/

 11. Austein, F. et al. Automated versus manual imaging assessment of early ischemic changes in acute stroke: Comparison of two 
software packages and expert consensus. Eur. Radiol. 29, 6285–6292 (2019).

 12. Goebel, J. et al. Automated ASPECT rating: comparison between the Frontier ASPECT Score software and the Brainomix software. 
Neuroradiology 60, 1267–1272 (2018).

 13. Murray, N. M., Unberath, M., Hager, G. D. & Hui, F. K. Artificial intelligence to diagnose ischemic stroke and identify large vessel 
occlusions: A systematic review. J. Neurointervent. Surg. 12(2), 156–164 (2020).

 14. Barber, P. A., Demchuk, A. M., Zhang, J. & Buchan, A. M. Validity and reliability of a quantitative computed tomography score in 
predicting outcome of hyperacute stroke before thrombolytic therapy. The Lancet 355(9216), 1670–1674 (2000).

 15. Pan, J. et al. Detecting the early infarct core on non-contrast CT images with a deep learning residual network. J. Stroke Cerebrovasc. 
Dis. 30, 105752. https:// doi. org/ 10. 1016/j. jstro kecer ebrov asdis. 2021. 105752 (2021).

 16. Lisowska, A., et al. Context-aware convolutional neural networks for stroke sign detection in non-contrast CT scans. In Medical 
Image Understanding and Analysis: 21st Annual Conference, MIUA 2017, Edinburgh, UK, July 11–13, 2017, Proceedings 21. Springer 
International Publishing (2017).

 17. Kuang, H., Menon, B. K., Sohn, S. I. & Qiu, W. EIS-Net: Segmenting early infarct and scoring ASPECTS simultaneously on non-
contrast CT of patients with acute ischemic stroke. Med. Image Anal. 70, 101984 (2021).

 18. Nishio, M. et al. Automatic detection of acute ischemic stroke using non-contrast computed tomography and two-stage deep 
learning model. Comput. Methods Programs Biomed. 196, 105711. https:// doi. org/ 10. 1016/j. cmpb. 2020. 105711 (2020).

 19. Chin, C., et al. An automated early ischemic stroke detection system using CNN deep learning algorithm. In 2017 IEEE 8th Inter-
national conference on awareness science and technology (iCAST) (2017).

 20. Qiu, W. et al. Machine learning for detecting early infarction in acute stroke with non-contrast-enhanced CT. Radiology 294, 
638–644. https:// doi. org/ 10. 1148/ radiol. 20201 91193 (2020).

 21. Kuang, H. et al. Automated ASPECTS on noncontrast CT scans in patients with acute ischemic stroke using machine learning. 
Am. J. Neuroradiol. 40(1), 33–38 (2019).

 22. Gomolka, R. S., Chrzan, R. M., Urbanik, A. & Nowinski, W. L. A quantitative method using head noncontrast CT scans to detect 
hyperacute nonvisible ischemic changes in patients with stroke. J. Neuroimaging 26(6), 581–587 (2016).

 23. Polonara, G., et al. Automatic detection, localization, and volume estimation of ischemic infarcts in noncontrast computed tomo-
graphic scans. Invest. Radiol. 48 (2013).

 24. Liu, Z., et al. Towards clinical diagnosis: Automated stroke lesion segmentation on multi-spectral MR image using convolutional 
neural network. IEEE Access 6, 57006–57016 (2018).

 25. Öman, O., Mäkelä, T., Salli, E., Savolainen, S. & Kangasniemi, M. 3D convolutional neural networks applied to CT angiography 
in the detection of acute ischemic stroke. Eur. Radiol. Exp. 3, 1–11 (2019).

 26. Brühschwein, A. et al. Free DICOM-viewers for veterinary medicine: Survey and comparison of functionality and user-friendliness 
of medical imaging PACS-DICOM-viewer freeware for specific use in veterinary medicine practices. J. Digital Imaging 33, 54–63 
(2020).

 27. Suzuki, K. Pixel-based machine learning in medical imaging. J. Biomed. Imaging 2012, 1–1 (2012).
 28. Soun, J. E. et al. Artificial intelligence and acute stroke imaging. Am. J. Neuroradiol. 42(1), 2–11 (2021).
 29. Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11(7), 36–42 (2004).
 30. Abadi, M., et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. Preprint at https:// arxiv. org/ 

abs/ 1603. 04467 (2016).
 31. Zhu, W., Braun, B., Chiang, L. H. & Romagnoli, J. A. Investigation of transfer learning for image classification and impact on 

training sample size. Chemometr. Intell. Lab. Syst. 211, 104269 (2021).
 32. Simonyan, K., & Zisserman, A. Very deep convolutional networks for large-scale image recognition. Preprint at https:// arxiv. org/ 

abs/ 1409. 1556 (2014).
 33. He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer 

vision and pattern recognition (pp. 770–778) (2016).
 34. Szegedy, C. et al. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition 

(2015).
 35. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. Rethinking the inception architecture for computer vision. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826) (2016).
 36. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learn-

ing. In Proceedings of the AAAI conference on artificial intelligence, 31 (2017).
 37. Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. Activation functions: Comparison of trends in practice and research for 

deep learning. Preprint at https:// arxiv. org/ abs/ 1811. 03378 (2018).
 38. Ruder S. An overview of gradient descent optimization algorithms. Preprint at https:// arxiv. org/ abs/ 1609. 04747 (2016).
 39. Gordon-Rodriguez, E., Loaiza-Ganem, G., Pleiss, G., & Cunningham, J. P. Uses and abuses of the cross-entropy loss: Case studies 

in modern deep learning (2020).
 40. Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012).
 41. Beecy, A. N. et al. A novel deep learning approach for automated diagnosis of acute ischemic infarction on computed tomography. 

JACC Cardiovasc. Imaging 11, 1723–1725. https:// doi. org/ 10. 1016/j. jcmg. 2018. 03. 012 (2018).
 42. Wu, G., Chen, X., Lin, J., Wang, Y. & Yu, J. Identification of invisible ischemic stroke in noncontrast CT based on novel two-stage 

convolutional neural network model. Med. Phys. 48(3), 1262–1275 (2021).
 43. Li, S., Zheng, J. & Li, D. Precise segmentation of non-enhanced computed tomography in patients with ischemic stroke based on 

multi-scale U-Net deep network model. Comput. Methods Prog. Biomed. 208, 106278 (2021).
 44. El-Hariri, H., et al. Evaluating nnU-Net for early ischemic change segmentation on non-contrast computed tomography in patients 

with Acute Ischemic Stroke. Comput. Biol. Med. 141, 105033 (2022).
 45. Hashemi, M. Enlarging smaller images before inputting into convolutional neural network: Zero-padding vs. interpolation. J. Big 

Data, 6(1), 1–13 (2019).
 46. Hirahara, D., Takaya, E., Takahara, T. & Ueda, T. Effects of data count and image scaling on Deep Learning training. PeerJ Comput. 

Sci. 6, e312 (2020).

Acknowledgements
Thanks to Healthy Aging Research Center, Chang Gung University for supporting the GPU platform from the 
Featured Areas Research Center Program within the Framework of the Higher Education Sprout Project (EMR-
PD1I0491) by the Ministry of Education (MOE), Taiwan.

Author contributions
S.M., T.H.L., P.K.S., and C.Y.W. conceptualized the deep learning algorithm. P.K.S., and S.M. developed the 
deep learning algorithm. T.H.L., and S.M. performed radiologic annotations. T.H.L. conceptualized and col-
lated the stroke code test sets. P.K.S. and S.M. collated the international test sets. T.H.L., P.K.S. and S.M. drafted 

https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105752
https://doi.org/10.1016/j.cmpb.2020.105711
https://doi.org/10.1148/radiol.2020191193
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1811.03378
https://arxiv.org/abs/1609.04747
https://doi.org/10.1016/j.jcmg.2018.03.012


14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19442  | https://doi.org/10.1038/s41598-023-45573-7

www.nature.com/scientificreports/

the manuscript text and figures with input from C.Y.W. where relevant. All authors reviewed and approved the 
manuscript.

Funding
This work was supported in part by the National Science and Technology Council (NSTC), Taiwan, under Grant 
110-2221-E-182-008-MY3 (PK Sahoo), and in part by Chang Gung Medical Foundation, Taiwan under Grant 
CMRPG3J1172, CFRPG3L0091 (TH Lee), CMRPD2J0141, CMRPD2J0142 (PK Sahoo), CMRPD1J0242 (CY 
Wu) and EMRPD1I0491 (CY Wu).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 45573-7.

Correspondence and requests for materials should be addressed to P.K.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-45573-7
https://doi.org/10.1038/s41598-023-45573-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Localization of early infarction on non-contrast CT images in acute ischemic stroke with deep learning approach
	Methods
	Study population
	Study methodology
	Preprocessing phase
	Ground truth formation phase
	CNN input preparation phase
	Infarction sign detection phase
	Infarction localization phase
	Statistical analysis

	Results
	Patient demographics
	CNN model and input size selection
	CNN model finalization
	Infarction localization on NCCT

	Discussion
	Conclusion
	References
	Acknowledgements


